Tardis

D2.2: Report on overall requirements analysis

Work package	WP2
Task	T2.2
Due date	31/Dec/2023
Submission date	09/Feb/2024
Deliverable lead	Rafael Oliveira Rodrigues (EDP)
Version	1
Authors	Rafael Oliveira Rodrigues (EDP), Manuel Pio Silva (EDP), Roland Kuhn (ACT), Dimitra Tsigkari (TID), Alceste Scalas (DTU), Carlos Coutinho (CMS), Claudia Soares (NOVA), João Leitão (NOVA), Nuno Preguiça (NOVA), Carla Ferreira (NOVA), João Costa Seco (NOVA), Silvia Ghilezan (UNS), Miroslav Zaric (UNS), Milos Simic (UNS), Giovanni Granato (GMV), David Vázquez Enríquez (GMV).
Reviewers	Sotiris Spantideas (NKUA), Simon Lund (DTU), Sebastian Mödersheim (DTU)
Abstract	This document presents the comprehensive requirements analysis. Inside, we describe both the functional and non- functional requirements, compiling them in detail for the Use

www.project-tardis.eu

	Cases and the Tardis Toolkit. Additionally, a list of various Key Performance Indicators (KPIs) is included in the document.
Keywords	Requirements, Use Cases Analysis, Heterogenous Swarms, TaRDIS Toolkit

Document Revision History

Version	Date	Description of change	List of contributor(s)
V0.1	25/7/2023	Document initiation	Rafael (EDP)
V0.2	24/10/2023	Document draft	Rafael (EDP)
V0.3	22/01/2024	Document ready for internal review	Manuel Pio Silva (EDP), Rafael Oliveira Rodrigues (EDP), Roland Kuhn (ACT), Dimitra Tsigkari (TID), Alceste Scalas (DTU), Carlos Coutinho (CMS), Claudia Soares (NOVA), João Leitão (NOVA), Nuno Preguiça (NOVA), Carla Ferreira (NOVA), João Costa Seco (NOVA), Silvia Ghilezan (UNS), Miroslav Zaric (UNS), Milos Simic (UNS), Giovanni Granato (GMV), David Vázquez Enríquez (GMV)
V0.5	29/01/2024	Document reviewed internally	Sotiris Spantideas (NKUA), Simon Lund (DTU), Sebastian Mödersheim (DTU)
V1.0	9/02/2024	Final document submitted	Manuel Pio Silva (EDP), Rafael Oliveira Rodrigues (EDP), Carla Ferreira (NOVA)

Disclaimer

Funded by the European Union

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Copyright notice

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme		
Nature of the deliverable:	R	
Dissemination Level		
PU	Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project's page)	~
SEN	Sensitive, limited under the conditions of the Grant Agreement	
Classified R-UE/ EU-R	EU RESTRICTED under the Commission Decision <u>No2015/ 444</u>	
Classified C-UE/ EU-C	EU CONFIDENTIAL under the Commission Decision <u>No2015/ 444</u>	
Classified S-UE/ EU-S	EU SECRET under the Commission Decision <u>No2015/ 444</u>	

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

- DATA: Data sets, microdata, etc.
- DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

EXECUTIVE SUMMARY

This executive summary captures the key insights from the D2.2: Report on Overall Requirements Analysis for the TaRDIS Project [1], funded by the European Union's Horizon Europe Research and Innovation programme under grant agreement number 101093006. The deliverable begins with an introduction outlining the project's background, objectives of the requirement analysis, and the deliverable structure.

The methodology section highlights the use of collaborative work in the requirement analysis process, aggregating different expertise from business specific to Programming Languages, AI and security. Subsequent sections explore the final requirements, covering design, algorithm, verification and validation, and runtime requirements.

A comprehensive review of use cases is presented, including descriptions, analysis of requirements, and the adjustments of baseline scenarios. The feedback loop from WP7 and D7.1 Baseline Development offers valuable insights into key learnings, challenges, and integration with overall requirements.

A total of 147 requirements were produced from which 59 relate to the consortium use cases. Requirements for a generic use case were written aiming for an easier replication to future use cases where TaRDIS toolbox can be incorporated or used.

The operational KPIs were defined, totalizing a total of 47, from which 11 are use cases' specific.

The collaborative work performed to achieve the aforementioned results involved more than 15 professionals from 11 institutions, with 5 being academic and 6 industrials. This was a joint effort by the entire consortium, where all work packages contributed to this document. The document is the result of 12 months of work, during which the written version underwent an iterative process spanning 3 months, involving more than 20 online meetings and 1 workshop held during the crucial in-person meeting in Athens for the 3rd General Assembly (GA)

TABLE OF CONTENTS

Executiv	e Summary		
List of F	igures		7
List of T	ables		
Abbrevia	ations		
1 Introdu	uction		
1.1 Ba	ackground of the TaRDIS	Project	
1.2 M	ethodology		
1.3 De	eliverable Structure		
2 Overa	Il requirements analysis		
2.1 Re	eview of Use Cases storie	s	
2.1.	1 UC01-EDP-Energy-Mul	ti-Level Grid Balancing	J 14
UC	-01 scenarios		
			g Through Decentralized Training in 26
UC	-02 scenarios		
	•	-	cepts for LEO satellites constellations
UC	-03 scenarios		
2.1.	4 UC04-ACT-Industry– Hi	ghly resilient factory s	hop floor digitalisation
UC	-04 scenarios		
2.1.	5 UC-05-Generic-Generic	(abstract) Use Case	
UC	-05 scenarios		
2.2 Re	equirements		
2.2.	1 Use Cases Requiremen	ts	
UC	-01-EDP-Requirements		
UC	-02-TID-Requirements		
UC	-03-GMV-Requirements		
UC	-04-ACT-Requirements		
2.2.	2 Toolbox Requirements.		
WP	2-Requirements		
WP	3-Requirements		
WP	4-Requirements		
	-		
WP	6-Requirements		
3 KPIs .			111
	Funded by the European Union	Page 5 of 117	© 2023-2025 TaRDIS Consortium

LIST OF FIGURES

Figure 2 The TaRDIS requirements elicitation + validation strategy framework
Figure 3 Energy UC Overview
Figure 4 Domain Overview
Figure 5 UC Actors role diagram 18
Figure 6 UC-01 Scenario 1 diagram 19
Figure 7 UC-01 Scenario 2 diagram 20
Figure 8 UC-01 Scenario 3 diagram 21
Figure 9 UC-01 Scenario 4 diagram 22
Figure 10 UC-01 Scenario 5 diagram 23
Figure 11 UC-01 Scenario 6 diagram 24
Figure 12 Energy State Machine 25
Figure 13 Illustration of FLaaS-related operations with some clients (end-users) connected to edge nodes and with others in a smart home setting
Figure 14 UC-02 Scenario 1 diagram
Figure 15 Illustration of splitting a neural network intro 3 parts in the setting of split learning. 29
Figure 15 Illustration of splitting a neural network intro 3 parts in the setting of split learning.
Figure 16 UC-02 Scenario 2 diagram
29 Figure 16 UC-02 Scenario 2 diagram
Figure 16 UC-02 Scenario 2 diagram
Figure 16 UC-02 Scenario 2 diagram
Figure 16 UC-02 Scenario 2 diagram
29Figure 16 UC-02 Scenario 2 diagram29Figure 17 UC-03 Scenario 1 diagram32Figure 18 UC-03 Scenario 2 diagram33Figure 19 UC-03 Scenario 3 diagram34Figure 20 Relationship diagram37Figure 21: Logistic orders38
Figure 16 UC-02 Scenario 2 diagram29Figure 16 UC-03 Scenario 2 diagram29Figure 17 UC-03 Scenario 1 diagram32Figure 18 UC-03 Scenario 2 diagram33Figure 19 UC-03 Scenario 3 diagram34Figure 20 Relationship diagram37Figure 21: Logistic orders38Figure 22 UC-04 Scenario 1 diagram39
Figure 16 UC-02 Scenario 2 diagram29Figure 16 UC-02 Scenario 2 diagram29Figure 17 UC-03 Scenario 1 diagram32Figure 18 UC-03 Scenario 2 diagram33Figure 19 UC-03 Scenario 3 diagram34Figure 20 Relationship diagram37Figure 21: Logistic orders38Figure 22 UC-04 Scenario 1 diagram39Figure 23 UC-04 Scenario 2 diagram40
Figure 16 UC-02 Scenario 2 diagram29Figure 17 UC-03 Scenario 1 diagram32Figure 18 UC-03 Scenario 2 diagram33Figure 19 UC-03 Scenario 3 diagram34Figure 20 Relationship diagram37Figure 21: Logistic orders38Figure 22 UC-04 Scenario 1 diagram39Figure 23 UC-04 Scenario 2 diagram40Figure 24 UC-04 Scenario 3 diagram41
Figure 16 UC-02 Scenario 2 diagram29Figure 17 UC-03 Scenario 1 diagram32Figure 18 UC-03 Scenario 2 diagram33Figure 19 UC-03 Scenario 3 diagram34Figure 20 Relationship diagram37Figure 21: Logistic orders38Figure 22 UC-04 Scenario 1 diagram39Figure 23 UC-04 Scenario 2 diagram40Figure 24 UC-04 Scenario 3 diagram41Figure 25 UC-04 Scenario 4 diagram42

LIST OF TABLES

Table 1 Energy UC Actors	. 18
Table 2 Energy Scenario Conditions	. 25
Table 3: Summary of scenarios	
Table 4: Requirements table detail	. 49
Table 5: RF-EDP-01	. 51
Table 6: RF-EDP-02	. 52
Table 7: RF-EDP-03	. 52
Table 8: RNF-EDP-01	. 53
Table 9: RNF-EDP-02	. 53
Table 10: RF-TID-01	. 54
Table 11: RF-TID-02	. 54
Table 12: RF-TID-03	. 54
Table 13: RF-TID-04	. 55
Table 14 RF-TID-05	. 55
Table 15 RF-TID-06	. 55
Table 16: RF-TID-07	. 56
Table 17: RF-TID-08	. 56
Table 18: RNF-TID-01	. 56
Table 19: RNF-TID-02	. 57
Table 20: RNF-TID-03	. 57
Table 21: RNF-TID-04	. 57
Table 22: RF-GMV-01	. 58
Table 23: RF-GMV-02	. 58
Table 24: RF-GMV-03	
Table 25: RF-GMV-04	. 59
Table 26: RF-GMV-05	. 59
Table 27: RF-GMV-06	. 60
Table 28: RF-GMV-07	. 60
Table 29: RF-GMV-08	. 60
Table 30: RF-GMV-09	. 61
Table 31: RF-GMV-10	. 61
Table 32: RNF-GMV-01	. 61
Table 33: RNF-GMV-02	. 62
Table 34: RF-ACT-01	. 63
Table 35: RF-ACT-02	. 63
Table 36: RF-ACT-03	. 64
Table 37: RF-ACT-04	. 64
Table 38: RF-ACT-05	. 65
Table 39: RF-ACT-06	. 65
Table 40: RF-ACT-07	. 65
Table 41: RF-ACT-08	. 66
Table 42: RF-ACT-09	. 66

Table 43: RF-ACT-10	66
Table 44: RF-ACT-11	67
Table 45: RF-ACT-12	67
Table 46: RF-ACT-13	68
Table 47: RF-ACT-14	68
Table 48: RF-ACT-15	68
Table 49: RF-ACT-16	69
Table 50: RF-ACT-17	69
Table 51: RF-ACT-18	69
Table 52: RF-ACT-19	70
Table 53: RF-ACT-20	70
Table 54: RF-ACT-21	71
Table 55: RF-ACT-22	71
Table 56: RF-ACT-23	72
Table 57: RNF-ACT-01	72
Table 58: RNF-ACT-02	72
Table 59: RNF-ACT-03	73
Table 60: RNF-ACT-04	73
Table 61: RNF-ACT-05	74
Table 62: RNF-ACT-06	74
Table 63: RF-WP2-GEN-01	75
Table 64: RF-WP2-GEN-02	75
Table 65: RF-WP2-GEN-03	76
Table 66: RF-WP2-GEN-04	76
Table 67: RF-WP3-MOD-01	77
Table 68: RF-WP3-MOD-02	77
Table 69: RF-WP3-MOD-03	
Table 70: RF-WP3-API-01	78
Table 71: RF-WP3-MOD-04	79
Table 72: RF-WP3-MOD-05	79
Table 73: WP3-API-F-02	79
Table 74: WP3-API-F-03	80
Table 75: RF-WP3-MOD-05	80
Table 76: RF-WP3-IDE-01	80
Table 77: RF-WP3-IDE-02	81
Table 78: RF-WP3-GEN-01	81
Table 79: RF-WP3-GEN-02	82
Table 80: RF-WP3-GEN-03	
Table 81: RF-WP3-GEN-04	
Table 82: RF-WP3-GEN-05	
Table 83: RF-WP3-GEN-06	
Table 84: RNF-WP3-GEN-01	

Table 85: RNF-WP3-GEN-02	
Table 86: RNF-WP3-GEN-03	
Table 87: RNF-WP3-GEN-04	
Table 88: RNF-WP4-PROP-01	
Table 89: RNF-WP4-PROP-02	
Table 90: RNF-WP4-PROP-03	
Table 91: RNF-WP4-PROP-04	
Table 92: RNF-WP4-VER-01	
Table 93: RNF-WP4-VER-02	
Table 94: RNF-WP4-VER-03	
Table 95: RNF-WP4-VER-04	
Table 96: RNF-WP4-VER-05	
Table 97: RNF-WP4-VER-06	
Table 98: RF-WP5-FLALG-01	
Table 99: RF-WP5-FLALG-02	
Table 100: RF-WP5-FLALG-03	
Table 101: RF-WP5-FLALG-04	
Table 102: RF-WP5-FL-ALG-05	
Table 103: RF-WP5-FL-ALG-06	
Table 104: RF-WP5-RLALG-01	
Table 105: RF-WP5-RLALG-02	
Table 106: RF-WP5-RLALG-03	
Table 107: RF-WP5-GEN-01	
Table 109: RF-WP6-G-02	
Table 110: RF-WP6-G-03	
Table 112: RF-WP6-MA-05	
Table 113: RF-WP6-MA-06 97 Table 114: DF WD6 MA 07 08	
Table 114: RF-WP6-MA-07 98 Table 115: RF-WP6-MA-08 98	
Table 115: RF-WP6-MA-09	
Table 117: RF-WP6-MA-10	
Table 118: RF-WP6-MA-11 100 Table 110: PE WP6 MA 12 100	
Table 119: RF-WP6-MA-12 100 Table 120: PE WP6 MA 12 100	
Table 120: RF-WP6-MA-13 100	

Table 121: RF-WP6-MA-14 101
Table 122: RF-WP6-MA-15 101
Table 123: RF-WP6-CP-16 101
Table 124: RF-WP6-CP-17 102
Table 125: RF-WP6-CP-18 102
Table 126: RF-WP6-CP-19 102
Table 127: RF-WP6-CP-20 102
Table 128: RF-WP6-CP-21 103
Table 129: RF-WP6-CP-22 103
Table 130: RF-WP6-CP-23 103
Table 131: RF-WP6-CP-24 104
Table 132: RF-WP6-SA-25 104
Table 133: RF-WP6-SA-26 104
Table 134: RF-WP6-SA-27 105
Table 135: RF-WP6-SA-28 105
Table 136: RF-WP6-SA-29 105
Table 137: RF-WP6-SA-30 105
Table 138: RF-WP6-SA-31 106
Table 139: RF-WP6-SA-32 106
Table 140: RF-WP6-SA-33 106
Table 141: RF-WP6-TA-34 107
Table 142: RF-WP6-TA-35 107
Table 143: RF-WP6-TA-36 107
Table 144: RF-WP6-TA-37 108
Table 145: RF-WP6-TA-38
Table 146: RNF-WP6-TA-39 108
Table 147: RNF-WP6-TA-40 108
Table 148: RF-WP6-CM-41 109
Table 149: RF-WP6-CM-42 109 Table 150: RF-WP6-CM-43 109
Table 150: RF-WP6-CM-43 109
Table 152: KPI description
Table 153: KPIs for the objectives 115
Table 155: KPIs Use cases baseline 115

ABBREVIATIONS

AGV	Automated Guided Vehicle
ΑΡΙ	Application Programming Interface
BDS-3	BeiDou 3rd generation navigation satellite system
CDF	Cumulative Distribution Function
DER	Distributed Energy Resources
DL	Deep Learning
DP	Differential Privacy
ERP	Enterprise Resource Planning
FL	Federated Learning
G2G	Galileo 2nd Generation of satellites
HTTP	Hypertext Transfer Protocol
IP	Internet Protocol
IPFS	InterPlanetary File System
ΙοΤ	Internet of Things
ISL	Inter-Satellite-Link
JS	JavaScript
	1
LEO	Low Earth Orbit
LEO	Low Earth Orbit
LEO MES	Low Earth Orbit Manufacturing Execution System
LEO MES ML	Low Earth Orbit Manufacturing Execution System Machine Learning
LEO MES ML NN	Low Earth Orbit Manufacturing Execution System Machine Learning Neural Network
LEO MES ML NN ODTS	Low Earth Orbit Manufacturing Execution System Machine Learning Neural Network Orbit Determination and Time Synchronization
LEO MES ML NN ODTS P2P	Low Earth Orbit Manufacturing Execution System Machine Learning Neural Network Orbit Determination and Time Synchronization Peer-to-Peer
LEO MES ML NN ODTS P2P PNT	Low Earth Orbit Manufacturing Execution System Machine Learning Neural Network Orbit Determination and Time Synchronization Peer-to-Peer Position, Navigation and Timing

1 INTRODUCTION

The TaRDIS Project [1] emerges as a solution aimed at alleviating the complexities of swarm computing and decentralized distributed systems by introducing a novel programming paradigm and providing a comprehensive toolbox to support the development and execution of applications in such environments. As the demand for efficient and correct swarm behaviour grows, there is a critical need for tools that simplify the development process while ensuring the reliability and effectiveness of the deployed systems. The following report conducts an overall requirements analysis for TaRDIS, delving into the creation of correct and efficient applications for heterogeneous swarms.

1.1 BACKGROUND OF THE TARDIS PROJECT

The TaRDIS toolbox targets at boosting the developing framework of swarm systems that exhibit, amongst others, heterogeneous, intelligent, dynamic, and decentralised properties. The developing framework is language-agnostic, leveraging event-driven programming principles, as well as distributed machine learning (ML) approaches. In this context, the TaRDIS framework can be used by application developers, offering significant abstractions related to the definition of the swarm elements, the local computational resources and datasets, as well as the self-organization and orchestration capabilities using federated learning, while also putting the focus on the associated communication, security, and data integrity.

The TaRDIS toolbox and related functionalities will be demonstrated in four distinct and challenging use case verticals (energy, telecommunication, space and, smart factories) that exhibit diverse requirements. The overall goal of the project is to gather end-user functional requirements, along with additional technical requirements originating from the development process of specific tools inside TaRDIS (initial tool requirements are outlined in D4.1). Then, the developed toolkit will be validated against the four use cases, based on several key performance indicators (KPIs) to illustrate its effectiveness and performance in decentralized applications, especially compared to existing baseline solutions. Towards this direction, the present deliverable outlines in more detail the initial use-case requirements that were reported in D2.1 [2], taking also into account the baseline implementation solutions, relevant use case-specific KPIs and measurement methodology that were all illustrated in D7.1 [

[3] D7.1-Public deliverables - TaRDIS project. Retrieved December 20, 2023, from https://www.project-tardis.eu/deliverables/]. The fundamental objective of WP2 is to analyse and review the end-user requirement; the finalized version of the latter will be reported in D2.3.

1.2 METHODOLOGY

The strategy described in the previous section follows the usual way of addressing needs into requirements, in the industry, where business requirements precede functional requirements, which then help raise the technical requirements. In some industries this is already common practice e.g. Energy sector Smart energy Grid Architecture Model - SGAM.

In TaRDIS, the use cases will provide the right context to validate TaRDIS' toolbox. In this sense the business requirements are defined by the objectives formulated within each use case in D7.1 [3], since they state a clear understanding of the competitive advantages brought by the adoption of the TaRDIS toolbox functionalities. The adoption of the TaRDIS toolbox is the step needed to move from the baseline to a new process paradigm in the respective industry sector.

D2.2. will build on the above-mentioned information to describe the functional and non-functional requirements and will activate with D2.4 and later D2.2 for the

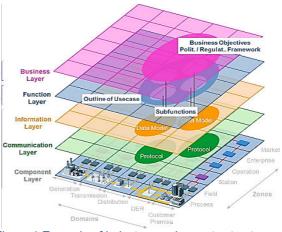


Figure 1 Example of industry requirements structure -SGAM used in Energy sector

articulate with D3.1 and later D2.3, for the technical specification of these requirements.

From the baseline implem entation described in D7.1 [3], business requirements will be addressed, for each use case, expressed by business objectives. These objectives will be reached by a correct and efficient execution of the processes that underpin the use case in each of its scenarios. To provide a clear or better understanding of each scenario, use case actors' roles and objects involved, will be depicted in diagrams detailing each scenario, i.e. how actors are expected to behave for an expected output to appear.

The strategy that was taken for the elicitation was defined during the project, and include the definition of five "customer" use-cases that were responsible for providing their vision of the TaRDIS project, as can be seen in Figure 2:

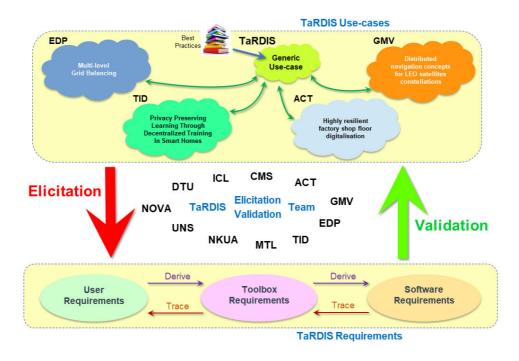


Figure 2 The TaRDIS requirements elicitation + validation strategy framework

For TaRDIS models and toolbox to be effectively designed, implemented, and measured, the requirements must be specific, unambiguous, and clear. To achieve that, the elicitation teams got numerous indications regarding how to act, including:

- Write simple, clear, and unambiguous statements
- Apply proper language according to the requirements level
- Testable (verification evidence should be stated)
- State horizontal Dependency between requirements (different from traceability)
- Apply versioning (e.g., v1, v2, etc. because requirements may change with time)
- Specify Source of the requirement (Interview? Brainstorm? Body of Knowledge? Standards? SLA? Limitation? Use-case?)
- Prioritise: 1 Must, 2 Should, 3 Could, 4 Nice-to-have

Functional requirements are the specific features and functionalities that the system or product needs to have to meet the business requirements addressed above in each scenario. So, from each scenario the functional requirements will be extracted.

The scenarios enable also to validate the functional requirements with the stakeholders to ensure that they meet the business requirements and are feasible.

The final stage will be to document the functional requirements in a clear and concise manner so that they can be easily understood by the development team and match other building blocks' functional requirements.

1.3 DELIVERABLE STRUCTURE

The deliverable begins with a comprehensive 1 Introduction, delving into the 1.1 Background of the TaRDIS Project to provide context for the subsequent analysis. Following this, the1.2 Methodology is outlined, setting the stage for the 1.3 Deliverable Structure. This initial section serves as a foundation, laying out the purpose for the ensuing content.

The subsequent sections of the report are structured methodically to guide the reader through the analytical process. The focus is then set to section 2 Overall requirements analysis, where in subsection 2.1 Review of Use Cases stories a comprehensive review of use cases, providing detailed descriptions, is performed including the descriptions of the use case scenarios, moving then to the core section of the report 2.2 Requirements, in here we have all the requirements for the TaRDIS Project [1]divided in two categories (functional and non-functional) and further split in Use case and Toolbox requirements, afterwards in section 3 KPIs are explored and compiled in a standardized format. The report summarizes the work done with a reflection in section 4 Conclusion. This structured approach ensures a coherent flow of information, allowing for a clear understanding of the TaRDIS developments so far.

2 OVERALL REQUIREMENTS ANALYSIS

Departing from the perspective of end-users, the four use cases will be widely described to ease understanding of the working context in each one of them and how the TaRDIS toolbox will help moving from the baseline towards a new working pattern in each industry.

2.1 REVIEW OF USE CASES STORIES

The content of this section will start with the Energy grid use cases, followed by the satellites use case, then telecom services use case and the factory use case. Background and objectives lead the way to context understanding, and the proposed schemas in each use case help drawing the algorithms that will give soul to the actors in a new decentralized environment.

2.1.1 UC01-EDP-Energy-Multi-Level Grid Balancing

The present use case evolved from EV charging control and monitoring to Energy balancing in a community. The application of TaRDIS to this context may improve dramatically the energy efficiency in the grid.

Background and general objective of the Energy use case

An Energy community is a network of consumers and producers, in a delimited geographical region, who collectively manages and share energy resources.

For electricity, the connection between producers and consumers is established through physical cables with connection points called nodes, establishing a grid. At these grid nodes, voltage levels, frequency and phase need to be always stable within the limits -than one can say that the grid is balanced for both direct-current (DC) and alternate-current (AC) grids.

Having the grid balanced is a sufficient condition to say that production meets consumption. Nowadays, renewables integration with no primary energy costs associated, one can also work the other way around by, for instance, deferring consumption in time to keep the consumption matching production.

Geography and demographics drive electric grid sizing. Technically, cables and nodes should support the power flow but as distance from generation sources increases, losses in the cables become non-negligible. So, having production nearby demand is way better than energy transportation. In this context, Energy communities play an important role.

Although there are several Energy communities already in place, centralization on the role of the community aggregator or the distribution system operator (DSO) is a limitation to citizens' energy trading participation, since registration, day-ahead forecast of production or faults need to have human intervention, due to regulation.

If each peer is able to connect within its community and make automatic agreements all the processes would be optimized, it could run 24h/7d with reduced human intervention and costs would be reduced also. This is the perfect ground for applying the TaRDIS toolbox.

Energy use case components and objectives

The interactions between peers within a community take the primary part of the specifications, while the format of the message stands as the second most important. The former will be

described using communication diagrams, depicting the interaction between prosumers in both the role of a consumer and producer, and the community orchestrator -responsible for the external interactions with other communities' orchestrators and DSO. The latter is statically described, remaining simple and stable, and will be used in different contexts, with different purposes, namely for information exchange.

All messages have the following format:

Time period: hh:mm – hh:mm,	Time period is the time slot considered for the energy transaction.
Energy (kWh): real value, Price (optional)	Energy is the energy that is being negotiated/acknowledge/missing/surplus in the time period mentioned.
Acknowledge: Boolean,	Price: is an optional parameter that can be or not included in the negotiation model.
	Acknowledge: True=accepted/concluded; False= refused/aborted/failed/requested

The objectives are by precedence:

- 1. Maximize the use of Renewable energy inside an Energy community;
- 2. Have all consumers within the community with guarantee of Energy supply;
- 3. Reduce the number of messages between peers within the communication network;
- 4. Use same code and equipment for all actors;
- 5. Have a system that can, in the future, incorporate intraday market bid.

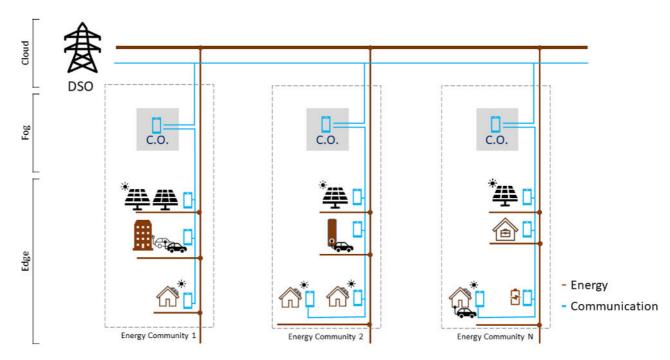


Figure 3 Energy UC Overview

Principles

For the system to operate, two stages are needed: the agreement on supply-consume planning – ex-ante working mode - and the effective exchange of energy in running mode.

Demand should lead the process as human needs are based on energy consumption. Demand-side management is not yet considered.

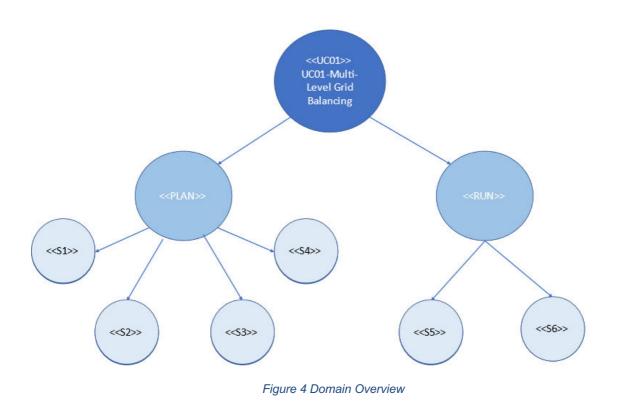
As in a market, a match occurs when the demand request and supply offer are met. In this case, an energy request from each consumer triggers bids from energy suppliers and each consumer can choose its suppliers, for the period, based on its own criteria (price, source, energy peak, etc.)

For the energy use case we make the following assumptions:

- 1. The Grid Distribution System Operator (DSO) is the highest order energy providerprovides the missing energy (in accordance with contracted max. power) in the case that the exchange among the energy community members is not sufficient. The solution must be acknowledged to the DSO in advance. The DSO should also be capable of accepting overall energy surplus from communities. The grid should be considered as the "option of last resort" when energy consumption/production cannot be successfully balanced within communities, since consumption from the grid operator is more expensive than from neighbour communities.
- 2. The Energy Community is a smart grid (for instance a set of households or a neighbourhood) consisting of several energy producers and consumers that can exchange energy among themselves. Additionally, energy communities can also request supply or provide energy to neighbouring energy communities.
- Prosumer represents a community member (i.e. a household or an EV charger) that can be registered for consuming energy only, or for consuming and producing energy. Producing energy in households currently assumes some distributed energy source such as photovoltaics (PV), micro wind turbine generators, but can eventually come from battery storage systems.

And as basic prerequisites we take for granted the following:

- 1. An adequate communication link between the DSO-CO-Consumer.
- 2. A physical electrical connection between DSO-CO-Consumer.
- 3. Availability of end users participating in energy exchange market.



UC-01 scenarios

For the energy use case, we designed six scenarios, with two major groups: Plan with four scenarios and Run with two scenarios.

Two out of Plan's four scenarios, address specific situations in the energy community when the energy is not balanced. The first situation involves a deficit of energy, while the second deals with a surplus. The other two scenarios describe the "Run" mode, where we have already entered into operation, using the prepared working conditions. In this mode, we can either have normal operation or operate with faults.

In the following Sequence diagrams, we describe the six scenarios for this use case, considering one-hour periods. The scenarios are divided into two groups, one regarding the planning work "Ex-ante" or simply "PLAN", represented under the left side of Figure 4: this is the place where all peers agree on Energy production, distribution and consumption just before the new period starts. Another group is where real-time operation is described as "RUN" on the right side of Figure 4. In summary, the figure displays 2 phases of the energy UC, in the leaf nodes it is possible to observe the six scenarios, for each of them below was produced a sequence chart representation with the goal of specifying the base Dependency and minimum configuration for functionality.

For context and enhanced readability in the upcoming scenarios, the involved actors are briefly introduced below in Table 1:

Actors						
Name	Description					
Consumer (User)	Citizen who is end-user of electricity (e.g. EV, house, home appliance)					
Prosumer	Consumer that can also generate energy using a Distributed Energy Resource (e.g. PV, Battery).					
Distribution System Operator (DSO)	Company responsible for the grid operation, distributing and managing energy from the generation sources to the final consumers (e.g. EDP)					
Community Orchestrator (CO)	Entity responsible for communicating with all actors ensuring the good planning and running of the energy community.					

Table 1 Energy UC Actors

Their interaction is visually represented in the following Role diagram, providing a more detailed insight into their dynamic relationships and roles.

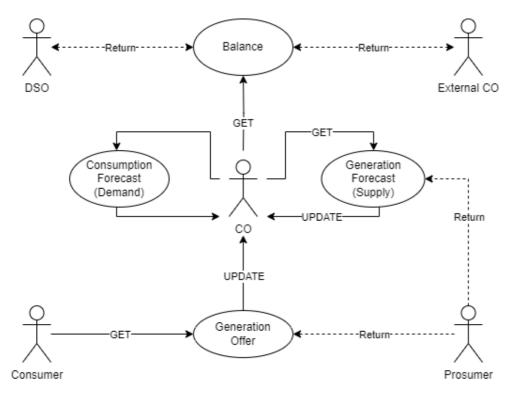


Figure 5 UC Actors role diagram

UC-01-Scenario 1 - Ex-ante working Energy generation forecast for the next hour.

In the first scenario, we outline the process for obtaining the energy generation forecast for the next hour. It begins with the community orchestrator requesting the expected generation from the producers within the community for this time slot. The process then moves to the collection of feedback, concluding with the update of the Community Orchestrator's records of generation. The scenario describes the stage when the Community Orchestrator requests the producers how much energy will they produce in the next period calculating the total available.

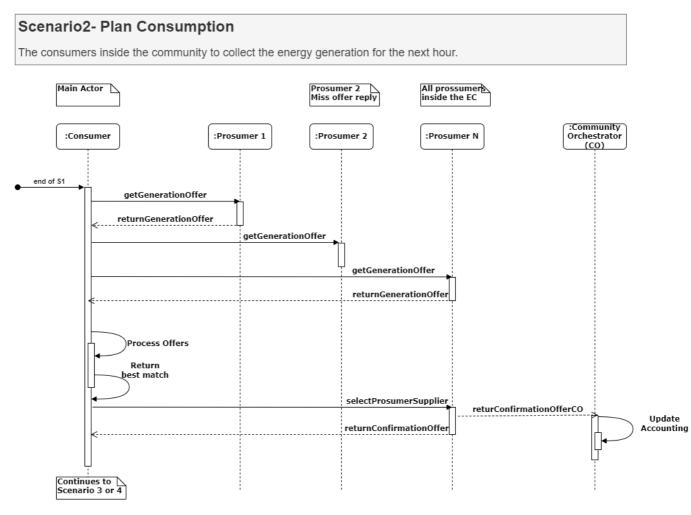
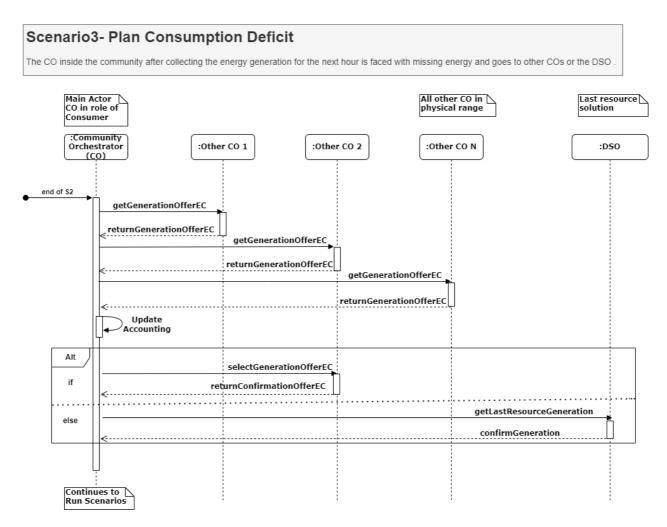



Figure 6 UC-01 Scenario 1 diagram

UC-01-Scenario 2 - Ex-ante working Energy consumption forecast for the next hour.

In the second scenario, we outline the process of acquiring the energy consumption forecast for the next hour. The process initiates from the consumer side, where a consumer, considered as a prosumer unable to meet their own energy requirements for this timeslot, begins by requesting available energy from their prosumer peers. Subsequently, the consumer seeks energy offers from the prosumer peers (producers), proceeding to the third step of consumer selection of the best offer. The process concludes with the communication of information to the selected producer and the community orchestrator for the updating of accounting records.


Consumers take scenario 1 as a tacit signal from the orchestrator that the new period is about to start and broadcast their consumption, then negotiation between producers and consumers starts and, using its own criteria, each consumer books production from producers. The model may or may not take price into account. The orchestrator can now totalize the community's internal consumption.

After the 2 main Scenarios we still have 2 options in the planning phase that are described in the Scenarios 3 and 4.

UC-01-Scenario 3 - Ex-ante working with total energy consumption forecasted for next hour and balance of deficit.

In this scenario, the community is unbalanced, after operations in Scenario 1 and 2, requiring energy from external sources, the community orchestrator takes on the role of a consumer and requests energy from other community orchestrators. Two possible situations arise from this: either the remaining energy needs are fulfilled by other community orchestrators, or if not, the community orchestrator requests the remaining deficit to the DSO.

UC-01-Scenario 4 - Ex-ante working with total energy consumption forecasted for next hour and balance of surplus.

Here the perspective is complementary, where one community has a surplus of energy being also unbalanced, the community orchestrator takes on the role of a producer and offers energy to other requesting community orchestrators from Scenario3. Two possible situations arise from this: either the surplus of energy is fulfilled by the other requesting community

orchestrators, or if not, the community orchestrator injects the remaining surplus in the grid managed by the DSO.

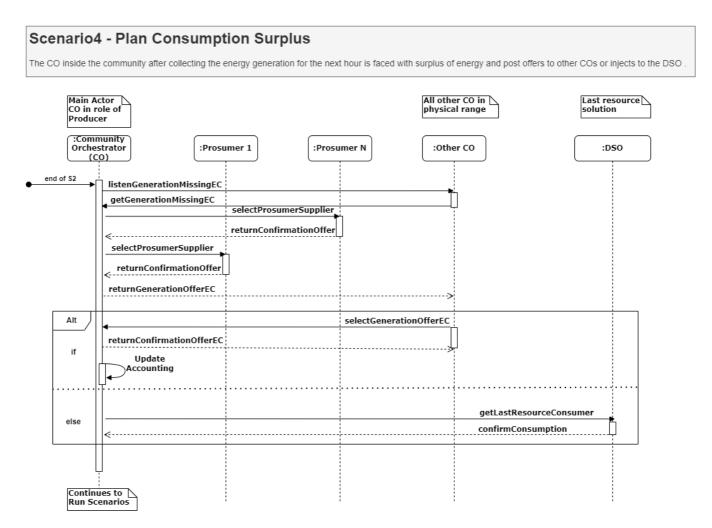


Figure 9 UC-01 Scenario 4 diagram

UC-01-Scenario 5 – Running in Normal operation mode.

In the normal operation mode, following Scenario 2, the consumer receives the energy offer from the selected producer, acknowledges this offer, informs the community orchestrator, and asks the producer to initiate the energy transaction. Finally, the consumer notifies both the producer and orchestrator of the total energy consumed, allowing them to verify and update the records.

Scenario5- Run Normal Operation

The consumers inside the community starts receiving energy from the selected prossumer.

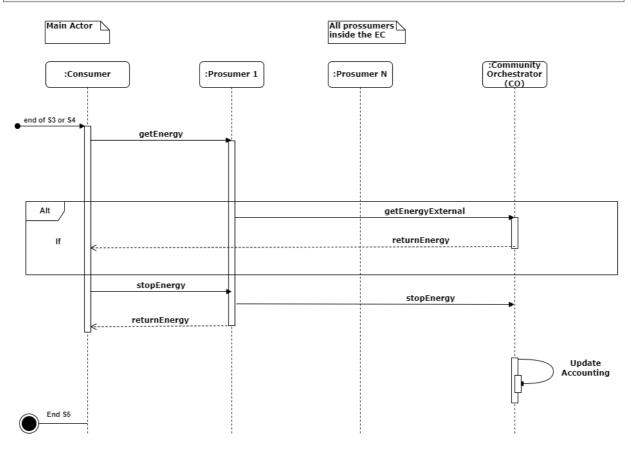


Figure 10 UC-01 Scenario 5 diagram

UC-01-Scenario 6 – Running with faults.

In this final scenario, two types of faults may occur, either from the supply side or the demand side. In the case of a supply fault, the consumer notifies the community orchestrator of the issue. The orchestrator resolves the energy problem using information from Scenario 1. If it progresses to Scenario 3, the grid will always fulfil the consumer's needs. The orchestrator then tags the producer (X) as not meeting the agreement. If maintenance is required, it will be carried out by a human, and if the fault is recurring, the producer may be excluded from the pool. In the case of a demand fault, the producer notifies the community orchestrator, ceases production If unable to cease production, the producer starts injecting into the grid and the consumer does not need to be alerted.

Scenario6- Run with Faults

The consumers inside the community starts receiving energy from the selected prossumer, and option1- find a supply fault or option2- occurs a demand fault.

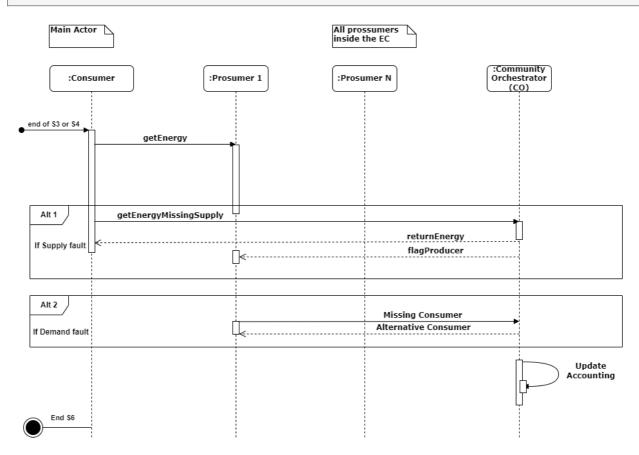


Figure 11 UC-01 Scenario 6 diagram

From all the six scenarios it is possible to derive the next Table 2 with an overview of all the scenarios and respective interactions.

Scenario conditions									
No.	Scenario name	Scenario description	Main actor	Trigger event	Pre- condition	Post- condition			
1	Plan-Generation	Plan Generation in community next hour.		Start (New hour)	NA	S2			
2	Plan- Consumption	Plan Consumption in the community next hour.		S1	S1	S3 S4 S5			
3	Plan-Deficit	Energy deficit in the community next hour.			Balanced- No Missing energy- Yes	S5 S6			
4	Plan-Surplus	Energy surplus in the community next hour.		S2	Balanced- No Missing energy- No	S5 S6			

	Scenario conditions									
No.	Scenario name	Scenario description	Main actor	Trigger event		Post- condition				
5	Run-OK	Normal operation all running ok.	Consumer	S2 S3 S4	Run Faults- No	End				
6	Run-Fault	Operation fault, supply or demand fault.	Consumer	S2 S3 S4	Run Faults- Yes	End				

Table 2 Energy Scenario Conditions

From Table 2 it is possible to generate the state machine for the energy use case that will run for each time period.

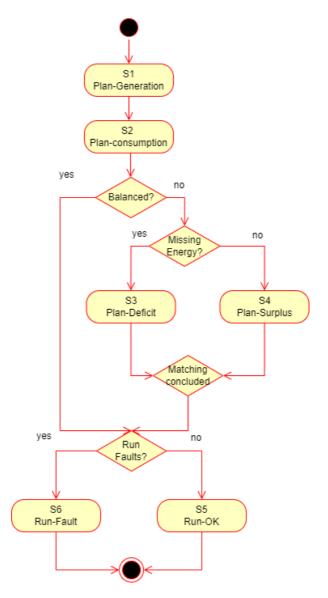


Figure 12 Energy State Machine

2.1.2 UC02-TID-Telco-Privacy Preserving Learning Through Decentralized Training in Smart Homes

Built up-on the concept of federated learning-as-a-service, this section's use case is proposing a disruptive way for connecting appliances and other devices in the home environment, levering distributed intelligence for a better experience of the end user.

Background and general objectives

Telefonica's use case revolves around smart homes where different devices connected to the Internet are part of an automated system that monitors and/or controls home attributes such as lighting, climate, entertainment systems, and appliances. Typical examples of such devices are personal assistant devices, smart TVs, smart light switches, etc. Through federated learning (FL), these devices train deep neural networks on their local datasets (samples).

As a baseline implementation, Telefonica has conceived and developed the federated learning-as-a-service (FLaaS) middleware that allows a cross-application and cross-device federated learning. APIs and programming primitives that are part of the TaRDIS toolbox are expected to be incorporated in or work along this middleware to improve on the expected KPIs.

The application use case will be completed in the setting of smart homes. In particular, either with data from Telefonica's product Movistar Home (<u>https://aura.telefonica.com/es/movistar-home</u>) or simulating such an environment with the use of open-source state-of-the-art data and models. Examples of such applications are:

- 1. image classification,
- 2. text modeling for sentiment prediction,
- 3. predicting when to deliver notifications for apps,
- 4. inferring wake-up word when it is spoken by the clients (end-user),
- 5. next-word-prediction for the keyboard.

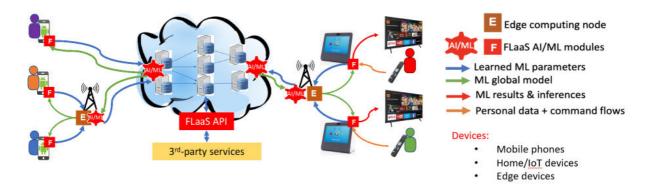


Figure 13 Illustration of FLaaS-related operations with some clients (end-users) connected to edge nodes and with others in a smart home setting.

Use Case components

1. Clients or end-users: they own a private dataset that they use to train a local FL model whose parameters are sent to the aggregator. Examples of such entities: mobile phones, smart appliances, IoT devices, etc.

2. Aggregator or FL server: it collects all the local models and aggregates them, generating a global model. The aggregator is usually the one initiating the FL training process and it is cloud-based or located at the network's edge.

3. Intermediate nodes or "super-nodes" (in case of hierarchy in the system): they form an intermediate layer between the clients and the aggregator that introduces a hierarchical approach to perform FL. They are responsible for processing requests from the online clients in a particular region (or a zone). They can either (a) be elected by a pool of their peers and thus are within the same trust boundary/region as their peers, or (b) be chosen as an entity in a different trust region (to both the clients and the central aggregator), but in geographic proximity to the clients chosen in the federated round.

4. Helpers (in case of Split learning): Helpers are nodes of the network that could process part of the NN training for clients with limited computation and memory capacities. A helper could be for example a Virtual Machine (VM) on the cloud or a lightweight container in a base station, beyond 5G networks. The intermediate nodes (super-nodes) could also play the role of a helper, depending on the scenario. Moreover, a client with high computation capacity could act as a helper for another client who might be resource constrained.

5. FLaaS component. This is the middleware that Telefonica has created and it is the baseline scenario. According to its architecture, it consists of 4 main modules: the admin interface, the FLaaS server, the server notification service, and the participating client devices.

UC-02 scenarios

UC-02-Scenario 1: Presence of hierarchy in the system

FLaaS is envisioned to be scalable to thousands or millions of devices. Making use of naturally occurring hierarchies of trust already existing in a system (e.g., intermediate nodes such as routers, antennas, switches, edge devices, home personal assistants, etc.) can help improve scalability of the FL process execution onto multiple devices, without penalizing performance of the FL model or time needed to build it. In fact, using such intermediate nodes could offer opportunities for modifying the trust model of FL clients, i.e., by relaxing the need for trusting only the FL server, and instead being able to trust an intermediary node to perform FL aggregation, privacy noise injection, etc.

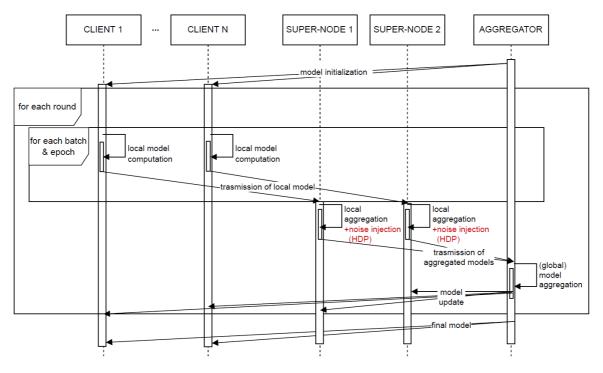


Figure 14 UC-02 Scenario 1 diagram

Description of the diagram: The diagram shows the first steps of a typical FL process where the aggregator initiates the training, and the clients (client 1 to N) train their local models. A key difference, however, is the existence of super-nodes (here, two of them are depicted). Each super-node is responsible for a subset of clients and it collects their local models, aggregates them, and adds noise (to ensure privacy) before sending them to the aggregator. Then, at the end of each training round, the aggregator collects the aggregated models and aggregates them before sending the updated model to the clients. At the end of the process, the aggregator generates a global model that communicates to the clients.

UC-02-Scenario 2: Split learning in presence of devices with limited computation/memory capacity

Split learning (SL) protocols have been recently proposed to enable resource-constrained clients training neural networks (NNs) of millions of parameters. In this scenario, clients with very low computational capabilities may offload part of the model-training processing task to a helper of the system, by splitting/partitioning the neural network into different parts of consecutive layers. Figure 15 illustrates how a neural network consisting of 7 layers could be split into 3 parts. Then, part-1 and part-3 are processed at the clients' side, and part-2, which is typically the most demanding, is processed at the helper's side. This process allows computationally constrained clients to participate in the FL training while keeping their data locally.

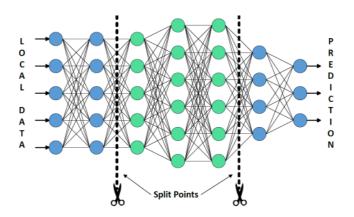


Figure 15 Illustration of splitting a neural network intro 3 parts in the setting of split learning.

Scenario 2 (SL) can be also seen as an extension of Scenario 1, where the hierarchy can be leveraged for computational purposes. Nevertheless, even if there is a lack of hierarchy in the system, clients could play the role of helpers for other clients.

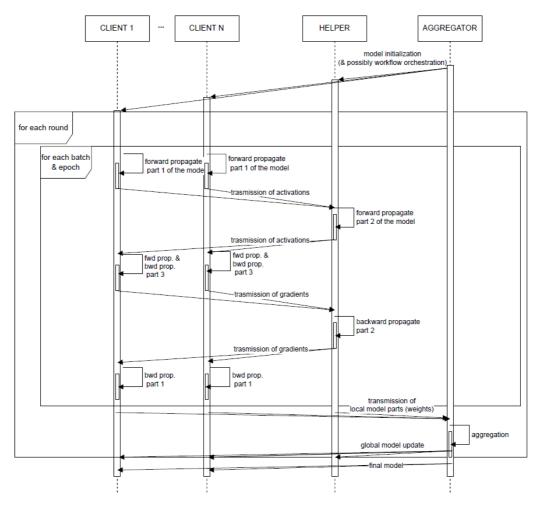


Figure 16 UC-02 Scenario 2 diagram

Description of the diagram: The diagram shows the first step of a typical FL process where the aggregator initiates the training, and the clients (client 1 to N) start training their local models with the assistance of helpers (one helper is depicted). In contrast to the diagram of Scenario 1, this diagram shows in detail the process of local training that is decomposed into a forward and a backward propagation. Assuming that the NN has been split into 3 parts as described

above (where the split points can differ from client to client), the training starts with the clients forward-propagating part-1 and transmitting part-1's activations to the helper that performs a forward propagation of part-2 and transmits the resulting activations back to the clients. Next, the clients perform a forward and then a backward propagation of part-3 before transmitting the part-3's gradients to the helper. Then, the helper backward-propagates part-2, and, finally, the clients backward-propagates part-3, before the next epoch or batch processing begins. Then at the end of each training round, all local model parts are collected by the aggregator and aggregated into a global updated model that is communicated to all the participants. At the end of the SL process, the aggregator generates a global model that communicates to the clients.

2.1.3 UC03-GMV-Space-Distributed navigation concepts for LEO satellites constellations

The present use case will leverage the TaRDIS toolbox to study, design and optimize ODTS distributed algorithms for large constellations of satellites in LEO.

Background and general objective of satellite constellation use case.

The purpose of the use case is to achieve on-board distributed autonomous Orbit Determination and Time Synchronization (ODTS) for a large constellation of satellites in LEO. In order to achieve this goal, a simulation environment is needed to facilitate the development, tuning, testing and optimization of on-board distributed ODTS algorithms.

The constellation taken as reference for the use case development is characterized by 170 satellites. The orbital period of each satellite is 1.8 hours. One whole constellation cycle is 7 days (constellation cycle is the time after which the ground-track repeats, meaning satellites positions are the same respect to the Earth Centered Earth Fixed reference frame). Additionally, the availability of four ground stations for extra measurements and communications with Earth is assured.

Communications and ranging measurements between the 170 nodes of the swarm of satellites occur by means of Inter-Satellite-Link (ISL). These connections provide real world information that is needed to correct the navigation solution obtained for each spacecraft by propagating through time its state vector, therefore achieving more accuracy.

One of the main difficulties of testing the ODTS algorithms is simulating the algorithm performance over a large amount of time (multiple orbital periods). Additionally, there is a strong dependency of the results on the connectivity scheme between the satellites and the tuning of the different parameters that characterize the propagation method and the navigation filter.

An optimization of the abovementioned points is key to maximize the performance of the decentralized and distributed ODTS.

GMV use case components and objectives.

The swarm of satellites that defines this use case is composed of 170 spacecrafts that fulfil the same role and perform the same actions. Each of these propagates its position, velocity, and clock parameters by means of a propagation method implemented in its onboard software, while simultaneously communicating with other peers to exchange range and range-rate measurements. This information from the environment is then used to provide corrections to their navigation solution.

In addition to this homogeneous cluster of satellites, there are four other different agents: the ground stations. Nevertheless, their function is the same from the use case point of view: to provide measurements to improve the accuracy of the satellite navigation. The only difference is that the calculation of their own state vector is not needed, as it is assumed to be known, so they serve only to support the satellite constellation. They represent absolute reference points allowing to relate the ISL measurements to an Earth Centered Inertial reference frame.

UC-03 scenarios

For the GMV use case, three different operational scenarios can be described. The main scenario addresses the simulation of the operation in real time of the constellation of satellites, each propagating its state vector through time and communicating with other nodes to get different measurements. For this scenario, a previous conditioning of the problem is assumed, meaning that the scheduling of the different connections between satellites and with the Earth

stations is known, and the set of parameters for the propagation method and navigation filter is already chosen.

The remaining two scenarios correspond to these two preconditioning problems, the results of which are used as input for the main scenario. The first one is the search for an optimal connectivity scheme for the Inter-Satellite Link communications, and the second is the optimization process for finding the best tuning of the navigation filter input settings.

UC-03-Scenario 1 -

In the main scenario, all 170 satellites of the constellation have the same mission: achieve the most accurate navigation solution. With this objective, in each time slot their role is to, first, propagate its position, velocity and clock parameters by means of a propagation method. Then, and following a predefined connectivity scheme, peer to peer communications occur to both give and receive measurements. Consequently, each satellite is capable to correct its navigation solution by means of a filtering technique with the received measurement and supports its peer providing information.

Once the communication is finished, each satellite processes the information received and updates its navigation solution, repeating this sequence every time slot. An illustration of this scenario is given below:

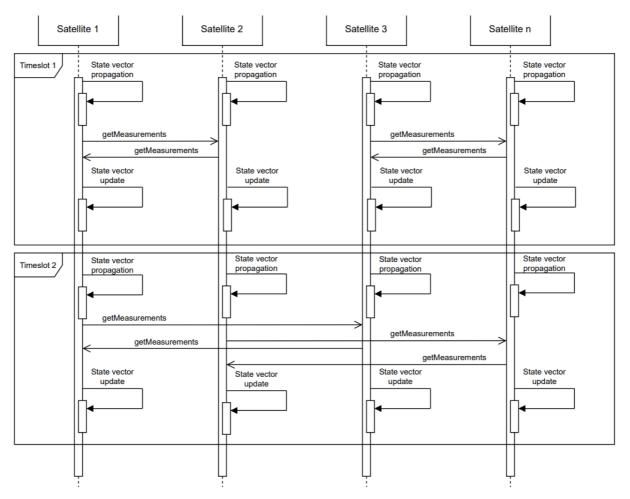
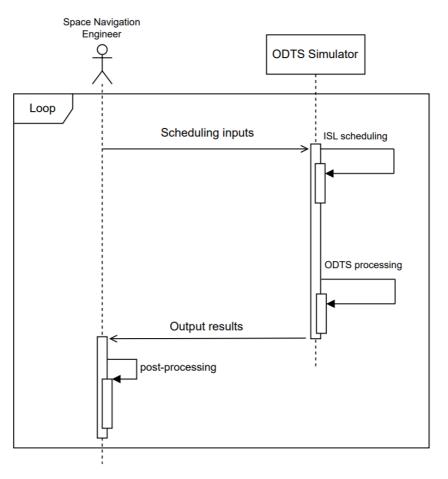


Figure 17 UC-03 Scenario 1 diagram

As seen from the figure, at each time slot the satellite pairs that exchange data are different, in accordance with the idea of improving the satellites geometric dilution of precision (GDOP).

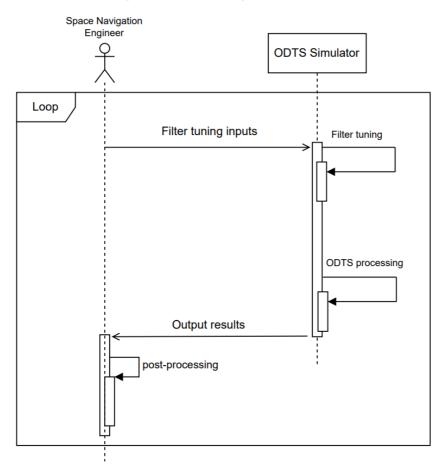

UC-03-Scenario 2-

This scenario occurs before the launch of the main one since it covers the process of analysing and optimizing the scheduling of the Inter-Satellite Link connections. This is a crucial task for the correct performance of the algorithm because there is a strong dependency of the navigation results on the connectivity scheme between satellites and with the Earth stations.

Connections with ground stations provide very accurate measurements, which help to correct the propagation of the state vector during the update phase of the filtering process. This type of links are limited, therefore, trying to minimize the number of ground connections, it is important that these are exploited to the maximum so as to reduce the time that each satellite spends without connecting either to a ground station or to another satellite that has recently connected to one, since its navigation will be more accurate than that of the others thanks to the correction applied.

On the other hand, different connectivity schemes between satellites need to be explored, since the geometry of the connection grid that occurs each time slot can affect the accuracy of the navigation solution. Here, the heterogeneity of the measurements each satellite receives is key because this implies that its navigation can be corrected with information provided by as many peers as possible, who in turn will have updated theirs thanks to measurements from many other satellites. By trying to maximize the number of different connections between spacecrafts, a better convergence of the navigation solution is achieved.

Consequently, a multi-objective optimization is an interesting approach to determine a suitable Inter-Satellite-Link scheduling solution which allows to achieve precise results. The iterative process of optimizing the ISL scheduling is shown in the following diagram:



The actor represented in the picture is a space navigation engineer studying the impact of different ISL scheduling inputs on the navigation results in an iterative way. The goal is to optimize the nodes connections in order to maximize the accuracy of the navigation solution.

UC-03-Scenario 3 -

This scenario, like UC-03-Scenario 2-, occurs prior to the execution of the main scenario, being also part of the preconditioning of the simulation.

The performance of the algorithm is very dependent on the tuning of the navigation filter. The uncertainty of the initial state vector, the uncertainty of the measurements, the process noise that characterizes the dynamic system, and other inputs needed for the filter operation must be selected prior to the execution of the algorithm, and although there is a range of possible and reasonable values to be used for each variable, the choice of the full set of values can be optimized to maximize the accuracy obtained with the algorithm. Therefore, this tuning of the filter is another optimization problem and another scenario that must be solved before the main scenario occurs.

This process is described through the illustration given below:

Figure 19 UC-03 Scenario 3 diagram

The actor depicted in the figure is a space navigation engineer who tests several tuning inputs in an iterative fashion, judging the output results by means of some post-processing analysis (studying plots, obtaining useful statistics etc..). The target is to fine tune the EKF parameters to assure algorithm convergence to an optimal navigation solution.

2.1.4 UC04-ACT-Industry– Highly resilient factory shop floor digitalisation

The business objective of this use case is to fully automate the high-level coordination of shop floor logistics while allowing the size of the logistics fleet or the number of supplied production lines and workstations to be flexible: participants can spontaneously be added or removed without any programming changes to the system. The secondary objective is to achieve this without deep integration into or requirements pertaining to the factory's infrastructure, since the logistics solution is supplied by an external vendor who aims to reduce waste, effort, and risk in delivering this service to any suitable factory worldwide.

These two objectives combined result in a high degree of flexibility on the side of the factory, ideally yielding a plug'n'play setup that can be changed easily and with low effort in order to adapt to new manufacturing requirements. The goal is to evolve from fixed production lines that will be amortized over decades to flexible production cells that create value in many different configurations over the many years of service of each comprised machine.

Background and general objective of the smart factory use case.

The smart factory use case is being implemented by an Actyx customer in collaboration with Actyx software engineers. The baseline scope is to automate the intralogistics of production lines for the assembly of machining centres: the customer is a company selling machines or whole production cells/lines to other factories. A machining centre is a bulky and heavy piece of machinery weighing several tons and comprising high-precision mechanics and corresponding control electronics. It starts out as an empty steel frame at the first production step, advancing every night by a few meters to the next workstation, until after about a dozen days of work all pieces are installed, connected, and tested. The function of intralogistics is to move all parts and materials between workstations and warehouses as required; this includes the components installed in the machining centres under construction, the tools needed for doing so, as well as moving the partially completed machining centres at night.

The requirements from this use-case revolve around turning the production manager's process design into a running distributed application, with individual pieces deployed across a variety of devices and communicating in a peer-to-peer fashion, without requiring further infrastructure. Herein, the foremost concern is that the system shall be maximally resilient in the sense of remaining available as much as possible during all kinds of adverse conditions (like network outages, device failures, safety switches taking groups of devices offline, ...). The second concern is that the implementation of the logistics processes shall be faithful to their design, ideally in such a way that from production experts over project managers to software engineers a common language and representation is used; this avoids costly misunderstandings. The designed processes are sequential in nature, with branches at decision points and cycles for repeating parts of the process (e.g. in case of retries to mitigate failures). The third concern is that the execution of logistics processes needs to be observable by the production manager, preferably with an automatic classification into nominal and anomalous ones—this allows the manager to quickly react to disturbances and counteract them before they affect further operations on the shop floor.

Based on our implementation experience from the baseline phase we now project the above high-level requirements into lower-level programming terms. The employed programming model must favour availability under network partitions, implying that it must tolerate local inconsistencies due to partial information replication; it should allow the program to detect when these circumstances lead to decisions that are later invalidated based on receiving the complete set of information (e.g. after a network partition heals). There should be a diagram representation of the designed processes, allowing the use of domain expert vocabulary in the description of the workflow (transitions and states), complemented by a facility for checking whether some implementation of the process is faithful to the design. We will further need to train ML models to perform the anomaly classification of ongoing and past workflow executions; this is constrained by the fact that real process execution data are generated only

at a rate of hundreds per day, so if ML training requires millions of execution traces as input we will have to resort to synthetic simulation—we will still require the ML model to be refined based on a small number of traces so that it is applicable to a concrete factory workflow without having done extensive simulations of that particular process (while some logistics processes unchangingly occur frequently over long time periods, the industry is moving towards smaller lot sizes—even single piece orders—which implies that the system must assimilate continual change).

We foresee using the existing Actyx platform for event log storage and dissemination. This will require improvements of that platform regarding automatic creation of suitable overlay networks on a given swarm, data placement strategies, as well as means of ensuring that events can receive a security classification and be readable only by a chosen set of peers. We expect to use TaRDIS toolbox functions for these purposes.

Actors and domain

The system described above presents the main interface for the interaction of a number of actors on the shop floor:

- **assembly workers** perform the production steps, where we gloss over their various specialisations—these are relevant for planning and execution of the assembly activities but not important for the interaction with logistics; workers register requests for the delivery or pick up of materials, tools, and consumables with the logistics system, they interact with logistics when deliveries occur to ensure correct and safe operations; in typical factory usage of the produced machining centres, these machines autonomously perform the workers' functions and thus take their place in the logistics system—while this is not the case in the planned demonstration implementation of Actyx, it is the goal of the external customer and thus a relevant deployment scenario
- the logistics activities themselves are performed by logistics workers, which are assumed to be mostly autonomous machines (AGVs with robotic arms and a cargo bed) complemented by a human workforce to handle unexpected situations; these workers travel between warehouses and assembly workstations to move materials, tools, and consumables as required by the production processes; their work structure also includes breaks (for charging batteries or human rest) and maintenance (in case of the machines)
- the **logistics fleet** described above is collectively responsible for the fulfilment of its duties, even though it consists of individual workers that act with a high degree of autonomy; the latter is required for resilience (logistics is the single most important supporting function in a factory), but the former is required for manageability of the process, justifying the presentation as another relevant actor on its own
- factories typically designate **logistics managers** for ensuring the successful composition of the logistics fleet from its constituents; these often are logistics workers with the added duty of monitoring the fleet's performance and stepping in when anomalies occur
- production processes are designed and monitored by the production manager who is ultimately responsible for the factory's performance; this includes cost effectiveness, waste reduction, upholding quality (although quality assurance as a whole is the responsibility of a separate department), and quickly dealing with upcoming obstacles and incidents; in relation to logistics the production manager defines the standard operating procedures and controls their implementation, overseeing the logistics managers who oversee the logistics workers
- in the **back office** of the factory there are several roles who indirectly or passively interact with the logistics system, including sales (e.g. when a customer asks "where is my order?"), costing (i.e. determining the cost of manufacturing a given product so that

profitable offers can be made), and controlling (to assess whether performance estimates and requirements were met)

The relationship between these actors is illustrated in the following diagram.

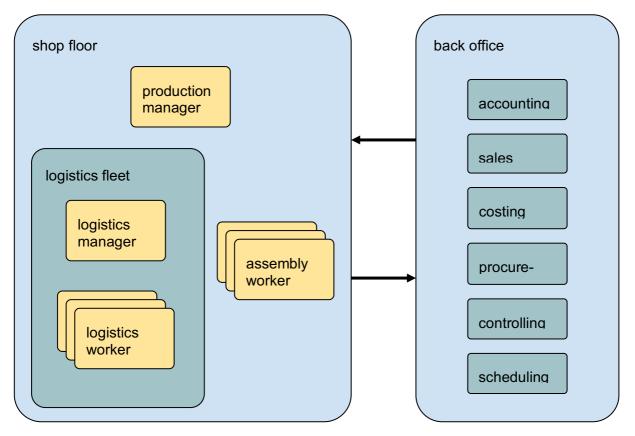


Figure 20 Relationship diagram

The problem domain involves a set of workflows implied in the above that we discuss in the following. At the highest level we regard a **manufacturing order** that has been created by the scheduling department (from a sales order, which is out of scope here) and released to the shop floor at the appropriate time, including information on when production should take place. Such an order is a complex data structure containing the full definition of all involved production steps, including their respectively required input materials, tools, consumables, and procedures. In many cases, each step also carries constraints like completion deadlines or permitted workstations where the work shall be performed.

Under the supervision of the production manager the order is broken down into **part orders** describing a single production step on a named set of workpieces. When a workstation finishes its current work it will pick up the next part order according to programmed or configured capabilities and in coordination with other qualified workstations; this process is designed to maximise the overall equipment effectiveness (OEE) of all involved machines, which is one of the optimisation goals when operating a factory.

Before processing of a part order can begin at a workstation several support processes need to be performed. Most notably are **load requests** for the delivery of required tools and materials as well as **setup orders** for summoning a setup engineer to perform any necessary calibration or reconfiguration on the involved machinery. When a part order has been processed, the resulting finished goods need to be transported away by means of an **unload request**.

It is the responsibility of the logistics fleet to synthesize **logistics orders** from matching pairs of load and unload requests. These govern the transportation of goods of all kinds between workstations, warehouses, and shipping areas.

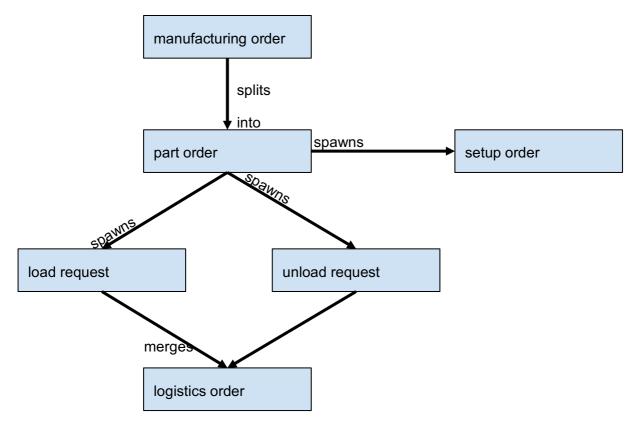


Figure 21: Logistic orders

UC-04 scenarios

We illustrate the needs of the smart factory use case using the following set of representative scenarios, detailed below:

UC04-SC1	Transporting half-finished goods between workstations
UC04-SC2	Tracking the location of a workpiece
UC04-SC3	Machine needs tool
UC04-SC4	Workstation needs setup
UC04-SC5	Logistics robot health tracking and repair
UC04-SC6	Logistics robot maintenance scheduling
UC04-SC7	Logistics supervision

Table 3: Summary of scenarios

UC-04-SC1 Transporting half-finished goods between workstations.

This scenario models the nightly progression of partially constructed machining centres from one workstation to the next. Similar movement of half-finished goods occurs in virtually every factory, albeit not with such a regular cadence. The process starts by the workstation declaring that a production step has been finished and the corresponding goods need to be transported

away—they are usually placed in a so-called output buffer, which is a designated area marked on the shop floor for each workstation. Keeping the output buffer clear allows the workstation to finish and deliver the next outputs, it is a mission critical activity as the workstation would have to pause (i.e. become unproductive) otherwise.

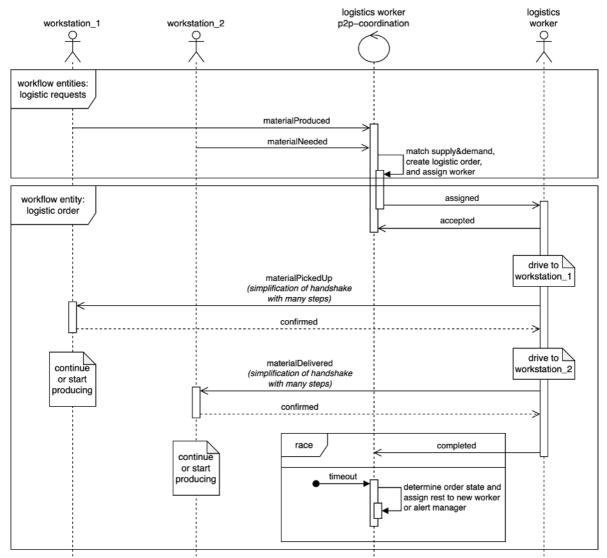


Figure 22 UC-04 Scenario 1 diagram

As shown above, the process consists of two parts. In the first part, the load and unload requests are created, signified by the *materialNeeded* and *materialProduced* events, respectively. The logistics fleet continually observes the open requests to find matches, namely pairs of requests that can be satisfied by transporting something from one location to another. The second part starts by the fleet collectively assigning a newfound logistics order to one logistics worker, who ideally will emit the *accepted* event in response. The worker then moves to the source workstation, communicates with it until the material has been picked up, then moves to the destination workstation, communicates with it until the material has been delivered, and finally informs its peers that the order has been completed. If this does not happen within the allotted time period, the logistics fleet assumes that the worker failed along the way, uses the event trace to figure out where the material should be found, and assigns another worker to take it from there. It is important to note that machines are not intelligent enough to reason about failure in the general sense, so the recovery is limited to some well-known scenarios that are programmed in advance. If the actual failure condition is not covered, the issue is raised to human attention instead.

UC-04-SC2 Tracking the location of a workpiece

Many scenarios require the location of a workpiece (or a tool, a person, consumables, vehicles, ...) for planning, monitoring, or spontaneously in case of an unexpected situation. Examples include route planning of logistics vehicles, a customer inquiring about order progress, or a quality manager needing to take a faulty batch of workpieces out of circulation for rework. All these cases are best served by keeping an up-to-date view on what is where in a factory, usually as a relation between object IDs and location IDs. We cover this by specifying a scenario that reacts to logistics events by recording their effect on the location of workpieces in an entity storage (like a relational database).

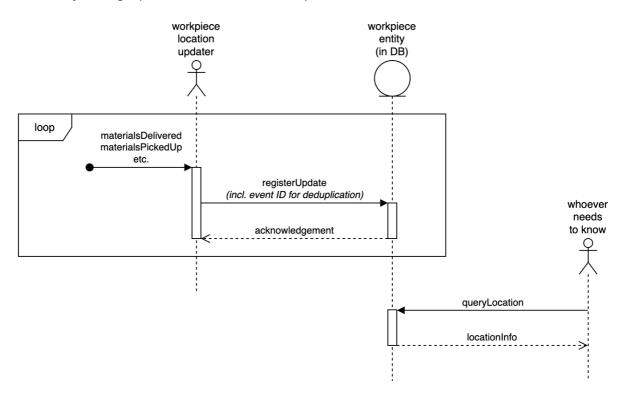


Figure 23 UC-04 Scenario 2 diagram

As shown above, this scenario is covered by two separate processes linked via a common participant: the workpiece entity whose last known location is stored in a database field. The first process continually monitors all other ongoing processes for events that denote the movement of the workpiece in question, like the *materialPickedUp* and *materialDelivered* events from UC04-SC1. These events are taken from the event log produced by the other scenarios which are presumed to be practically persistent for this purpose (i.e. they are guaranteed to be stored for as long as it takes to complete the database transfer of this scenario). Registering the effect of a material movement event in the database at the same time also updates the database with the now enlarged set of event data represented by the last known location field. This must happen in the same database transaction to ensure that no location update can be lost—we require effectively exactly-once processing. It is highly desirable that such sets of processed events can be characterised by a small data type instead of having to enumerate the IDs of all processed events.

With the database kept updated as described above, other actors can at any time query the database for the last known location of the workpiece. This is done via a simple request–response protocol.

UC-04-SC3 Machine needs tool

Each production step takes some raw material (which may be half-finished goods) and changes it, e.g. drilling holes, smoothing surfaces, hardening steel, blowing glass into the desired shape, but also screwing multiple pieces together, performing functional tests, applying grease etc. Next to the raw materials this also requires the presence of various tools and consumables, the precise selection of which may depend on the article being manufactured. It is the mission critical function of logistics to ensure that required items are available at the right location precisely when they are needed. We cover all such cases with the scenario of a milling machine needing a particular tool for the next job.

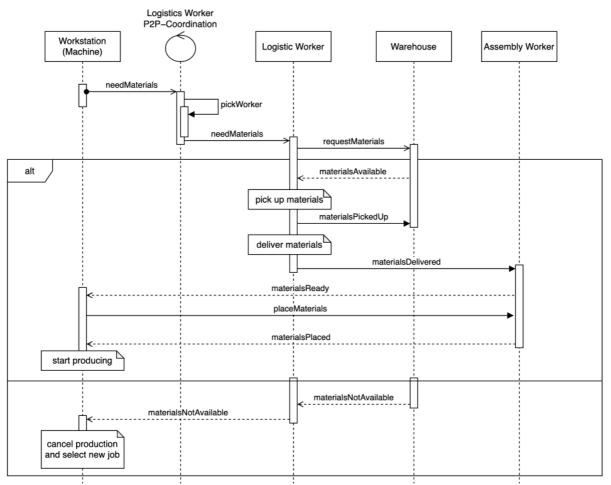


Figure 24 UC-04 Scenario 3 diagram

The diagram above shows how the workstation starts the scenario with a load request in the form of the *needMaterials* event. The logistics fleet then picks a logistics worker to handle this request by inquiring whether the desired item is available in the warehouse. If it is not, the lower alternative shows how the *materialsNotAvailable* event is forwarded as a final reply to the workstation, which will then need to cancel its current plan and pick new work. The successful case is shown in the upper alternative of the diagram, abbreviating the actual delivery process (which works like in UC04-SC1) that finally leads to the *materialsDelivered* event being sent to the assembly worker at the workstation. The last part of the process then consists of the coordination between that worker and the workstation machine to install the desired tool. As soon as the machine receives the *materialsPlaced* event, it can start with its planned production step.

UC-04-SC4 Workstation needs setup

Before work can commence on a production step the workstation needs to be set up, which usually means setting machine parameters (electric, electronic, or mechanical), loading CNC programs into machine controllers, or preparing an array of tools, including setting the torque limit on a wrench. These setup procedures represent the main knowhow of the factory, they make the difference between viable products and scrap. They are therefore performed by specially qualified personnel called setup engineers who then hand off the execution of the actual production steps to the workers at the workstation (who may be manually involved or supervising the machines). We include the scenario of a workstation calling for setup because this often interacts with logistics by requiring tools or materials to be present, either for immediate use or inspection.

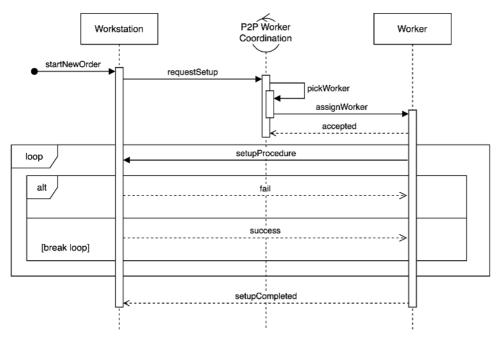


Figure 25 UC-04 Scenario 4 diagram

The diagram above shows the process being triggered by the workstation when starting to process the next order. The setup order is created by the *requestSetup* event upon which the group of setup personnel pick one worker who shall perform the work. As before in the logistics cases, when the *accepted* event is not received in time, the assignment is canceled and another worker is chosen—this is not shown in the diagram to concentrate on the part specific to workstation setup. The worker moves to the workstation, performs the procedure and receives a *fail* or *success* event, symbolising the outcome of the activity. Unsuccessful attempts are assumed to be repeated until successful, at which point the *setupCompleted* event is sent to the workstation so that it can now start producing.

It should be noted that in real life the setup will not be attempted forever; at the latest when the worker's shift ends, the process terminates without success. There are several ways in which this can be handled, including creating a new setup order, handing the same order back to the group of setup personnel, or escalating the problem to a human manager.

UC-04-SC5 Logistics robot health tracking and repair

Given that the bulk of the use case consists of autonomous vehicles performing logistics tasks, we need to also foresee that such a mechanised logistics fleet is not by itself as resilient as one comprising human workers: these machines do not have the ability to repair themselves

or figure out creative solutions to any obstacle or safety constraint they encounter. Logistics robots are constructed to adhere to strict safety standards and will rather stop and shut down than figure out a way around an impasse. All these reasons require that robots track their own health status as well as mission status, plus the logistics managers need to be alerted in case of trouble. We represent this and the ensuing rectification measures by the scenario of a logistics robot tracking its health status and asking for repair when needed.

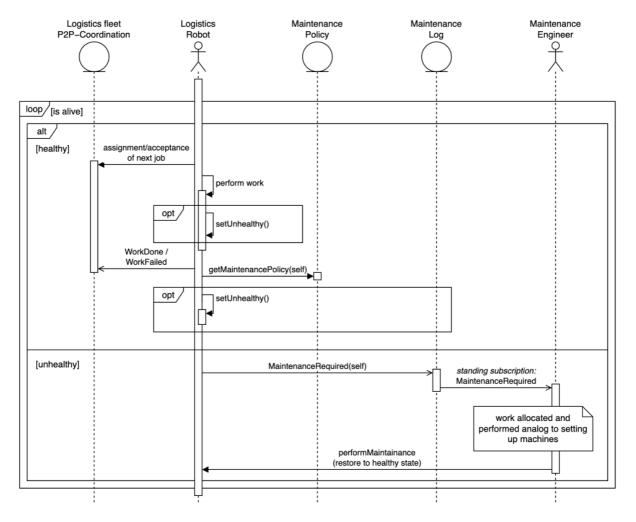


Figure 26 UC-04 Scenario 5 diagram

The routine of a logistics robot is modelled as an infinite loop handling two distinct states: the robot is either healthy or unhealthy. In the healthy state it will participate in the logistics fleet, be assigned orders, accept them, and perform the work implied. While working on an order, the robot may experience a failure (like an accident or hardware breakage) which will set its mode as unhealthy and lead to a *WorkFailed* event sent to the rest of the logistics fleet instead of the *WorkDone* that would otherwise signal the successful completion of the task. After the task has ended, the robot checks its stats (mileage, battery level, navigation performance) against thresholds dynamically defined in its maintenance policy and transitions to unhealthy mode if required.

In unhealthy mode the robot will record its condition and the contributing causes in the maintenance log from where a maintenance engineer will pick them up. This process can be organised in a number of ways, for example using peer-to-peer coordination as shown for the allocation of logistics orders and setup orders above. Or it could be solved by a static allocation of a given set of robots to a single engineer for the current work shift. The engineer will perform repairs and/or preventive maintenance and finally restore the robot to its healthy state.

UC-04-SC6 Logistics robot maintenance scheduling

In addition to spontaneous failures within the logistics fleet, there is also regular maintenance to be performed to minimise spontaneous failures resulting from equipment wear and tear (like wheels losing grip or steering accuracy). Each maintenance intervention takes a robot out of production, making it temporarily unproductive, hence the factory will optimise the maintenance schedule to minimise the sum effect of both planned maintenance and unplanned failures. Updating the maintenance schedule will require comprehensive data on past performance and problems. It is usually done by a maintenance engineer or logistics manager at regular intervals using the available historical data as well as technical and business acumen.

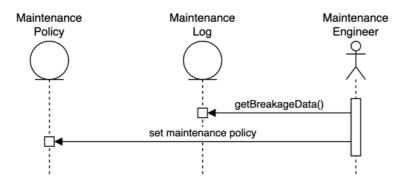


Figure 27 UC-04 Scenario 6 diagram

The most important aspect of this scenario is that all breakage and associated performance data are stored by the other procedures in the maintenance log, so that the maintenance engineer can access them later. Even though the function performed in this scenario is not to assess compliance, the log will need to have the same level of detail and reliability as an audit log. This allows the engineer to make a correct assessment of past performance, which is the basis for designing a plan to handle predicted future incidents. The result of this process is then stored by updating the robot's maintenance policy; the robot will evaluate it in the future as shown in UC04-SC5.

UC-04-SC7 Logistics supervision

A production manager or logistics manager uses a dashboard to monitor the health and performance of the logistics fleet. They detects anomalies with the support of ML classification of ongoing workflow executions. In order to do so, the federated learning facilities in the swarm are continually fed the execution traces (i.e. event logs) from previous orders, supplemented with heuristically applied labels; the heuristics are defined and continually updated with the overseeing manager to attain sufficient labelling quality.

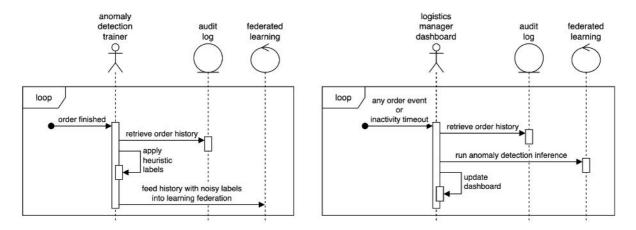


Figure 28 UC-04 Scenario 7 diagram

This scenario is depicted in two diagrams, the one on the left showing the ML training and the one on the right using the resulting model for inference. We explicitly represent the event log, termed "audit log" to highlight that this log needs to have the same fidelity as one would need for auditing; in essence, the manager dashboard performs continuous audits of the logistics fleet.

Training the ML model proceeds based on the complete event history of a given logistics order (analogous scenarios support supervision of the other order types). We model the labelling process as heuristic to express that labels will not be perfectly correct. In a real factory the manager will typically have the ability to manually assign labels on orders they personally audited, which may represent a partial error correction mechanism to the heuristic. Overall, we expect a few hundred finished orders to be fed into the machine learning facilities each day, which is too small a quantity for training ML models from scratch; we assume that the training process used by this scenario will be the refinement of a pre-trained model.

The refined model is then used at the manager dashboard to classify all currently displayed orders as either nominal or anomalous, simplifying the manager's assessment of the logistics fleet's health and performance and pointing out any issues that need immediate attention. It is important to note the both new events and the passage of time will have a bearing on this classification, as is represented by the trigger condition being either a new event or the expiration of a previously determined timeout. In a primitive but obviously correct implementation we will update currently ongoing orders for which no new events are received at a predefined cadence (like once per minute). A smarter and less wasteful approach would be to use ML inference to determine an appropriate timeout given the order's event history so far.

It is important to note that neither the training nor the inference shall be done in a centralized fashion because both of them need to be always available at the local computer. We assume that federated learning will help us achieve local processing as well as propagation through the swarm, so that machine intelligence is both always available and uses the whole swarm's inputs for learning.

2.1.5 UC-05-Generic-Generic (abstract) Use Case

The generic use case intends to provide the guidelines for the replication of TaRDIS swarm workspace to several other use cases.

Background and general objective of the Generic use case

An endeavouring research project like TaRDIS, carefully selected multiple heterogeneous usecases such as the previously described, to provide a broad approach that can satisfy multiple domains and objectives. However, the project aims much higher than simply to provide a solution to its use-case partners. Its ambition is to be widely adopted, by the industry and related SMEs, but also in academia, as its scope - to provide support to swarm development is applicable also to the whole software development community. Hence, this generic use-case aims to describe a generic business or project that intends to use the swarm development paradigm and therefore define the common bricks that should be applicable to that project. These shall be elicited not based on any specific business needs, but on the existing bestpractices in swarm development, and especially in the expertise coming from the TaRDIS Project [1] consortium elements. The requirements and needs defined in this section should be as well applicable in its most to all the other project use-cases, as they need to define what are the customisation needs that are required specifically for their business case.

Development of a generic Intelligent Swarm (IS) environment.

An Intelligent Swarm (IS) comprises a set of multiple intelligent agents (running on or using computers), humans or algorithms performing activities that in some way may contribute to a common objective. Similarly, to the behaviour of swarms in nature, a computational intelligent swarm may include multiple individuals that have the same role or behaviour, but typically also includes a variety of roles or behaviours. Each agent is an autonomous individual that, by its own initiative, joins the swarm (namely by Peer-to-Peer connection) once, occasionally, or permanently, to perform one or multiple activities which can implement partial or complete flows of activities. The swarm itself does not have a single or overarching consciousness and usually doesn't even have a governing entity to rule or guide its members.

While the traditional application development world follows some well-defined patterns to perform activities, intelligent swarms are composed from heterogeneous agents in a chaotic (i.e. non-deterministic) fashion. The behaviour of the agents is carefully designed such that their composition shall achieve the emergent behaviour that the programmer desires. It is important to note that such a system differs from traditional network programming in that the precise details of the realisation of that goal are unpredictable and often also beyond what we can practically observe—it is comparable to a beehive or an ant colony, where we see the macroscopic result but cannot fully understand every minute action that led to it. Correspondingly, in IS systems the programmer determines the behaviour of individual ants or bees while the purpose is to build the hive or colony.

The development of an IS environment encompasses one or more software projects, each describing one kind of collaboration and its related protocols. It would thus be interesting that the business could define a common environment workspace. Although the workspace itself has no behaviour or (id)entity, this workspace includes one or multiple projects, where each project defines the behaviour and characteristics of one or multiple agents or individuals of the swarm.

A project usually defines the behaviour and characteristics of some intelligent agents, and is commonly described by the definition of states and their interaction in a state machine lifecycle, using annotated graphs of states and labels, defining the events in the state machine and their behaviour. These projects define algorithms that need to consider issues such as security and integrity but from an individual and contributing perspective.

For deployment, one or more agents are assigned to each swarm member, their application code is installed on the respective computer and configured to match the function of this member in the larger system. In this fashion, a computer can host members of different swarms and its user (or the algorithms deployed on it) can interact via a variety of workflows with other parts of the system.

Some of these projects may include properties that are used in other roles as well, meaning that a change in the behaviour or definition of a role may require refactoring needs to be made in other roles as well. It is therefore very useful to define common data types or protocols in reusable software modules.

UC-05 scenarios

UC-05-SC1 Creation of an Intelligent Swarm workspace

This scenario concerns the initial stage of the development, where the Intelligent Swarm is defined. While each intelligent agent (instance implementing or contributing to a role of the swarm) has a lifespan that varies from a momentary contribution to a long-term interaction, the lifecycle of the swarm is often tied to the lifetime of the business itself (i.e., "forever"). It is thus important to clearly define the business scenarios, rules, regulations and common grounds that will be impacting all the roles interacting in the swarm. These encompass activities such as:

- Scenario Description (user stories or similar)
- Workspace manifest (something like a README.md to document the swarm)
- Definition of common entities (e.g., Domain Driven Design) and their data representation

UC-05-SC2 Creation of an Intelligent Swarm project

This scenario is about defining a set of workflows that can be seen in the swarm, corresponding to the activities that the agents in the swarm shall have to fulfil or contribute towards achieving. These can be described in activities such as:

- Graphical design of workflows
- Description of the workflow steps and transitions
- Definition of specific entities and their representation (i.e., roles) interacting in the swarm
- Defining a rough overview of the relation (balance) between the number of instances of each role
- Assigning roles to workflow transitions (i.e., "who does what")
- Projection of each agent role's local behaviour from the workflow
- Identification of Dependency and constraints
- Definition of the role states and state machine evolution
- Definition of the protocols, APIs, communication channels and messages
- Definition of the role events and conditions
- Design of the Federated Machine Learning model
- Security concerns and design
- Implement external effects

UC-05-SC3 Creation of an agent application project

This scenario describes the development of an intelligent agent, an application that will implement a (part of a) role defined in the swarm. The activities in this scenario are very heterogeneous and dependent on the application development, but they could include:

- Definition of a User Interface (UI) for a human agent or of a decision algorithm
- Importing agent role(s) from the IS project
- Implement the UI/algorithm and hook up to exposed events/commands from agent role(s) in the IS project
- Define bundling of executable code for deployment

UC-05-SC4 Deployment of agents for testing

This scenario is about developing an application that creates one or more instances of an agent application, and deploys them in a test environment for analysis of their behaviour. This includes activities such as:

- Creating configuration data
- Using agent application artifacts to build deployment artifacts
- Deploying to a set of (virtual) swarm computers
- Observing the running system and providing inputs as desired

UC-05-SC5 Deployment for production

This scenario is similar to the previous one UC05-SC4, with some differences:

- Strictly separated from tests so that there is no data flow between these test environment and production environment
- Observation is automated and performed summarily, raising alarms when intervention is needed

2.2 REQUIREMENTS

In this section we are going to describe the requirements for the TaRDIS project, the requirements are divided in two phases, first we present the UC requirements and later the toolbox requirements, both of them divided in functional and non-functional.

This work will serve the basis for D2.3 where we will do the translation of requirements to technical specifications. The table below explains the conventions used for the requirements.

ID	[RF or RNF]-[UC or WP]-[Op]-[Int][Must or Should orRF- FunctionalCould]UC- Use case identified by companyPriorityWP- Work package identified by numberMust- High priorityOp-Optional field with Sub identifierpriorityInt- Natural number (positive starting in 1).Could			
Name	[Short and quick identification of the requirement]			
Description/ Rationale	[Explanation of what is this requirement] [Explanation of what is behind the requirement and why is needed for TaRDIS]			
	[Detail the Dependency between requirements, these Dependency should have a lower [Int] field, these are "horizontal" Dependency between modules/components.			
Dependency	Dependency define interference between requirements. An example of a negative interference (or conflict) is usability vs security.			
	Definition: Requirements dependency is the relationship between requirements and acts as the basis for change propagation analysis.]			
Traceability (backward)	[Explain the origin of this requirement, for the UC identified the scenario and for the Toolbox identified the UC requirement, these point upwards in the hierarchy to more general requirements/needs.]			
[Explain the Work Package or requirement implementing this spectre requirement, these point downwards in the hierarchy to more spectre fined requirements references to work packages are included h brackets Connects to the artifacts where this requirement is impletedTraceability				
(forward)	Definition: The degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or primary-subordinate relationship with one another.]			
KPIs	 [K]-[B or O or U]-[Int] K- KPI B- Baseline O- Proposal Objectives U- Use Case Int- Natural number 			

Table 4: Requirements table detail

Every requirement is classified as either being a **functional** or **non-functional** requirement. There are a range of definitions in the literature for these terms, which—although being similar—differ in details that are important in the context of creating a toolbox (as opposed to an end user application or system). We chose the following definition for this document:

- *functional* requirements describe what the *component under consideration* must do in order to fulfil its purpose.
- every other requirement is *non-functional*, including but not limited to *how* the component chooses to fulfil its functional requirements.

From end user perspective common non-functional requirements relate to performance, scalability, security, ease of use, etc. We include the notion of what the component's purpose is to allow for example the specification of a swarm discovery component with the specific purpose of placing an upper bound on total network bandwidth used—the bandwidth limit here is a functional requirement because it is the main purpose of the component.

The structure of the [Op] field above is defined by the use case or work package that applies it, as shown below:

- WP6
 - G General
 - CA Communication Abstractions
 - MA Membership Abstractions
 - SA Storage Abstractions
 - TA Telemetry Acquisition
 - CM Configuration Management

2.2.1 Use Cases Requirements

In this subsection will be described the Use case requirements for the use cases described in the previousDeparting from the perspective of end-users, the four use cases will be widely described to ease understanding of the working context in each one of them and how the TaRDIS toolbox will help moving from the baseline towards a new working pattern in each industry.

2.1.

UC-01-EDP-Requirements

ID	RF-EDP-01	Priority	Must
Name	Exchange agreement be	tween prosumers	
	Description: The syste consumption forecasts a peer (P2P) agreements These features are ess community energy excha	and securely finalize s among producers sential for efficient a	real-time peer-to- and consumers.
Description/Rationale	Rationale: Accurate For energy use within the c supply. Real-Time P2P A allowing quick adaptation the community. Energy	community, ensuring Agreements enhances n to changing energy	a reliable energy s responsiveness, y demands within

	and reduces energy losses, contributing to a sustainable and cost-effective intra-community energy exchange.
Dependency	No dependency with other requirements
	EDP use case Scenario 5 and Scenario 6
	UC-01-Scenario 5 – Running in Normal operation mode.
Traceability (backward)	UC-01-Scenario 6 – Running with faults.
	WP4-Requirements
	WP5-Requirements
Traceability (forward)	WP6-Requirements
	K-B-01: programmer effort for overlay network
	K-B-02: network bandwidth used
	K-B-13: latency at interested peers
	K-B-17: security verification effort
Linked KPIs	K-U-02

Table 5: RF-EDP-01

ID	RF-EDP-02	Priority	Must		
Name	Community Orchestrator for Energy Communities				
	Description: The Community Orchestrator (CO) must efficientl				
	manage and coordinate energy transactions within				
	community. This involv	ves overseeing	the real-time exchange of		
	0,		cation between producers,		
	consumers, and the D	istribution Sys	stem Operator (DSO). The		
	CO should automa	•			
	-		inimize human intervention		
	and optimize the overa	Ill performance	of the energy community.		
	Rationalo: Efficient Co	ordination the	CO playa a control rola in		
			CO plays a central role in		
	coordinating energy transactions, ensuring a well-balanced and reliable energy supply within the community. Automated Processes including registration, forecasting, and fault resolution minimizing human intervention, reducing the likelihood of errors and enhancing operational efficiency. Intra/inter Community				
	Exchange: facilitates smooth communication between community members, the DSO, and external entities, promoting effective collaboration and information exchange for efficient and reliable energy transactions, broader and flexible energy market				
	dynamics, optimizati		•••		
Description/Rationale	communities.				
Dependency	No dependency with of	ther requireme	nts		
	EDP use case all scenarios.				
EDP use case all scenarios					
		-ante working	Energy generation forecast		
Traceability (backward)	for the next hour.				

	UC-01-Scenario 2 - Ex-ante working Energy consumpti forecast for the next hour.		
	UC-01-Scenario 3 - Ex-ante working with total energy consumption forecasted for next hour and balance of deficit. UC-01-Scenario 4 - Ex-ante working with total energy consumption forecasted for next hour and balance of surplus. UC-01-Scenario 5 – Running in Normal operation mode. UC-01-Scenario 6 – Running with faults.		
	WP4-Requirements		
	WP5-Requirements		
Traceability (forward)	WP6-Requirements		
	K-B-01: programmer effort for overlay network		
Linked KPIs	K-B-17: security verification effort		
	Table 6: PE EDD 02		

Table 6: RF-EDP-02

ID	RF-EDP-03	Must		
Name	Renewable Energy Optimization			
	Description: The system	n should prioritize and maximize the		
	utilization of renewable energy sources within the energy community. This involves planning, forecasting, and balancing of			
	renewable energy produc	ction and consumption.		
	Rationale: Maximizing the	e use of local renewable energy aligns		
	-	tainable energy practices and reduces		
Description/Rationale	dependence on non-renewable sources while reducing the grid pressures.			
Dependency	RF-EDP-01 and RF-EDP	-02		
	EDP use case all scenari	os		
	UC-01-Scenario 1 - Ex-ante working Energy generation forecast for the next hour.			
	UC-01-Scenario 2 - Ex-ante working Energy consumption			
	forecast for the next hour			
		Ex-ante working with total energy		
	•	for next hour and balance of deficit.		
		Ex-ante working with total energy		
	consumption forecasted for next hour and balance of surplus.			
	UC-01-Scenario 5 – Running in Normal operation mode.			
Tracability (backward)	UC-01-Scenario 6 – Runi	ning with faults.		
Traceability (backward)				
Traceability (forward)	WP5-Requirements			
Linked KPIs	K-U-01			

Table 7: RF-EDP-03

ID	RNF-EDP-01	Priority	Should
Name	Scalability		

	Description: The system should be scalable to accommodate the growth of the energy community, allowing for an increasing number of participants, producers, and consumers without major performance issues.
Description/Rationale	Rationale: Scalability ensures that the system can handle the expansion of the community and the addition of new actors, supporting long-term viability of the solution.
Dependency	No dependency with other requirements
Traceability (backward)	
Traceability (forward)	WP6-Requirements
Linked KPIs	K-B-11: scalability

T 11	0	
l able	8:	RNF-EDP-01

ID	RNF-EDP-02	Should		
Name	Security and Privacy			
	Description: The system must implement robust security measures to protect sensitive energy transaction data and ensure the privacy of community members. This includes secure communication channels and data encryption.			
Description/Rationale	Rationale: Security and privacy are paramount to build trust among community members and comply with regulatory requirements, preventing unauthorized access or data breaches.			
Dependency	No dependency with other requirements			
Traceability (backward)	N/A			
Traceability (forward)	WP3-Requirements			
Linked KPIs	K-B-17: security verificati	on effort		

Table 9: RNF-EDP-02

UC-02-TID-Requirements

ID	RF-TID-01	Priority	Must
Name	Secure communications between e	entities (for cross-devi	ice training)
Description/	Protection against security threa	ts such as maliciou	s participants or FL
Rationale	aggregator		
Dependency	No Dependency with other require	ments	

(backward)	UC-02-Scenario 1: Presence of hierarchy in the system UC-02-Scenario 2: Split learning in presence of devices with limited computation/memory capacity		
Traceability			
(forward)			
KPIs	K-B-17: security verification effort		

Table 10: RF-TID-01

ID	RF-TID-02	Priority	Should	
Name	Secure communications between a	applications (for cross	-app training)	
Description/	Protection against security threats	such as data poison	ing that can have an	
Rationale	impact on the model (e.g., introduc	e bias)		
Dependency	No Dependency with other requirements			
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system		
(backward)	UC-02-Scenario 2: Split learnin	g in presence of o	devices with limited	
	computation/memory capacity			
Traceability	WP3-Requirements			
(forward)	WP6-Requirements			
KPIs	K-B-17: security verification effort			

Table 11: RF-TID-02

ID	RF-TID-03	Priority	Must	
Name	Privacy of FL clients (for cross-dev	ice training)		
Description/	Preservation of privacy of each F	L client so that othe	r participants cannot	
Rationale	acquire information on the client	from his/her shared	model updates. This	
	could be achieved through the differential privacy method, for example.			
Dependency	No Dependency with other requirements			
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system		
(backward)	UC-02-Scenario 2: Split learning in presence of devices with limited			
	computation/memory capacity			
Traceability	WP3-Requirements			
(forward)	WP6-Requirements			
KPIs	K-B-09: FL privacy			

Table 12: RF-TID-03

ID	RF-TID-04	Priority	Should	
Name	Privacy of application data (for cross-app training)			
Description/	Preservation of privacy of each app	lication's data (given a	a possible app conflict	
Rationale	of interest among different applications)			
Dependency	No Dependency with other requirements			
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system		
(backward)	UC-02-Scenario 2: Split learning in presence of devices with limited			
	computation/memory capacity			
Funded by the European Union Page 54 of 117 © 2023-2025 TaRDIS Consortiur		TaRDIS Consortium		

-	WP3-Requirements
(forward)	WP6-Requirements
KPIs	K-B-09: FL privacy

Table 13: RF-TID-04

ID	RF-TID-05	Priority	Must
Name	Initiation of the overlay network and adjustments upon changes in the network		
	and its resources.		
Description/	Adaptation of overlay network in th	e presence of new de	vice or other changes
Rationale	in the system (e.g., communication	n interruptions)	
Dependency	Related to TID-03		
Traceability	UC-02-Scenario 1: Presence of hierarchy in the system		
(backward)	UC-02-Scenario 2: Split learnin	g in presence of	devices with limited
	computation/memory capacity		
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-B-01: programmer effort for overlay,		
	K-B-07: FL training latency,		
	K-B-11: scalability		

Table 14 RF-TID-05

ID	RF-TID-06	Prior	rity		Should		
Name	Workflow orchestration						
Description/	Orchestration of communications a	and m	nemory mar	nage	ement of h	nelper	s in the
Rationale	case of Split Learning						
Dependency	No Dependency with other require	ment	S				
Traceability	UC-02-Scenario 2: Split learnin	g in	presence	of	devices	with	limited
(backward)	computation/memory capacity						
Traceability	WP3-Requirements						
(forward)	WP4-Requirements						
	WP6-Requirements						
KPIs	K-B-06: FL CPU usage for training	,					
	K-B-07: FL training latency,						
	K-B-08: FL storage/RAM requirem	ents p	per node,				
	K-B-11: scalability,						
	K-B-02: network bandwidth used						
	K-U-04						

Table 15 RF-TID-06

ID	RF-TID-07	Priority	Must
Name	State management		
Description/	Manage of the FL participants' state before and during training		
Rationale			
Dependency	No Dependency with other require	ments	

Traceability (backward)	UC-02-Scenario 1: Presence of hierarchy in the system UC-02-Scenario 2: Split learning in presence of devices with limited computation/memory capacity			
Traceability	WP6			
(forward)				
KPIs	K-B-01: programmer effort for overlay			
Table 16: DE TID 07				

Table 16: RF-TID-07

ID	RF-TID-08	Priority	Must
Name	Helpers in Split Learning		
Description/	Ensure the existence and mainten	ance of helpers in sp	lit learning. This might
Rationale	imply deciding which FL participan	t (clients, servers, etc	c.) qualifies to act as a
	helper.		
Dependency	Depending on the implementation	this could be related	to RF-TID-05 and RF-
	TID-06		
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system	
(backward)	UC-02-Scenario 2: Split learnin	g in presence of	devices with limited
	computation/memory capacity		
Traceability	WP5-Requirements		
(forward)	WP6-Requirements		
KPIs	K-B-06: FL CPU usage for training	,	
	K-B-07: FL training latency,		
	K-B-08: FL storage/RAM requirem	ents per node	

Table 17: RF-TID-08

ID	RNF-TID-01	Priority	Should	
Name	System's scalability			
Description/	The system should be scalable to	accommodate a large	number of FL clients	
Rationale	and potentially adjust to clients who just joined the system			
Dependency	No Dependency with other requirements			
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system		
(backward)	UC-02-Scenario 2: Split learnin	g in presence of o	devices with limited	
	computation/memory capacity			
Traceability	WP3-Requirements			
(forward)	WP6-Requirements			
KPIs	K-B-11: scalability			

Table 18: RNF-TID-01

ID	RNF-TID-02	Priority	Should
Name	Federated learning with low impact	t on user experience	

Description/	Ensure the training does not have a high impact on the devices participating	
Rationale	in FL	
Dependency	No Dependency with other requirements	
Traceability	UC-02-Scenario 1: Presence of hierarchy in the system	
(backward)	UC-02-Scenario 2: Split learning in presence of devices with limited	
	computation/memory capacity	
Traceability	WP5-Requirements	
(forward)	WP6-Requirements	
KPIs	K-B-06: FL CPU usage for training,	
	K-B-07: FL training latency,	
	K-B-08: FL storage/RAM requirements per node	
Table 19: RNF-TID-02		

ID	RNF-TID-03	Priority	Must
Name	Compatibility with mobile devices		
Description/	Ensure the toolbox's components a	are compatible with mo	bile devices (that are
Rationale	usually part of smart homes) and, i	in particular, Android-	based devices.
Dependency	No Dependency with other requirements		
Traceability	UC-02-Scenario 1: Presence of hie	erarchy in the system	
(backward)	UC-02-Scenario 2: Split learning in presence of devices with limited		
	computation/memory capacity		
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-O-1.3		

Table 20: RNF-TID-03

ID	RNF-TID-04	Priority	Should
Name	Energy-efficient training/inference		
Description/	Enable lightweight and energy efficient	cient training for clien	ts
Rationale			
Dependency	No Dependency with other require	ments	
Traceability	UC-02-Scenario 1: Presence of hierarchy in the system		
(backward)	UC-02-Scenario 2: Split learnin	g in presence of	devices with limited
	computation/memory capacity		
Traceability	WP5-Requirements		
(forward)			
KPIs	K-B-06: FL CPU usage for training,		
	K-B-07: FL training latency,		
	K-B-08: FL storage/RAM requirements per node		

Table 21: RNF-TID-04

UC-03-GMV-Requirements

ID	RF-GMV-01	Priority	Must
Name	Decentralized ODTS framework		
Description/R	The dependency on Ground Static	ons support for the Orl	bit Determination and
ationale	Time Synchronization (ODTS) sha	all be reduced by mea	ans of the application
	of a decentralized approach. T	herefore, a ML-ass	isted, decentralized,
	accurate and secure orbit estimation	ation method is need	ded in the designed
	simulator		
Dependency	RF-GMV-02		
Traceability	UC-03-Scenario 1 -		
(backward)			
Traceability	WP5-Requirements		
(forward)			
Linked KPIs	K-U-05: Achievable distributed on-board ODTS performances versus the		
	classical centralized on-ground OE	DTS.	

Table 22: RF-GMV-01

ID	RF-GMV-02	Priority	Must
Name	Interaction between satellites in the	e distributed model	
Description/R	The process of obtaining the na	vigation solution for	each satellite in the
ationale	simulated framework needs to be	modeled with a dist	ributed approach, for
	instance enabling Federated Lea	arning, allowing inter	actions between the
	different nodes to exchange valu	able information for	their own navigation
	solution calculation.		
Dependency	RF-GMV-01, RF-GMV-03, RF-GM	V-04, RF-GMV-05	
Traceability	UC-03-Scenario 1 -		
(backward)			
Traceability	WP3-Requirements		
(forward)	WP4-Requirements		
	WP5-Requirements		
Linked KPIs	K-B-06: FL CPU usage for training		
	K-B-07: FL training latency		
	K-B-08: FL storage/RAM requirements per node		
Table 23: RE-GMV/02			

Table 23: RF-GMV-02

ID	RF-GMV-03	Priority	Must
Name	Deadlock freedom		
Description/ Rationale	In the simulated framework, communications, if one of the sate to communicate with the other or time slot is reached both satellites and not keep waiting for the failed situation.	llites involved in a sch visibility between then s must continue with th	neduled link is not able n is lost, once the next ne next scheduled link
Dependency	RF-GMV-02, RF-GMV-04, RF-GM	1V-05, RF-GMV-10	
Traceability (backward)	UC-03-Scenario 1 -		
Traceability (forward)	WP4-Requirements		
KPIs	N/A (Validated in WP7 demonstra	tions)	
-	Table 24: RE-	CM/V 02	

Table 24: RF-GMV-03

ID	RF-GMV-04	Priority	Should
Name	Capability of simulating satellite co	mmunications	
Description/	The ODTS simulator shall be able	to replicate the com	munications between
Rationale	satellites during the inter-satellite li	ink process	
Dependency	RF-GMV-02, RF-GMV-03, RF-GMV-05		
Traceability	UC-03-Scenario 1 -		
(backward)			
Traceability	RF-GMV-05		
(forward)			
KPIs	N/A (Validated in WP7 demonstrat	ions)	

Table 25: RF-GMV-04

ID	RF-GMV-05	Priority	Must
Name	Capability of simulating satellite co	mmunication failures	
Description/	In order to pursue realism, the O	DTS simulator must t	ake into account the
Rationale	possible failures or inconvenience	es that may occur d	uring communication
	between satellites during the inte	er-satellite link proces	ss, so that it can be
	verified that the network continu	es to operate under	the desired quality
	standards.		
Dependency	RF-GMV-02, RF-GMV-03, RF-GMV-04		
Traceability	UC-03-Scenario 1 -		
(backward)			
Traceability	WP3-RequirementsWP3-Requirements		
(forward)			
KPIs	N/A (Validated in WP7 demonstrat	ions)	

Table 26: RF-GMV-05

ID	RF-GMV-06	Priority	Must
Name	Capability to perform multiple simu	lations in parallel	
Description/	It must be possible to simulate	multiple scenarios	in parallel (multiple
Rationale	simulations with different inpu	t settings, for inst	ance initial errors,
	measurements noise, measureme	ents frequency, proce	ss noise, propagator
	settings, etc). All these settings sha	all be configurable in t	the ODTS simulator.
Dependency	No dependency with other requirer	nents	
Traceability	UC-03-Scenario 3 -		
(backward)			
Traceability	WP6-Requirements		
(forward)			
KPIs	N/A (Validated in WP7 demonstrat	ions)	

Table 27: RF-GMV-06

ID	RF-GMV-07	Priority	Should
Name	Propagation module speed		
Description/	The orbit propagation function de	eveloped using TaRI	DIS APIs should run
Rationale	faster than the orbit propagation fu	nction used in the bas	seline
Dependency	RF-GMV-09		
Traceability	UC-03-Scenario 1 -		
(backward)			
Traceability	WP3		
(forward)			
KPIs	K-U-06: Reduction of the use of co	mputational resource	S.

Table 28: RF-GMV-07

ID	RF-GMV-08	Priority	Could
Name	Optimization of the Inter-satellite L	ink connectivity scher	ne
Description/ Rationale	The inter-satellite link scheduling algorithm shall provide an optimal connectivity scheme based on satellite visibilities at a certain time, therefore maximizing navigation accuracy.		
Dependency	No dependency with other requirements		
Traceability (backward)	UC-03-Scenario 2-		
Traceability (forward)	N/A		
KPIs	N/A		

Table 29: RF-GMV-08

ID	RF-GMV-09	Priority	Must
Name	ODTS simulator speed		
Description/	The ODTS simulator developed lo	everaging TaRDIS A	PIs must provide the
Rationale	satellites constellation navigation s	solution over one cons	stellation cycle in less
	time respect to the baseline		
Dependency	RF-GMV-07		
Traceability	Internal use case needs (not a specific scenario)		
(backward)			
Traceability	WP3-Requirements		
(forward)			
KPIs	K-U-06: Reduction of the use of co	mputational resource	S.

Table 30: RF-GMV-09

ID	RF-GMV-10	Priority	Must
Name	Failure-independent accurate ODT	S solution	
Description/	The ODTS simulator shall provide	a good enough navig	pation solution even if
Rationale	there are measurement gaps or co	mmunication failures	
Dependency	RF-GMV-03		
Traceability	Internal use case needs (not a specific scenario)		
(backward)			
Traceability	WP3-Requirements		
(forward)			
KPIs	K-U-05: Achievable distributed o	n-board ODTS perfo	ormances versus the
	classical centralized on-ground OE	DTS.	

Table 31: RF-GMV-10

ID	RNF-GMV-01	Priority	Must
Name	Scalability		
Description/	The ODTS simulator shall work	•	
Rationale	number configurable. Therefore, a	Il functions involved n	eed to be adapted to
	this changing parameter.		
Dependency	No dependency with other requirements		
Traceability	Internal use case needs (not a specific scenario)		
(backward)			
Traceability	WP6-Requirements		
(forward)			
KPIs	K-B-11: Scalability		

Table 32: RNF-GMV-01

RNF-GMV-02	Priority	Must
Modularity of the ODTS simulator		
The architecture of the ODTS s	simulator shall be n	nodular to ease the
aerospace engineer users the pos	sibility of modifying t	he involved functions
based on the simulation they plan	to carry out.	
No dependency with other requirer	nents	
Internal use case needs (not a specific scenario)		
N/A		
N/A (Tested in WP7 demonstration	is)	
	Modularity of the ODTS simulator The architecture of the ODTS s aerospace engineer users the pos based on the simulation they plan t No dependency with other requirer Internal use case needs (not a spe N/A	Modularity of the ODTS simulator The architecture of the ODTS simulator shall be n aerospace engineer users the possibility of modifying t based on the simulation they plan to carry out. No dependency with other requirements Internal use case needs (not a specific scenario)

Table 33: RNF-GMV-02

UC-04-ACT-Requirements

ID	RF-ACT-01	Priority	Must
Name	available swarm decision making		
Description/	In the presence of a continually cha	inging network	topology (including transient
Rationale	network partitions) we require a me	echanism that	is always available for taking
	decisions based on locally available	e partial know	ledge.
	Note: this implies the possibility of	conflicts!	
Dependency	No dependency with other require	ments	
Traceability	UC04-SC1/3/4/5		
(backward)	UC-04-SC1 Transporting half-finished goods between workstations.		
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
Traceability	WP6-Requirements		
(forward)			
```			
KPIs	K-O-1.1		
	K-O-4.1		
	K-U-11		
	K-B-05		

# Table 34: RF-ACT-01

ID	RF-ACT-02	Priority	Must
Name	automatic conflict resolution: event	tual consensus	
Description/	Conflicts arising from decisions r		· · · · · ·
Rationale	concurrently) need to be resolve	d as soon as comm	unication is possible
	again, so that eventual consensus	is reached	
Dependency	No dependency with other require	ments	
Traceability	N/A		
(backward)			
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-U-09		
	K-U-11		
	K-B-05		

# Table 35: RF-ACT-02

ID	RF-ACT-03	Priority	Must
Name	replication of roles for fault tolerant	response to requests	6
Description/	Physical assets may be replicated f	for redundancy, which	needs to be reflected
Rationale	when implementing a swarm proto	ocol. Replicas backing	g the same role need
	to be able to respond to requests with full availability under network partitions		
	in an eventually consistent fashion.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC3 Machine needs tool		
	UC-04-SC5 Logistics robot health tracking and repair		



Traceability	WP3-Requirements
(forward)	WP6-Requirements
KPIs	K-O-1.1
	K-U-09
	K-U-11

# Table 36: RF-ACT-03

ID	RF-ACT-04	Priority	Should		
Name	effectively exactly once semantics	for performing extern	al effects		
Description/	When a machine reaches a cert	ain state in which it	needs to execute a		
Rationale	physical action, the programm	ing model must s	support exactly-once		
	semantics; this means that if the	TaRDIS application	crashes and restarts		
	during this process, the effect shou	during this process, the effect should occur exactly once as far as is physically			
	possible (acknowledging that there is a brief time interval between effecting				
	the action and persisting this deed during which a crash would lead to a				
	violation of this requirement).				
Dependency	No dependency with other require	ments			
Traceability	UC-04-SC1 Transporting half-finis	hed goods between v	vorkstations.		
(backward)	UC-04-SC3 Machine needs tool				
	UC-04-SC5 Logistics robot health	tracking and repair			
Traceability	N/A				
(forward)					
KPIs	K-O-4.3				
	K-U-09				

### Table 37: RF-ACT-04

ID	RF-ACT-05	Priority	Must
Name	exactly-once transfer of information	n to transactional exte	ernal systems
Description/	The information (or an excerpt ther	eof) generated within	a TaRDIS swarm can
Rationale	be transferred without losses or duplications into a transactional external system, e.g. a relational database. This is facilitated by offering a generalised event stream cursor that can efficiently be serialised and stored in the external system together with the derived state, allowing to resume the export seamlessly after a crash.		
Dependency	No dependency with other require	ments	
Traceability (backward)	UC-04-SC2 Tracking the location of	of a workpiece	
Traceability (forward)	WP3-RequirementsWP6-Requiren	nents	



KPIs	K-O-4.3
	K-U-09

### Table 38: RF-ACT-05

ID	RF-ACT-06	Priority	Must
Name	ability to query history of previous	swarm protocol execu	itions
Description/	Event traces record the ground tr	uth of what happened	in the factory, which
Rationale	frequently is required to reconstruct	ct how an object came	e to be in the position
	or state it is currently found in.	This is also required	when expanding the
	system with new functionality and	backfilling the current	factory state required
	for the new workflows to function.		
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC2 Tracking the location of a workpiece		
(backward)	UC-04-SC6 Logistics robot maintenance scheduling		
	UC-04-SC7 Logistics supervision		
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-O-4.3		
	K-O-5.3		

## Table 39: RF-ACT-06

ID	RF-ACT-07	Priority	Must
Name	ability to query event history for fin	ding specific protocol	executions
Description/	A query interface allows the f	ormulation of criteria	a for the selection,
Rationale	transformation, and aggregation	of event data. This i	s frequently used to
	discover sets of ongoing workflow	instances (like all ope	n transport orders). It
	can also be used to populate a	a dashboard showing	g some performance
	indicators regarding factory shop f	loor operations.	
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC6 Logistics robot maintenance scheduling		
(backward)	UC-04-SC7 Logistics supervision		
Traceability	WP6-Requirements		
(forward)			
KPIs	K-O-4.3		
	K-O-5.3		
	К-В-03		

#### Table 40: RF-ACT-07

ID	RF-ACT-08	Priority	Should
Name	storage and retrieval of immutable	blobs of data	
Description/	Both inputs and outputs of factor	y workflows may co	ntain large pieces of
Rationale	passive data, like descriptive documents or quality inspection reports. These		
	data must be available for reading or writing at any swarm member according		
	to its hardware capabilities, expecting that frequently used items are cached		
	on the local persistent storage.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC4 Workstation needs setup		
(backward)	UC-04-SC5 Logistics robot health tracking and repair		

	WP4-Requirements WP6-Requirements
KPIs	K-O-4.2 K-U-09

# Table 41: RF-ACT-08

ID	RF-ACT-09	Priority	Should
Name	event-driven state updates		
Description/	Whenever the state of an obser	rved swarm protocol	(entity or workflow)
Rationale	changes, a callback can be attach	ned to update the sur	rounding application,
	e.g. to show new data in a graphical user interface.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
Traceability	N/A		
(forward)			
KPIs	К-О-1.2		

# Table 42: RF-ACT-09

ID	RF-ACT-10	Priority		Must
Name	obtain set of allowed actions for a given workflow			
Description/	Whether the user of the system is	a human (via a	graph	ical user interface) or
Rationale	an algorithm, it will need to be pre-	esented with a	choice	e of actions given the
	current state of a workflow. This e	nsures process	safety	, which in the factory
	context means that designed operation	ating procedure	es are t	faithfully followed.
Dependency	No dependency with other require	No dependency with other requirements		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.			
(backward)	UC-04-SC3 Machine needs tool			
	UC-04-SC4 Workstation needs setup			
	UC-04-SC5 Logistics robot health tracking and repair			
Traceability	WP3-Requirements			
(forward)	WP4-Requirements			
KPIs	K-U-09			
	К-В-03			
	K-B-15			

#### Table 43: RF-ACT-10

ID	RF-ACT-11	Priority	Must
Name	static analysis of swarm protocols		
Description/	Workflows are modelled as swarm protocols by factory domain experts, who		
Rationale	are not proficient at designing distributed computer systems. The use case		
	implementation must therefore include measures to ensure that designed		
	protocols fulfil the chosen goals of	eventual consensus a	and full availability.
Dependency	No dependency with other require	ments	



Traceability	UC-04-SC1 Transporting half-finished goods between workstations.
(backward)	UC-04-SC3 Machine needs tool
	UC-04-SC4 Workstation needs setup
	UC-04-SC5 Logistics robot health tracking and repair
Traceability	WP3-Requirements
(forward)	
KPIs	K-O-1.3
	K-O-2.1
	K-O-2.2
	K-U-09
	K-B-03
	K-B-14
	K-B-18
	K-B-19

# Table 44: RF-ACT-11

ID	RF-ACT-12	Priority	Must
Name	graphical workflow design		
Description/	The design of factory workflows	needs to be	coordinated between domain
Rationale	experts and programmers in such	a way that mi	sunderstandings are reduced
	to a minimum. This is aided by of	fering a graph	nical representation with strict
	correspondence to the behavior of	program cod	е.
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
Traceability	WP5-Requirements		
(forward)			
KPIs	K-O-1.2		
	K-O-1.3		
	K-U-09		
	K-B-03		
	K-B-15		
	K-B-16		

Table 45: RF-ACT-12

ID	RF-ACT-13	Priority	Should	
Name	ML model refinement using small number of noisily labeled event traces			
Description/	Factory processes will be labeled as nominal/anomalous using a mixture of			
Rationale	changes, the TaRDIS swarm refine	heuristics and human feedback. To be useful for inference before the process changes, the TaRDIS swarm refines an ML model on a small number of event traces (hundreds, at most thousands).		



Dependency	No dependency with other requirements
Traceability	UC-04-SC7 Logistics supervision
(backward)	
Traceability	WP5-Requirements
(forward)	
KPIs	К-В-04

# Table 46: RF-ACT-13

ID	RF-ACT-14	Priority	Must
Name	ML inference on incomplete protoc	ol event traces	
Description/	As the purpose of ML inference is t	to detect anomalies d	uring the execution of
Rationale	swarm protocols, the refined mode	el will need to be able	e to yield a verdict on
	the incomplete trace of an ongoing protocol execution.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC7 Logistics supervision		
(backward)			
Traceability	WP4-Requirements		
(forward)			
KPIs	К-В-04		

# Table 47: RF-ACT-14

ID	RF-ACT-15	Priority	Must
Name	ML inference resource usage	·	
Description/	As inference runs on edge device	s, the model fits their	r main memory (1GB
Rationale	after subtracting other services) and inference takes <100ms without using modern GPU acceleration (hardware in factories usually is a few years behind the state of the art).		
Dependency	No dependency with other requirer	nents	
Traceability	UC-04-SC7 Logistics supervision		
(backward)			
Traceability	WP5-Requirements		
(forward)			
KPIs	К-О-3.4		
	K-O-5.1		
	К-В-08		

# Table 48: RF-ACT-15

ID	RF-ACT-16	Priority	Must
Name	ML training resource usage		
Description/	The devices on which federated le	arning is performed a	are edge devices with
Rationale	4-8GB of main memory and without a modern GPU (industry PCs or VMs on		
	rack-mounted servers without grap	hics cards).	
Dependency	No dependency with other requirements		
Traceability	UC-04-SC7 Logistics supervision		
(backward)			
Traceability	WP5-Requirements		
(forward)			



KPIs	K-O-3.5 K-O-5.1 K-B-06		
	K-B-08		
		Table 49: RF-ACT-16	

ID	RF-ACT-17	Priority	Should
Name	ML model refinement from inference	ce error feedback	
Description/	Whenever the ML model flags an	anomalous event trac	ce as nominal or vice
Rationale	versa, a human operator may af	ter a manual investi	gation feed back the
	correction. This should ideally lead to a refinement very soon thereafter that		
	avoids this particular mistake.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC7 Logistics supervision		
(backward)			
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-O-3.5		

#### Table 50: RF-ACT-17

ID	RF-ACT-18	Priority	Should
Name	swarm members may be removed and added without interruption		
Description/	Mirroring the decommissioning and	d commissioning of ha	ardware in the factory,
Rationale	swarm members are also removed	d and added, possibly	during the execution
	of swarm protocols. No factory op	perations need to be	interrupted to enable
	this.		
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC1 Transporting half-finis	hed goods between w	orkstations.
(backward)	UC-04-SC2 Tracking the location of a workpiece		
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
	UC-04-SC6 Logistics robot maintenance scheduling		
	UC-04-SC7 Logistics supervision		
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-O-4.1		
	K-U-10		
	K-U-11		

Table 51: RF-ACT-18



ID	RF-ACT-19	Priority	Should
Name	display of swarm connectivity statu	IS	
Description/	Human operators and algorithmic a	agents alike need to k	now whether they can
Rationale	currently expect a response to an	event they are sendir	ng out via the TaRDIS
	swarm.		
Dependency	No dependency with other requirer	nents	
Traceability	UC-04-SC1 Transporting half-finish	ned goods between w	orkstations.
(backward)	UC-04-SC2 Tracking the location of	of a workpiece	
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
	UC-04-SC6 Logistics robot maintenance scheduling		
	UC-04-SC7 Logistics supervision		
Traceability	WP3-Requirements		
(forward)	WP6-Requirements		
KPIs	K-O-4.1		
	K-U-11		

#### Table 52: RF-ACT-19

ID	RF-ACT-20	Priority	Should		
Name	remotely monitor and configure da	ta retention and replic	cation		
Description/	Swarm members are hosted on e	edge devices of vary	ing capacity, both for		
Rationale	storage and processing of data. Th	e factory IT personne	el need to keep an eye		
	on resource usage and if necessa	ary change limits to r	maintain the swarm in		
	good working condition.				
Dependency	No dependency with other requirements				
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.				
(backward)	UC-04-SC2 Tracking the location of	of a workpiece			
	UC-04-SC3 Machine needs tool				
	UC-04-SC4 Workstation needs setup				
	UC-04-SC5 Logistics robot health	tracking and repair			
	UC-04-SC6 Logistics robot mainte	nance scheduling			
	UC-04-SC7 Logistics supervision				
Traceability	WP4-Requirements				
(forward)	WP6-Requirements				
KPIs	K-U-10		K-U-10		

# Table 53: RF-ACT-20

ID	RF-ACT-21	Priority	Should
Name	cryptographic key management		
Description/	The factory IT personnel need to be able to roll over swarm communication		
Rationale	keys in accordance with their IT security guidelines.		
Dependency	No dependency with other require	nents	



Tueseelslite	10 04 CO4 Transporting bolf finished areads between undetesting	
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.	
(backward)	UC-04-SC2 Tracking the location of a workpiece	
	UC-04-SC3 Machine needs tool	
	UC-04-SC4 Workstation needs setup	
	UC-04-SC5 Logistics robot health tracking and repair	
	UC-04-SC6 Logistics robot maintenance scheduling	
	UC-04-SC7 Logistics supervision	
Traceability	WP3-Requirements	
(forward)	WP6-Requirements	
KPIs	N/A	

# Table 54: RF-ACT-21

ID	RF-ACT-22	Priority	Should		
Name	multiple swarms run on the same network infrastructure without interference				
Description/	Especially during testing and valid	lation of the system, I	out possibly also later		
Rationale	for disparate system purposes, it is very helpful to be able to run multiple				
	TaRDIS swarms on the same ne	twork infrastructure v	vithout having to fear		
	interference between them. Beyor	nd using the same (lin	nited) bandwidth such		
	swarms should not be able to notion	ce each other's existe	nce.		
Dependency	No dependency with other requirements				
Traceability	UC-04-SC1 Transporting half-finis	hed goods between w	orkstations.		
(backward)	UC-04-SC2 Tracking the location of a workpiece				
	UC-04-SC3 Machine needs tool				
	UC-04-SC4 Workstation needs setup				
	UC-04-SC5 Logistics robot health tracking and repair				
	UC-04-SC6 Logistics robot maintenance scheduling				
	UC-04-SC7 Logistics supervision				
Traceability	WP6-Requirements				
(forward)					
KPIs	N/A				

### Table 55: RF-ACT-22

ID	RF-ACT-23	Priority	Should
Name	trusted swarm membership with ea	asy joining	
Description/ Rationale	Joining the swarm requires proper credentials so that unauthorized nodes cannot participate. This is needed to defend against attackers present in the factory as well as for separating test environments from the production system. Within the same ISO layer 3 broadcast domain, new members can discover		
Dependency	the swarm without needing to be configured with a contact point. No dependency with other requirements		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC2 Tracking the location of a workpiece		
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup UC-04-SC5 Logistics robot health tracking and repair		
	UC-04-SC6 Logistics robot maintenance scheduling		
	UC-04-SC7 Logistics supervision		



Traceability	N/A
(forward)	
KPIs	N/A

### Table 56: RF-ACT-23

ID	RNF-ACT-01	Priority	Must
Name	reasonable network overhead		
Description/	An idle TaRDIS swarm with 100	0 nodes doe	es not require an aggregate
Rationale	average network bandwidth greate	er than 10MB	it/s. Emitting an event 1kB in
	size does not incur significant over	erhead beyon	d sending it to all nodes (i.e.
	permitting digital signatures etc. to	take up a cou	uple hundred bytes).
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC1 Transporting half-finis	hed goods be	tween workstations.
(backward)	UC-04-SC2 Tracking the location of	of a workpiece	e
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
	UC-04-SC6 Logistics robot maintenance scheduling		
	UC-04-SC7 Logistics supervision		
Traceability	WP6-Requirements		
(forward)			
KPIs	К-О-1.2		
	K-U-10		
	K-B-01		
	K-B-02		

## Table 57: RNF-ACT-01

ID	RNF-ACT-02	Priority	Must
Name	timely delivery of events across the network		
Description/	While hard real-time is out of	scope (it is not re	equired for workflow
Rationale	coordination), the factory will need	to rely upon reason	ably quick delivery of
	messages, especially where mad	chines coordinate the	eir actions closely. A
	reasonable goal is to achieve 99	Oth percentile latency	ν δ ₉₉ <50ms between
	network neighbors.		
Dependency	No dependency with other requirements		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC2 Tracking the location of a workpiece		
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
Traceability	WP6-Requirements		
(forward)			
KPIs	K-U-10		
	K-B-01		
	К-В-13		

#### Table 58: RNF-ACT-02

I	C	)		
_				

RNF-ACT-03

Priority

Name	required system platforms	
Description/	Components of the use case implementations will need to be installed on	
Rationale	Windows, Linux, Android, and macOS operating systems, running on x86_64	
	or aarch64 processor architectures.	
Dependency	No dependency with other requirements	
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.	
(backward)	UC-04-SC2 Tracking the location of a workpiece	
	UC-04-SC3 Machine needs tool	
	UC-04-SC4 Workstation needs setup	
	UC-04-SC5 Logistics robot health tracking and repair	
	UC-04-SC6 Logistics robot maintenance scheduling	
	UC-04-SC7 Logistics supervision	
Traceability	N/A	
(forward)		
KPIs	K-O-5.1	

# Table 59: RNF-ACT-03

ID	RNF-ACT-04	Priority	Should
Name	required system resources		
Description/	The permanent storage required t	o support the use ca	se implementation on
Rationale	any participating edge device doe	es not exceed 20GB	(with the exception of
	archival nodes). The ephemeral s	torage required to ru	n each program does
	not exceed 2GB.		
Dependency	No dependency with other require	ments	
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.		
(backward)	UC-04-SC2 Tracking the location of	of a workpiece	
	UC-04-SC3 Machine needs tool		
	UC-04-SC4 Workstation needs setup		
	UC-04-SC5 Logistics robot health tracking and repair		
	UC-04-SC6 Logistics robot mainte	nance scheduling	
	UC-04-SC7 Logistics supervision		
Traceability	N/A		
(forward)			
KPIs	K-O-5.1		
	K-B-12		

## Table 60: RNF-ACT-04

ID	RNF-ACT-05	Priority	Should
Name	scalability		
Description/	The swarm supports a number of	members as required	d by full roll-out into a
Rationale	sizable factory. While the demonstration use case will use only 100-200		
	nodes, a more complete deployment may require up to 5000 nodes.		
Dependency	No dependency with other requirements		



Traceability	UC-04-SC1 Transporting half-finished goods between workstations.
(backward)	UC-04-SC2 Tracking the location of a workpiece
	UC-04-SC3 Machine needs tool
	UC-04-SC4 Workstation needs setup
	UC-04-SC5 Logistics robot health tracking and repair
	UC-04-SC6 Logistics robot maintenance scheduling
	UC-04-SC7 Logistics supervision
Traceability	WP6-Requirements
(forward)	
KPIs	K-B-11

### Table 61: RNF-ACT-05

ID	RNF-ACT-06	Priority	Should	
Name	programming language			
Description/	The TaRDIS toolbox will be use	ed from the TypeSci	ript language for the	
Rationale	business logic and application dev	elopment, and from t	the Rust language for	
	the infrastructure enhancements p	erformed on the Acty	x middleware.	
Dependency	No dependency with other require	ments		
Traceability	UC-04-SC1 Transporting half-finished goods between workstations.			
(backward)	UC-04-SC2 Tracking the location of a workpiece			
	UC-04-SC3 Machine needs tool			
	UC-04-SC4 Workstation needs setup			
	UC-04-SC5 Logistics robot health tracking and repair			
	UC-04-SC6 Logistics robot maintenance scheduling			
	UC-04-SC7 Logistics supervision			
Traceability	N/A			
(forward)				
KPIs	K-O-1.1			
	К-О-5.2			

Table 62: RNF-ACT-06



# 2.2.2 Toolbox Requirements

## WP2-Requirements

WP2 - A generic use case requirement proposition (a consolidation of toolbox requirements for WP2)

ID	RF-WP2-GEN-01	Priority	Must		
Name	Integrated Development Environment (IDE)				
Description/	To develop a swarm paradigm, it	is essential to defi	ne a proper IDE that is		
Rationale	able to perform actions that are cor	nsidered as best-pra	actices on best-of-breed		
	IDEs, such as:				
	Code editor with standard f	unctionalities			
	<ul> <li>Common used keyboard sł</li> </ul>				
	Multiple files / Tabbed files				
	Concept of workspace / pro	oject			
		Multiple code views			
		<ul><li>Syntax highlighting</li><li>Auto-indentation</li></ul>			
	Auto-indentation				
	Auto-completion				
	Code Suggestions				
	Code Navigation				
	Code folding				
	Code Analysis				
Dependency	No dependency with other requirements				
Traceability	None				
(backward)					
Traceability	N/A				
(forward)					
KPIs	N/A				

## Table 63: RF-WP2-GEN-01

ID	RF-WP2-GEN-02	Priority	Should	
Name	Integrated Development Environme	ent (IDE) integration		
Description/	To allow the development to be n	nore diffuse and gei	neric, the IDE should	
Rationale	include the following features:			
	<ul> <li>Version control integration</li> </ul>			
	<ul> <li>Documentation integration</li> </ul>			
	Debug Tools or integration v	<ul> <li>Debug Tools or integration with such tools</li> </ul>		
	<ul> <li>Build Tools or integration with such tools</li> </ul>			
	<ul> <li>Testing Tools or integration with such tools</li> </ul>			
	Profiling Tools or integration with such tools			
Dependency	No dependency with other requirements			
Traceability	None			
(backward)				
Traceability	N/A			
(forward)				
KPIs	N/A			

## Table 64: RF-WP2-GEN-02



ID	RF-WP2-GEN-03	Priority	Nice-to-have	
Name	Integrated Development Environm	ent (IDE) support		
Description/	To allow the development to be r	more focused, the ID	E should include the	
Rationale	following features:			
	<ul> <li>Cross-platform support</li> </ul>			
	<ul> <li>Project Management feature</li> </ul>	Project Management features		
	<ul> <li>Support of multiple programming languages</li> </ul>			
	<ul> <li>Integration with other development tools</li> </ul>			
Dependency	No dependency with other requirements			
Traceability	None			
(backward)				
Traceability	N/A			
(forward)				
KPIs	N/A			

### Table 65: RF-WP2-GEN-03

ID	RF-WP2-GEN-04	Priority	Must
Name	Integrated Development Environm	ent (IDE) support to T	aRDIS
Description/	The IDE should integrate the TaR	DIS tools and be able	e to integrate TaRDIS
Rationale	Dependency, e.g.:		
	<ul> <li>Default parameters</li> </ul>		
	<ul> <li>Connection settings</li> </ul>		
	Communication settings		
	<ul> <li>Al settings</li> </ul>		
Dependency	No dependency with other requirer	ments	
Traceability	None		
(backward)			
Traceability	N/A		
(forward)			
KPIs	N/A		

Table 66: RF-WP2-GEN-04



# **WP3-Requirements**

ID	RF-WP3-MOD-01	Priority	Must	
Name	WP3 - Models - Graphica	I representation	on	
	Description: The TaRDIS toolbox must provide facilities to graphically represent (internal) applications, to aid their design and development.			
Description/Rationale	Rationale: Graphical representations can be helpful for programmers and domain experts to understand the intended behaviour of the application under development. Moreover, the application model underlying the graphical representation can enable formal verification (static or run-time, see WP3-CP-F- 02).			
Dependency	No dependency with other requirements			
Traceability (backward) RNF-WP3-GEN-01 RF-ACT-10, RF-ACT-11				
Traceability (forward) Models and APIs in WP3 (D3.1, D3.3, IDE in WP3 (D3.2, D3.4, D3.6)		•	D3.5)	
Linked KPIs	K-O-2: development environment and verification			

Table 67: RF-WP3-MOD-01

ID	RF-WP3-MOD-02	Priority	Must
Name	WP3 - Models - Verificati	on of application	correctness
	Description: The TaRDIS toolbox and IDE must provide facilities to model the application under development and analyse its correctness.		
Rationale: Static and runtime ver discover bugs early, thus reducing			ne and effort required
Description/Rationale	for the application develo		
Dependency	WP4-Requirements		
	RNF-WP3-GEN-02		
Traceability (backward)	RF-ACT-11		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) Analyses for communication, data consistency, security (D4.) D4.3)		
Linked KPIs	K-O-02: development environment and verification		

Table 68: RF-WP3-MOD-02



ID	RF-WP3-MOD-03	Priority	Must		
Name	WP3 - Models - Diverse communication topologies				
Description/Rationale The TaRDIS application model must support application combining various communication topologies (e.g. broa P2P, pub-sub).					
Dependency	No dependency with othe	er requireme	nts		
Traceability (backward)	RF-WP3-GEN-01 RF-EDP-01 RNF-TID-01 RE-ACT-10				
Models and APIs in WP3 (D3.1, D3.3, D3.5)Traceability (forward)Secure messages in WP4 (D4.2, D4.3)Communication primitives in WP6 (D6.1)			3) 6.1)		
Linked KPIs	K-B-01: programmer effort for overlay network K-B-02: network bandwidth used K-B-13: latency at interested peers K-B-17: security verification effort				

Table 69: RF-WP3-MOD-03

ID	RF-WP3-API-01	Priority	Must
Name	WP3 - APIs - Logging an	d monitoring	
Description/Rationale	The TaRDIS APIs must provide facilities for reporting and monitoring the evolution of the running application, including allowing the application itself to query its past behaviour.		
Dependency	No dependency with othe	er requirements	
Traceability (backward)	RF-WP3-GEN-02 RF-EDP-02, RF-EDP-03 RF-ACT-06, RF-ACT-18, RF-ACT-19 RF-GMV-05, RF-GMV-07, RF-GMV-09, RF-GMV-10		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) Communication primitives and monitorisation in WP6 (D6.1, D6.2, D6.3)		
Linked KPIs	K-B-01: programmer effort for overlay network		

Table 70: RF-WP3-API-01

ID	RF-WP3-MOD-04	Priority	Must
Name	WP3 - Models - Specifying security-related requirements		



	The TaRDIS application model must support the specification of security and privacy requirements. For instance, the framework may provide some default built-in guarantees on the authentication
	and integrity of messages, and a programmer may further require
Description/Rationale	that some communications adopt specific encryption methods.
Dependency	WP4-Requirements
	RF-WP3-GEN-03
	RNF-EDP-02
Traceability (backward)	RF-TID-01, RF-TID-02, RF-TID-03, RF-TID-04
	Models and APIs in WP3 (D3.1, D3.3, D3.5)
	Communication primitives and monitorisation in WP6 (D6.1)
Traceability (forward)	Analyses and facilities for security in WP4 (D4.2, D4.3)
	K-B-01: programmer effort
Linked KPIs	K-B-17: security verification effort
	Table 71: BE M/R3 MOD 04

Table 71: RF-WP3-MOD-04

ID	RF-WP3-MOD-05	Priority	Must
Name	WP3 - Models - Specifyir	ng device ca	apabilities
Description/Rationale	The TaRDIS application model must support the specification of device capabilities, e.g. to ensure that a certain task is not attempted on swarm devices with insufficient resources.		
Dependency	No dependency with othe	er requireme	ents
Traceability (backward)	RF-WP3-GEN-04 RNF-TID-01 RF-TID-06 RF-ACT-03		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5)		
Linked KPIs	K-B-01: programmer effort for swarm complexity K-O-2: orchestration of heterogeneous devices K-O-5.2: interoperability		

Table 72: RF-WP3-MOD-05

ID	WP3-API-F-02	Priority	Must	
Name	WP3 - APIs - Reconfigura	ation capabilities		
	The TaRDIS APIs must p	provide facilities for ad	lapting the	
Description/Rationale	application behaviour dep	pending on specific ev	vents, such as	
	failures.			
Dependency	RF-WP3-API-01	RF-WP3-API-01		
RF-WP3-GEN-05				
Traceability (backward)	RF-TID-05, RF-TID-06			
	RF-ACT-02, RF-ACT-03, RF-ACT-17			
	Models and APIs in WP3 (D3.1, D3.3, D3.5)			
Traceability (forward)	Communication primitives and monitorisation in WP6 (D6.1,			
	D6.2, D6.3)			
Linked KPIs	K-B-01: programmer effort for overlay network			

Table 73: WP3-API-F-02



ID	WP3-API-F-03	Priority	Must	
Name	WP3 - APIs - Interfacing	with external services	5	
Description/Rationale	The TaRDIS API must include facilities for exchanging data with (possibly pre-existing) applications and frameworks that are not developed using the TaRDIS toolbox.			
Dependency	No dependency with othe	No dependency with other requirements		
Traceability (backward)	RF-WP3-GEN-06 RNF-TID-03 RF-ACT-05			
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5)			
Linked KPIs	K-O-5.2: interoperability			

#### Table 74: WP3-API-F-03

ID	RF-WP3-MOD-05	Priority	Must
Name	WP3 - Models - Graphica	I representation	
Description/Rationale	The TaRDIS application model must provide requirements and options for visualising an application-under-development using a graphical representation, e.g. based on state machines depicting how application components can interact with each other, and how the overall application state may evolve.		
Dependency	No dependency with other requirements		
Traceability (backward)	RNF-WP3-GEN-01 RF-ACT-10, RF-ACT-11		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5)		
Linked KPIs	K-O-2: development environment and verification		

Table 75: RF-WP3-MOD-05

ID	RF-WP3-IDE-01	Priority	Must	
Name	WP3 - IDE - Graphical re	presentation		
Description/Rationale	The TaRDIS IDE must support the visualisation of applications that follow the requirements of the TaRDIS application model (see RF-WP3-MOD-05).			
Dependency	RF-WP3-MOD-05	RF-WP3-MOD-05		
Traceability (backward)	RNF-WP3-GEN-01 RF-ACT-10, RF-ACT-11			
Traceability (forward)	IDE in WP3 (D3.2, D3.4,	D3.6)		
Linked KPIs	K-O-2: development environment and verification			

Table 76: RF-WP3-IDE-01

ID	RF-WP3-IDE-02	Priority	Must



Name	WP3 - IDE - Access to verification facilities
Description/Rationale	The TaRDIS IDE must provide simplified access to the verification tools and facilities included in the TaRDIS toolbox.
Dependency	WP4-Requirements
Traceability (backward)	RNF-WP3-GEN-02 RF-ACT-11
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) IDE in WP3 (D3.2, D3.4, D3.6) Analyses for communication, data consistency, security (D4.2, D4.3)
Linked KPIs	K-O-2: development environment and verification

Table 77: RF-WP3-IDE-02

ID	RF-WP3-GEN-01	Priority	Must		
Name	Diverse communication topologies				
	Description: The applicat	on components may	communicate using		
	various strategies and top	oologies, specifically	including broadcast		
	and P2P.				
Description/Rationale					
	Rationale: Distributed sw	••••••			
	both fully-decentralised a	•			
	components; the resulting		interaction topology		
	may range from flat to hie				
Dependency	No dependency with othe	er requirements			
	RF-EDP-01				
	RNF-TID-01				
	RF-ACT-10,				
Traceability (backward)	RF-ACT-11,				
	RF-ACT-17,				
	RF-ACT-21				
	RF-GMV-02				
	Models and APIs in WP3	(D3.1, D3.3, D3.5)			
Traceability (forward)	Secure messages in WP4	4 (D4.2, D4.3)			
	Communication primitives	s in WP6 (D6.1)			
	K-B-01: programmer effo	rt for overlay network			
Linked KPIs	K-B-02: network bandwid	th used			
	K-B-13: latency at interes	ted peers			
	K-B-17: security verificati	on effort			

Table 78: RF-WP3-GEN-01

ID	RF-WP3-GEN-02	Priority	Must
Name	Logging and monitoring of application activity and status		



Description/Rationale	Description: The application includes facilities for reporting and monitoring the behaviour and status of individual components, e.g. to observe the availability of devices, and track the evolution of a distributed computation and identify whether it is converging to (or diverging from) a desired result. Rationale: Logging and monitoring are essential for the assessment and debugging of complex distributed systems that cannot be fully
	statically verified. Moreover, the application itself may need to query previous logs to determine its future behaviour.
Dependency	No dependency with other requirements
Traceability (backward)	RF-EDP-02, RF-EDP-03 RF-ACT-06, RF-ACT-18, RF-ACT-19 RF-GMV-05, RF-GMV-07, RF-GMV-09, RF-GMV-10
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) Communication primitives and monitorisation in WP6 (D6.1)
Linked KPIs	K-B-01: programmer effort for overlay network

## Table 79: RF-WP3-GEN-02

ID	RF-WP3-GEN-03	Priority	Must	
Name	Security and privacy			
	Description: The application communicates data with varying degrees of sensitivity, leading to varying degrees of security and privacy requirements.			
Description/Rationale	Rationale: Distinguishing the sensitivity of data may help focusing the application development efforts. Low-sensitivity data may be communicated and stored using less-secure protocols with improved performance and ease of use for programmers — whereas the handling of high-sensitivity data may require additional effort.			
Dependency	No dependency with other requirements			
Traceability (backward)	RNF-EDP-02 RF-TID-01 ) RF-TID-02 RF-TID-03 RF-TID-04			
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) Communication primitives and monitorisation in WP6 (D6.1, D6.2, D6.3)			



	Analyses and facilities for security in WP4 (D4.2, D4.3)		
Linked KDIe	K-B-01: programmer effort		
Linked KPIs	K-B-17: security verification effort		

Table 80: RF-WP3-GEN-03

ID	RF-WP3-GEN-04	Priority	Must
Name	Combine devices with	different capab	ilities and/or roles
Description/Rationale	Description: The application must be aware of the capabilities of the deployment devices, and the role they play towards achieving the desired outcomes. Rationale: A heterogeneous swarm application may involve devices with varying capabilities (e.g. in terms of communication or computation) and may need to take advantage of these capabilities. The application may also need to know whether the capabilities of a device may be replaces with another.		
Dependency	No dependency with of	her requiremen	nts
Traceability (backward)	aceability (backward) RF-TID-01 RF-TID-06 RF-ACT-03		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5)		
Linked KPIs	K-B-01: programmer effort for swarm complexity K-O-5.2: interoperability		

Table 81: RF-WP3-GEN-04

ID	RF-WP3-GEN-05	Priority	Must
Name	Reconfiguration upon de	tection of relevant eve	ents
Description/Rationale	Description: The application may need to reconfigure its communication upon events of interest, e.g. failures, or swarm components joining/leaving.		
	Rationale: The reconfiguration may allow for better failure resilience, or better use of the available resources.		
Dependency	RF-WP3-GEN-02		
Traceability (backward)	RF-TID-05 RF-TID-06 ) RF-ACT-02 RF-ACT-03 RF-ACT-17		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5) Communication primitives and monitorisation in WP6 (D6.1, D6.2, D6.3)		



Linked KPIs	K-B-01: programmer effort for overlay network

Table 82: RF-WP3-GEN-05

ID	RF-WP3-GEN-06	Priority	Must
Name	Interfacing with pre-existi	ng middleware	and services
	Description: The application may need to interoperate with existing middleware and services.		
Description/Rationale	Rationale: Interoperability is a key requirement for applications that may not be developed from scratch or may need to access existing frameworks.		
Dependency	No dependency with other requirements		
Traceability (backward)	RNF-TID-03 RF-ACT-05		
Traceability (forward)	Models and APIs in WP3 (D3.1, D3.3, D3.5)		
Linked KPIs	K-O-5.2: interoperability		

#### Table 83: RF-WP3-GEN-06

ID	RNF-WP3-GEN-01	Priority	Must	
Name	Graphical representation	artefacts		
	Description: The application documentation must include visual			
	artefacts describing the behaviour of (part of) the applicatio			
	itself.			
Description/Rationale				
	Rationale: Graphical repr		-	
		-	o understand the intended	
	behaviour of the applicati	ion		
Dependency	No dependency with other requirements			
	RF-ACT-10			
	RF-ACT-11			
	RNF-TID-01			
Traceability (backward)	RF-ACT-10			
	RF-ACT-11			
	RF-ACT-17			
	RF-ACT-21			
	RF-GMV-02			
Traceability (forward)	Models and APIs in WP3	(D3.1, D3.	.3, D3.5)	
	IDE in WP3 (D3.2, D3.4,	D3.6)		
Linked KPIs	K-O-2: development environment and verification			

#### Table 84: RNF-WP3-GEN-01

ID	RNF-WP3-GEN-02	Priority	Must
Name	Verification of correctnes	S	



	Description: The application documentation must include evidence of the correctness of (part of) its components, obtained using verification methodologies (static or runtime).			
Description/Rationale	Rationale: Static and runtime verification (even on selected application components) can increase the reliability of the application, and can help focusing the debugging efforts in case of faults discovered after deployment.			
Dependency	WP4-Requirements			
Traceability (backward)				
	Models and APIs in WP3 (D3.1) Analyses for communication, data consistency, security (D4.2,			
Traceability (forward)	D4.3)			
Linked KPIs	K-O-2: development environment and verification			

Table 85: RNF-WP3-GEN-02

ID	RNF-WP3-GEN-03	Priority	Should
Name	ability to perform external effects in certain protocol state		
Description/ Rationale	In addition to offering actions that drive the state of the workflow forward, the TaRDIS toolbox also offers facilities for registering certain external effects to be executed once a workflow is in a given state. The effect is only executed once.		
Dependency	RF-WP6-G-03		
Traceability	N/A		
KPIs	N/A		

## Table 86: RNF-WP3-GEN-03

ID	RNF-WP3-GEN-04	Priority	Should	
Name	ability to automatically execute compensating actions after conflict resolution			
Description/	In case the event(s) that led to the	execution of an exter	nal effect based on a	
Rationale	reached workflow state become ir	valid (e.g. when eve	nt traces are merged	
	from both sides of a healing network partition), the now invalidated effects are			
	compensated by executing pre-registered effects. The compensation is only			
	executed once, and only in case the corresponding effect has been executed			
	prior.			
Dependency	N/A			
Traceability	N/A			
KPIs	N/A			

Table 87: RNF-WP3-GEN-04



# **WP4-Requirements**

ID	RNF-WP4-PROP-01	Priority	Must	
Name	WP4 - Properties - Communications Behaviour			
	Description: The TaRDIS models must adhere to desirable communication behavioural properties, including communication safety, deadlock freedom, termination, non-termination, liveness, and protocol conformance and completion.			
Description/Rationale	Rationale: To determine whether systems described using the TaRDIS models satisfy desirable communication behavioural properties, it is crucial to identify and specify these innovative properties, which are formulated based on behavioural types, particularly			
Dependency	No dependency with other requirements			
	Analyses for communicat RF-GMV-03 RNF-WP3-GEN-02 RF-WP3-MOD-02 RF-WP3-IDE-02	tions behav	iour in WP4 (D4.1)	
Traceability (backward)	RF-ACT-10			
Traceability (forward)	RNF-WP4-VER-01 Analyses for communications behaviour in WP4 (D4.2, D4.3)			
Linked KPIs	inked KPIs K-O-2: development environment and verification Table 88: RNF-WP4-PROP-01			

ID	RNF-WP4-PROP-02	Priority	Must	
Name	WP4 - Properties - Data	Management and Rep	olication	
	Description: The TaRDIS	models must guaran	tee the	
	maintenance of data convergence and integrity properties,			
Description/Rationale	including state convergence and data integrity preservation.			
	Rationale: To express pro	operties like consister	ncy levels to	
	ensure invariants on the	data, an assertion lan	guage is needed.	
Dependency	No dependency with other requirements			
	Analyses for data management in WP4 (D4.1)			
	RNF-WP3-GEN-02			
Traceability (backward)	RF-WP3-MOD-02			
	RF-WP3-IDE-02			
	RF-ACT-08			
Tracachility (forward) RNF-WP4-VER-02				
Traceability (forward)	Analyses for data management in WP4 (D4.2, D4.3)			
Linked KPIs	K-O-2: development environment and verification			

Table 89: RNF-WP4-PROP-02



ID	RNF-WP4-PROP-03 Priority Must			
Name	WP4 - Properties - Security and Privacy			
	Description: TaRDIS must ensure that classified information is not leaked to, and trusted information is not influenced by, unauthorised entities.			
Description/Rationale	Rationale: The TaRDIS model must allow that developers can specify which data is confidential and trusted, respectively, and this property is about guaranteeing an appropriate non- interference notion: roughly speaking, a difference on confidential data does not lead to an observable difference in non-confidential data, and a difference in untrusted data cannot lead to a (significant) difference in trusted data. In general, however, we can only achieve a weaker form of non- interference in practice (similar to static equivalence of intruder knowledge), because we allow for communication of data in an encrypted way (which breaks classical non-interference) and we do not require obscuring traffic mechanisms, potentially exposing some implicit flows.			
Dependency	Specification of policies and protocols as in RF-WP3-GEN-03			
Traceability (backward)	Analyses for Security in WP4 (D4.1) RF-EDP-01 RF-WP3-MOD-02			
Traceability (forward)	RNF-WP4-VER-03 RNF-WP4-VER-04 Analyses for Security in WP4 (D4.2, D4.3)			
Linked KPIs	K-O-2: development environment K-B-17: security verification effort			

Table 90: RNF-WP4-PROP-03

ID	RNF-WP4-PROP-04	Priority	Must	
Name	WP4 - Properties - Decen	tralised Machine Lea	rning Models	
	Description: The TaRDIS models must support desirable federated learning (FL) properties, including FL roles of agents, FL data privacy, FL message delivery, and FL clients equality.			
Description/Rationale	Rationale: Identifying and expressing properties for correct workflow orchestration in FL algorithms, including FL restricted resource usage on edge devices with different capabilities and/or roles.			
Dependency	RF-WP5-FL-ALG-05			



Traceability (backward)	Deployment and orchestration integration in WP4 (D4.1) RF-TID-06 (FL workflow orchestration) RF-ACT-14 (FL restricted resource usage) RF-GMV-02 (FL restricted resource usage) RF-WP3-MOD-02 (Verification of application correctness) RF-WP3-MOD-05 (Specifying device capabilities) RF-WP5-FL-ALG-01 (Implemented FL algorithms) WP5-RF-RLALG-2 (Centralised AI orchestration) WP5-RF-RLALG-3 (Decentralised AI orchestration) RNF-WP3-GEN-02 (Verification of correctness)
Traceability (forward)	RNF-WP4-VER-05 (Verification - FL Orchestration) Deployment and orchestration integration in WP4 (D4.2, D4.3)
Linked KPIs	K-O-2: development environment and verification K-O-3: decentralised intelligence <i>Table 91: RNF-WP4-PROP-04</i>

ID	RNF-WP4-VER-01 Priority Must			
Name	WP4 - Verification - Communications Behaviour			
	Description: The TaRDIS toolbox must provide facilities to verify the correctness of identified communication behavioural properties.			
Description/Rationale	Rationale: The verification and validation of communication behavioural properties involves the development of innovative techniques based on behavioural types, particularly Typestates and (Multiparty) Session Types. Based on behavioural type system methodologies, the type-level behavioural properties that align with the scope of the TaRDIS APIs are verified for correctness utilising exhaustive static reasoning methods, such as static type checking and model checking. These techniques are further extended to support an event-based setting where system entities are heterogeneous, may dynamically join, leave, fail, and not have complete views of the system.			
Dependency	RNF-WP4-PROP-01			
Traceability (backward)	Analyses for communications behaviour in WP4 (D4.1) RNF-WP4-PROP-01 RNF-WP3-GEN-02 d) RF-GMV-03 RF-WP3-MOD-02 RF-WP3-IDE-02 RF-ACT-10			
Traceability (forward)	Analyses for communications behaviour in WP4 (D4.2, D4.3)			
Linked KPIs	K-O-2: development environment and verification			

Table 92: RNF-WP4-VER-01



ID	RNF-WP4-VER-02	Priority	Must	
Name	WP4 - Verification - Distributed Data Management			
	Description: The TaRDIS data convergence and replication.		•	
Description/Rationale	Rationale: The verificati management properties i techniques based on rea state of replicas and achieve/ensure consister Based on the annotation used by applications buil consistency correctness such as symbolic executi	nvolves the deve asoning statically providing a dency. s to add to the T t using these AF , utilising static	elopment of innovative (symbolically) on the ecision procedure to FaRDIS APIs, the data PIs can be checked for c reasoning methods,	
Dependency	RNF-WP4-PROP-02		-	
	Analyses for data manag RNF-WP4-PROP-02 RNF-WP3-GEN-02 RF-WP3-IDE-02 RF-WP3-MOD-02	ement in WP4(	D4.1)	
Traceability (backward)	RF-ACT-08			
Traceability (forward)	Analyses for data manag	ement in WP4 (I	D4.2, D4.3)	
Linked KPIs	K-O-2: development envi		rification	

Table 93: RNF-WP4-VER-02

ID	RNF-WP4-VER-03	Priority	Must	
Name	WP4 - Verification - Information flow			
	Description: The TaRDIS verify the confidentiality a application.		st provide facilities to constraints specified in an	
Description/Rationale	Rationale: To identify illegal flows of information, data needs to express usage policies and we need approaches to control information flow and check compliance with the policies. This information flow analysis includes the check that also the generation and reception of events do not constitute illegal flows either.			
Dependency	Specification of policies and protocols as in RF-WP3-GEN-03			
Traceability (backward)	Analyses for security in WP4 (D4.1) RF-EDP-01 RNF-WP4-PROP-03 RE-WP3-MOD-02			



	RNF-WP3-GEN-02
	RF-WP3-GEN-03
	RF-ACT-10
	RF-ACT-20
Traceability (forward)	Analyses for security in WP4 (D4.2, D4.3)
	K-O-2: development environment and verification
Linked KPIs	K-B-17: security verification effort
	K-B-19: properties verified automatically
	Table 04: DNE WRA VED 02

Table 94: RNF-WP4-VER-03

ID	RNF-WP4-VER-04	Priority	Must	
Name	WP4 - Verification - Protocols			
	Description: The TaRDIS communication protocols negotiating and distributin implementing administrat infrastructure.	used for se	cure transmission of data, aphic material, as well as	
Description/Rationale	Rationale: TaRDIS shall ship with a number of protocols that can be used as channels for disseminating events, and developers can also extend this library of channels with new protocols. The TaRDIS toolbox shall allow for verifying these channel protocols, as well as the properties for their secure composition with the information flow of the applications, and their cryptographic compliance. This can include advanced protocols, such as key exchange and distribution protocols, protocols for adding to, or removing from, members to a group of recipients, as well as mechanisms for accountability and high resilience and recovery.			
Dependency	Specification of policies and protocols as in RF-WP3-GEN-03 Interfacing with pre-existing middleware and servicesRF-WP3- GEN-06			
Traceability (backward)	Analyses for security in WP4 (D4.1) RF-EDP-01 RNF-WP4-PROP-03 RF-WP3-MOD-02 RF-WP3-MOD-03 ) RF-WP3-MOD-04 RF-WP3-IDE-02 RF-WP3-GEN-01 RNF-WP3-GEN-02 RF-WP3-GEN-03 RF-ACT-20			
Traceability (forward)	Analyses for security in WP4 (D4.2, D4.3)			
Linked KPIs	K-O-2: development environment and verification K-B-17: security verification effort K-B-19: properties verified automatically			

#### Table 95: RNF-WP4-VER-04

ID	RNF-WP4-VER-05	Priority	Must	
Name	WP4 - Verification - Federated Learning Orchestration			
	Description: The TaRDIS toolbox must provide facilities to verify			
	federated learning orchestration.			
Description/Rationale	Rationale: Verification and validation of identified FL properties			
	based on CSP calculus for	or modelling and I	PAT model checker for	
	verification, which will be	integrated with M	ultiparty Session Types	
	newly developed techniq	ues.		
Dependency	RNF-WP4-PROP-04 (Pro	operties - decentra	alised ML models)	
	Deployment and orchestration integration in WP4 (D4.1)			
	RNF-WP4-VER-01 (Verification - communications behaviour)			
	RNF-WP4-PROP-04 (Properties - decentralised ML models)			
	RF-TID-06 (FL workflow orchestration)			
	RF-ACT-14 (FL restricted resource usage)			
Traceability (backward)	RF-GMV-02 (FL restricted resource usage)			
	RF-WP3-MOD-02 (Verification of application correctness)			
	RF-WP5-FL-ALG-01 (Implemented FL algorithms)			
	WP5-RF-RLALG-2 (Centralised AI orchestration)			
	WP5-RF-RLALG-3 (Decentralised AI orchestration)			
	ness)			
Traceability (forward)	Deployment and orchestration integration in WP4 (D4.2, D4.3)			
Linked KPIs	K-O-2: development environment and verification			
K-O-3: decentralised intelligence				

Table 96: RNF-WP4-VER-05

ID	RNF-WP4-VER-06	Priority	could	
Name	static analysis of local agent conformance to swarm protocol role			
Description/	An agent implemented as an interr	An agent implemented as an internal TaRDIS service allows fully automatic		
Rationale	verification of conformance to its role in the designed swarm protocol.			
Dependency	N/A			
Traceability	N/A			
KPIs	N/A			

Table 97: RNF-WP4-VER-06



# **WP5-Requirements**

An externation called for Description/ for the A Rationale unsuper model,	f provided FL algorithms				
Called for Description/ for the Rationale unsupe model,	and a labor that a <b>f</b> from a labor stand 📼 👘 👘 👘				
Rationale unsupe model,	An extendable list of implemented Federated Learning algorithms, that can be called for the use cases. For example, anomaly detection with pseudo-labels				
model,	for the Actyx use case. As the list of FL algorithms also needs to support				
	unsupervised methods without labels available at the moment of training the				
models	model, this will also be provided. These algorithms will enable the training of				
	models, that are of interest for solving the specified problems.				
Dependency RF-WP	/ RF-WP5-FLALG-3				
RF-EDI	P-3				
Tracability RNF-TI	D-02				
Traceability RF-AC	T-13				
(backward) RF-GM	V-01				
RF-GM	RF-GMV-02				
Traceability The FL	The FL ML algorithms for these tasks will be developed in the overall WP5 as				
(forward) part of a	part of all tasks and will be demonstrated in WP7.				
KPIs K-O-3.3	K-O-3.3 Reduced transmission overhead by 20% (wrt FedAvg)				

#### Table 98: RF-WP5-FLALG-01

ID	RF-WP5-FLALG-02	Priority	Must
Name	A support for incremental model retraining w	ithin FL algorithms	
Description/ Rationale	The list of provided FL algorithms naturally supports pre-trained models. Additionally, incremental model retrain is supported, in order to provide incremental model enhancement.		
Dependency	RF-WP5-FLALG-1		
Traceability (backward)	RF-ACT-12 RF-ACT-16		
Traceability (forward)	The pre-trained models and the incremental will be developed within Task 5.1 and demor		FL algorithms
KPIs	N/A		

#### Table 99: RF-WP5-FLALG-02

ID	RF-WP5-FLALG-03	Priority	Must
Name	A data preprocessing facility for FL		
Description/ Rationale	A facility that transforms the raw data into a format that is suitable for analysis by the ML model. It needs to support common data preparation techniques, such as profiling, cleansing, transformation, but also additional features, such as pseudo-labeling. This will be supported for the FL algorithms developed in Flower framework, within Task 5.1.		
Dependency	RF-WP5-FLALG-1		
L raceability	RF-ACT-12 RF-ACT-13 RF-ACT-16		
Traceability (forward)	The data preprocessing facility will be imple implemented in Flower framework, within Ta		
KPIs	N/A		

Table 100: RF-WP5-FLALG-03



ID	RF-WP5-FLALG-04	Priority	Must
Name	A support for ML inference and evaluation		
Description/	A possibility to gain inference on the relevant data for the trained model and		
Rationale	evaluate by using a corresponding metric.		
Dependency	RF-WP5-FLALG-1		
Traceability	RF-ACT-13		
(backward)	RNF-TID-04		
Traceability	Inference and evaluation will be implemented	within Task 5.1, for	the
(forward)	developed FL algorithms, and demonstrated in WP7.		
KPIs	K-O-3.3 Reduced transmission overhead by 20% (wrt FedAvg)		

Table 101: RF-WP5-FLALG-04

ID	RF-WP5-FL-ALG-05	Priority	Must
Name	Support diverse ML algorithms in decentralized frameworks		
	Several ML algorithms must be su	pported by the Tardis toolkit, i	including
	supervised learning algorithms (e.g., for regression and classification tasks,		
Description/	well as for time-series forecasting), unsupervised learning algorithms (e.g.,		
Rationale	anomaly detection tasks) and reinforcement learning algorithms (e.g.,		
	decision-making for resource optin	nization). All these algorithms	must be
	supported in their federated versio	n during the training phase.	
	RF-WP5-FLALG-1		
	RF-WP6-CP-17		
Dependency	RF-WP6-CP-19		
	RF-WP6-TA-38		
	RF-WP6-SA-27		
	RF-EDP-01 (time-series forecastin	g)	
Traceability	RF-EDP-02 (DRL for energy mana	gement)	
(backward)	RF-ACT-12 and RF-ACT-13 (anon	naly detection)	
	RF-GMV-01 (orbit estimation)		
Traceability	The ML algorithms for these tasks will be developed in the overall WP5 as part		
(forward)	of all tasks and will be demonstrated in WP7.		
KPIs	<ul> <li>At least 3 different ML algo</li> </ul>	rithms tailored to the Tardis u	se cases.
Table 102: RF-WP5-FL-ALG-05			

ID RF-WP5-FL-ALG-06 Priority Must Name Lightweight techniques for ML training and inference Since the Tardis framework is related to decentralized edge systems that include nodes with low processing and computational capabilities, we need to Description/ develop lightweight ML techniques in their federated mode. Thus, the Tardis Rationale toolkit must support lightweight methods for training and inference of ML models that reduce the computational complexity, while retaining the model accuracy and reducing the time required for model inference. **RF-WP5-FLALG-1** Dependency RF-WP6-TA-34 RF-WP6-TA-38 Traceability RF-EDP-01 (backward) RF-EDP-02 (ML models can run at edge devices in the smart home)



[			
	RNF-TID-02 (FL training does not impact the user experience)		
	RNF-TID-04 (FL training is energy-efficient)		
	RF-TID-08 (Split learning for faster inference)		
	RF-ACT-14 and RF-ACT-15 (ML models can run at resource-constrained		
	devices),		
	RF-GMV-01 (ML models can run at the satellite nodes)		
Traceability	The lightweight techniques will be developed in the task 5.3 of the WP5 and		
(forward)	will be demonstrated in WP7.		
	At least 3 different lightweight techniques (knowledge distillation, early-		
	exit, pruning) showcased in the Tardis use cases.		
	<ul> <li>Linked with K-B-07: FL training latency, K-B-08: FL storage/RAM</li> </ul>		
KPIs	requirements per node and <b>K-B-10</b> : FL accuracy		
	• Linked with objective KPIs: Reduced transmission overhead K-O-3.3,		
	Model reduction/compression K-O-3.4, Reduced model training time by		
	25% <b>K-O-3.5</b> .		

### Table 103: RF-WP5-FL-ALG-06

ID	RF-WP5-RLALG-01	Priority	Must
Name	A simulation environment for training of RL ag	gents	
Description/	Simulation environment connected to Python	to be used to train I	Reinforcement
Rationale	Learning agents for orchestration, specifically, Task Offloading.		
Dependency	RF-WP6-TA-38		
Traceability	N/A		
(backward)			
Traceability	The FL ML algorithms for these tasks will be	developed in the o	verall WP5 as
(forward)	part of all tasks and will be demonstrated in V	VP7	
KPIs	K-O-3.1		
	K-O-3.2		

## Table 104: RF-WP5-RLALG-01

ID	RF-WP5-RLALG-02	Priority	Must
Name	Centralized RL agent for task offloading		
Description/ Rationale	Centralized RL agent that performs task offloading as orchestration strategies.		
Dependency	RF-WP5-RLALG-1 RF-WP6-TA-38 RF-WP6-CP-16		
Traceability (backward)	RF-WP5-GEN-01		
Traceability (forward)	The FL ML algorithms for these tasks will be developed in the overall WP5 as part of all tasks and will be demonstrated in WP7.		
KPIs	K-O-3.1 K-O-3.2		

## Table 105: RF-WP5-RLALG-02

ID	RF-WP5-RLALG-03	Priority	Must
Name	Decentralized RL agent for task offloading		



Description/	Decentralized RL agent that performs task offloading as orchestration
Rationale	strategies.
Dependency	RF-WP5-RLALG-1,RF-WP6-TA-38, RF-WP6-CP-16
Traceability	RF-WP5-GEN-01
(backward)	
Traceability	The FL ML algorithms for these tasks will be developed in the overall WP5 as
(forward)	part of all tasks and will be demonstrated in WP7.
KPIs	K-O-3.1
1/1 12	K-O-3.2

Table 106: RF-WP5-RLALG-03

WP5 - A generic use case requirement proposition (a consolidation of toolbox requirements for WP5)

ID	RF-WP5-GEN-01	Priority	Must
	A list of provided FL and RL algorit		•
Name	methods, with a data preprocessin	• •	
	model retrain facilities, as well as N		
Description/ Rationale	An extendable list of implemented Federated Learning algorithms. The list of FL algorithms needs to support unsupervised methods, without labels available at the moment of training the model. The list of provided FL algorithms naturally supports pre-trained models. Additionally, incremental model retrain is supported, in order to provide incremental model enhancement. It also includes a facility that transforms the raw data into a format that is suitable for analysis by the ML model. It needs to support common data preparation techniques, such as profiling, cleansing, transformation, but also additional features, such as pseudo-labeling. A possibility to gain inference on the relevant data for the trained model and		
Dependency	evaluate by using a corresponding metric is also included. RF-WP5-FLALG-1 RF-WP5-FLALG-2 RF-WP5-FLALG-3 RF-WP5-FLALG-4 RF-WP5-RLALG-1 RF-WP5-RLALG-2 RF-WP5-RLALG-3		
Traceability (backward)	RF-EDP-3 RNF-TID-02 RF-ACT-13 RF-GMV-01 RF-GMV-02		
Traceability	The FL ML algorithms and features for these tasks will be developed in the		
(forward)	overall WP5 as part of all tasks and will be demonstrated in WP7.		
KPIs	K-O-3.1 K-O-3.2		

Table 107: RF-WP5-GEN-01



# **WP6-Requirements**

ID	RF-WP6-G-01	Priority	Must	
Name	Management of cryptographic ma	Management of cryptographic material by participant		
Description/	Secure primitives and authentica	tion require managing	g cryptographic	
Rationale	material (at least an identity, pote	entially verified by son	neone)	
Dependency	No dependency with other requir	ements		
	RF-EDP-02			
Traceability	RF-TID-01			
(backward)	RF-TID-02			
	RF-ACT-20			
	RF-WP6-CP-16			
Traceability	RF-WP6-CP-17			
(forward)	RF-WP6-SA-25			
	RF-WP6-MA-04			
KPIs	K-U-03			
K-B-17				

## Table 108: RF-WP6-G-01

ID	RF-WP6-G-02	Priority	Must
Name	Support for (Android) Mobile Clier	nts	
Description/ Rationale	There should be support that allows client-side lightweight components from TaRDIS to be executed in mobile devices (this allows for instance mobile clients to interact with the FLaaS middleware).		
Dependency	No dependency with other requirements		
Traceability (backward)	RNF-TID-03		
Traceability (forward)	N/A		
KPIs	K-O-1.1		

## Table 109: RF-WP6-G-02

ID	RF-WP6-G-03	Priority	Must
Name	Exactly Once External Adaptors		
	Essential software components th	nat are part of a TaRD	IS system must be
Description/	ensured to be replicated and avai	lable even during net	work partitions,
Rationale	ensuring that they provide full fun	ctionality in all conditi	ons (though possibly
	with reduced consistency guarantees during network partitions).		
Dependency	No dependency with other requirements		
Traceability	RF-ACT-03		
(backward)	NF-ACT-03		
Traceability	N/A		
(forward)	N/A		
KPIs	K-O-4.3		
115	K-O-5.3		

## Table 110: RF-WP6-G-03

ID		RF-WP6-MA-04	-MA-04 Priority Must	
Name		Authenticated Decentralized Membership Abstractions		;
Funded by the European Union			© 2023-2025	TaRDIS Consortium

Description/ Rationale	There should be membership abstractions that only allow authenticated participants to join the decentralized network.
Dependency	RF-WP6-G-01 RF-ACT-22
Traceability (backward)	RF-TID-01 RF-TID-02
Traceability (forward)	N/A
KPIs	K-U-03 K-B-01 K-B-17

## Table 111: RF-WP6-MA-04

ID	RF-WP6-MA-05	Priority	Must
Name	Dynamic Self-Managed Overlay	networks	·
Description/	There should be membership a	bstractions that	can adapt themselves to
Rationale	changes in the participants of the	e system without	human intervention.
Dependency	No dependency with other requir	ements	
Traceability	RF-TID-05		
(backward)	RF-ACT-17		
(Dackwaru)	RNF-GMV-01		
	RF-WP6-MA-06		
Traceability	RF-WP6-MA-13		
(forward)	RF-WP6-MA-09		
	RF-WP6-MA-10		
KPIs	K-B-01		
	K-B-11		
	K-O-1.3		
K-O-4.1			

## Table 112: RF-WP6-MA-05

ID	RF-WP6-MA-06	Priority	Must
Name	Biased Dynamic Self-Managed M	lembership Abstraction	ons
Description/ Rationale	There should be membership abstractions where the relationship between peers (i.e., neighboring relationships) can be biased given some criteria defined by the TaRDIS application logic.		
Dependency	No dependency with other requirements		
Traceability (backward)	RF-EDP-02 RF-TID-05 RF-WP6-MA-06		
Traceability (forward)	N/A		
KPIs	K-B-01 K-B-11 K-O-1.3 K-O-4.1		

Table 113: RF-WP6-MA-06



ID	RF-WP6-MA-07	Priority	Must
Name	Location Aware Dynamic Self-Managed Membership Abstractions		
Description/ Rationale	There should be membership abstractions where the relationship between peers (i.e., neighboring relationships) are biased based on the geographical proximity of devices		
Dependency	No dependency with other requirements		
Traceability (backward)	RF-EDP-02 RF-WP6-MA-06		
Traceability (forward)	N/A		
KPIs	K-B-01 K-B-11 K-B-13 K-O-1.3 K-O-4.1 K-U-10		

## Table 114: RF-WP6-MA-07

ID	RF-WP6-MA-08	Priority	Should	
Name	Isolation between different mem	Isolation between different membership abstractions		
Description/ Rationale	Multiple TaRDIS applications should be able to run at the same time on shared infrastructure using different instances of membership abstractions, in a way that the logic from one TaRDIS application should not be able to observe or modify the membership information belonging to another TaRDIS application.			
Dependency	RF-WP6-MA-04			
Traceability (backward)	RF-ACT-21			
Traceability (forward)	N/A			
KPIs	K-B-01 K-B-11 K-O-1.3 K-O-4.1 K-U-03			

Table 115: RF-WP6-MA-08

ID	RF-WP6-MA-09	Priority	Must
Name	Hierarchical Dynamic Self-Managed Membership Abstractions		
Description/ Rationale	There should be membership abstractions where the relationship between peers (i.e., neighboring relationships) define a hierarchy based on some peer criteria that can be provided by the application (e.g., computational power)		
Dependency	No dependency with other requirements		



Traceability (backward)	RF-WP6-MA-06 RF-TID-05
Traceability (forward)	N/A
	K-B-01
KPIs	K-B-11
NF15	K-O-1.3
	K-O-4.1

#### Table 116: RF-WP6-MA-09

ID	RF-WP6-MA-10	Priority	Must
Name	Cluster-Based Dynamic Self-Managed Membership Abstractions		
Description/ Rationale	There should be membership abstractions where the relationship between peers (i.e., neighboring relationships) automatically emerge clusters of nodes (i.e., cliques connected between them) based on an application-specific property. Cliques should behave as (soft) virtual nodes that then connect among them using another overlay strategy.		
Dependency	No dependency with other requ	uirements	
Traceability (backward)	RF-WP6-MA-06 RF-TID-05 RNF-TID-02		
Traceability (forward)	RF-WP6-MA-11		
KPIs	K-B-01 K-B-11 K-B-13 K-O-1.3 K-O-4.1 K-U-10		

Table 117: RF-WP6-MA-10

ID	RF-WP6-MA-11	Priority	Must
Nama	Administrative Domain Clusters emerge from Dynamic Self-Managed		
Name	Membership Abstractions		
	There should be cluster-based	membership abs	tractions where the
	relationship between peers (i.e.	, neighboring rela	ationships) allow the
Description/	creation of clusters of nodes ba	sed on the admir	nistrative domain of those
Rationale	nodes, in particular, user-devices that belong to the same use should form		
	a cluster of nodes, where coordination and load-balancing mechanisms		
	can be used.		
Dependency	No dependency with other requirements		
Traccobility	RF-WP6-MA-10		
Traceability	RF-TID-05		
(backward)	RNF-TID-02		
Traceability	N//A		
(forward)	N/A		
Funded	by Daga 00 of 1		2025 ToPDIS Consortium



KPIs	K-B-01 K-B-11 K-O-1.3 K-O-4 1	
	K-O-4.1	

#### Table 118: RF-WP6-MA-11

ID	RF-WP6-MA-12	Priority	Should
Name	Local global information about ac	tive elements in the s	swarm
Description/ Rationale	There should be a membership abstraction that provides each process in a swarm with a best-effort full view of the current system membership although that view might be temporarily incorrect. Such mechanisms should provide eventual accuracy, meaning that after a long enough period without changes to the swarm membership, all processes should have the same view of the system.		
Dependency	No dependency with other requirements		
Traceability	RF-ACT-18		
(backward)			
Traceability (forward)	N/A		
KPIs	K-O-4.1		

#### Table 119: RF-WP6-MA-12

ID	RF-WP6-MA-13	Priority	Must
Name	Swarm Self-Configuration		
Description/ Rationale	There should be abstractions that membership management abstractions can use, where the developer does not need to actively configure runtime aspects (such as the contact node) for the node to start and join the swarm, even if this is limited to local area networks.		
Dependency	No dependency with other requirements		
Traceability (backward)	RF-ACT-22		
Traceability (forward)	N/A		
KPIs	K-O-4.1		

#### Table 120: RF-WP6-MA-13

ID	RNF-WP6-MA-14	Priority	Must
Name	Scalable Decentralized Members	hip Abstractions	
Description/ Rationale	There must be decentralized (plain topology) decentralized membership abstractions that support the operations of TaRDIS applications. This implies that the operational cost of these abstractions must grow sub- linearly with the size of the system.		
Dependency	No dependency with other requirements		
Traceability (backward)	RNF-TID-01 RNF-EDP-01 RNF-ACT-01 RNF-GMV-01		



Traceability (forward)	RF-WP6-MA-04
KPIs	K-B-11 K-O-1.3

## Table 121: RF-WP6-MA-14

ID	RNF-WP6-MA-15	Priority	Must	
Name	Always Available Membership Ab	Always Available Membership Abstractions		
Description/	There must be distributed member	ership management a	bstractions that are	
Rationale	always available.			
Dependency	No dependency with other requirements			
Traceability	RF-ACT-01			
(backward)				
Traceability	N/A			
(forward)	N/A			
KPIs	K-B-04			

## Table 122: RF-WP6-MA-15

ID	RF-WP6-CP-16	Priority	Must
Name	Point-to-Point Secure Communi	cation Primitive	S
Description/	Point-to-point Communication P	rimitives providi	ing data privacy and
Rationale	integrity.		
Dependency	No dependency with other requi	rements	
	RF-TID-01		
Traceability	RF-TID-02 RNF-WP4-PROP-03		
(backward)	RNF-WP4-VER-03		
	RNF-WP4-VER-04		
Traceability	N/A		
(forward)	IN/A		
	K-U-03		
KPIs	K-B-02		
	K-B-17		

## Table 123: RF-WP6-CP-16

ID	RF-WP6-CP-17	Priority	Must
Name	Point-to-Multipoint Secure Comm	unication Primitives	
Description/	Point-to-multipoint Communication	on Primitives that pro	vide data privacy and
Rationale	integrity.		
Dependency	RF-WP5-FL-ALG-05 (the implem	entation of federated	d learning needs
Dependency	secure and reliable communication	ons between server-	clients/swarm nodes)
	RF-TID-01		
Traceability	RF-TID-02		
(backward)	RNF-WP4-PROP-03		
(Dackwaru)	RNF-WP4-VER-03		
	RNF-WP4-VER-04		
Traceability			
(forward)			



	K-U-03	I
KPIs	К-В-02	
	К-В-17	

#### Table 124: RF-WP6-CP-17

ID	RF-WP6-CP-18	Priority	Should
Name	Communication primitives that pr	ovide privacy	·
Description/ Rationale	Some participants in TaRDIS applications (e.g., clients) should be able to input data into the application in a way that the system recognizes the origin as a valid client but without disclosing the client identity.		
Dependency	No dependency with other requirements		
Traceability (backward)	RF-TID-02 RF-TID-03		
Traceability (forward)	N/A		
KPIs	K-U-03 K-B-02 K-B-17		

## Table 125: RF-WP6-CP-18

ID	RF-WP6-CP-19	Priority	Must
Name	Reliable Point-to-multipoint comm	nunication primitives	
	One swarm member can send a	message to a set of s	warm members, be
Description/	they connected directly or indirect	tly, or be they only rea	achable at a later
Rationale	time. This allows a member to emit an event trusting that it will eventually		
	be seen by all non-failing participants in a common protocol.		
Dependency	RF-WP5-FL-ALG-05		
Traceability	RF-ACT-01 RF-ACT-02		
(backward)			
Traceability	N/A		
(forward)			
KPIs	K-B-04		

## Table 126: RF-WP6-CP-19

ID	RF-WP6-CP-20	Priority	Should
Name	Isolation between different comm	unication abstraction	s
Description/ Rationale	Multiple TaRDIS applications should be able to run at the same time on shared infrastructure using different instances of communication abstractions, in a way that the logic from one TaRDIS application should not be able to observe or modify communications belonging to another TaRDIS application.		
Dependency	RF-WP6-MA-08		
Traceability (backward)	RF-ACT-21		
Traceability (forward)	N/A		
KPIs	K-B-17		

Table 127: RF-WP6-CP-20



ID	RNF-WP6-CP-21	Priority	Must
Name	Real-time compatible point-to-mu	Itipoint communication	n primitives
Description/ Rationale	Point-to-multipoint communication primitives that can deliver messages within an acceptably low configurable delay for up to 5000 different nodes in the system.		
Dependency	No dependency with other requirements		
Traceability	RF-EDP-01		
(backward)	RNF-ACT-02		
Traceability (forward)	N/A		
KPIs	K-B-13		

#### Table 128: RF-WP6-CP-21

ID	RNF-WP6-CP-22	Priority	Must
Name	Real-time compatible point-to-point	nt communication prin	nitives
Description/ Rationale	Point-to-point communication primitives that can deliver messages within an acceptably low configurable delay, or report suspicion of failure if not possible to confirm.		
Dependency	No dependency with other requirements		
Traceability	backward: RF-EDP-01 RNF-ACT-02		
(backward)	forward:		
Traceability (forward)	N/A		
KPIs	K-B-13		

## Table 129: RF-WP6-CP-22

ID	RNF-WP6-CP-23	Priority	Must
Name	Scalable Decentralized Point-to-N Abstractions	Multipoint Comn	nunication Primitives
Description/ Rationale	The per-node operational cost (i.e., overhead) of point-to-multipoint communication primitives must grow sub-linearly with the number of processes in the systems (i.e., system size).		
Dependency	No dependency with other requirements		
Traceability (backward)	backward: RNF-TID-01 RNF-EDP-01 RNF-ACT-01 RNF-ACT-05 RNF- GMV-01 forward:		
Traceability (forward)	N/A		
KPIs	K-B-11		

#### Table 130: RF-WP6-CP-23

ID	RNF-WP6-CP-24	Priority	Must
Name	Always Available Point-to-Multipoint Abstractions		
Description/	There must be point-to-multipoint decentralized communication		
Rationale	abstractions that are always available.		
Dependency	No dependency with other requirements		



Traceability (backward)	RF-ACT-01
Traceability (forward)	N/A
	K-U-11
KPIs	K-B-04
	K-B-05

## Table 131: RF-WP6-CP-24

ID	RF-WP6-SA-25	Priority	Must	
Name	Durable and Non-Forgeable Stor	Durable and Non-Forgeable Storage Service		
Description/	Storage service that is available	e for writing always,	providing (eventual)	
Rationale	durability and ensuring that data	a recorded there that	depends on multiple	
	participants is non-forgeable by o	one of these entities of	or third-parties. Some	
	of these solutions should also pro	ovide partial replication	n.	
Dependency	No dependency with other require	ements		
	RF-EDP-02			
Traceability	RF-ACT-06			
(backward)	RF-ACT-07			
	RF-ACT-08			
Traceability	N/A			
(forward)				
KPIs	К-О-4.2			
	K-B-12			

## Table 132: RF-WP6-SA-25

ID	RF-WP6-SA-26	Priority	Should
Name	Isolation between applications us	ing same storage abs	stractions
	If a distributed storage abstraction	n is supporting multip	le applications at the
Description/	same time (either with dedicated	infrastructure or direct	ctly at clients) logic
Rationale	from one TaRDIS application sho	uld no be able to obs	erve or modify data
	belonging to another TaRDIS applications		
Dependency	No dependency with other requirements		
Traceability	RF-TID-04		
(backward)	RF-ACT-21		
Traceability	N/A		
(forward)	N/A		
KPIs	K-B-17		

## Table 133: RF-WP6-SA-26

ID	RF-WP6-SA-27	Priority	Must	
Name	Federated Learning Participants	ederated Learning Participants State must be managed		
Description/ Rationale	There should be a distributed storage abstraction that supports reliably and efficiently the state of participants in federated learning activities, including support fault-tolerance.			
Dependency	RF-WP5-FL-ALG-05			



Traceability (backward)	RF-TID-07
Traceability (forward)	N/A
KPIs	K-U-11

## Table 134: RF-WP6-SA-27

ID	RF-WP6-SA-28	Priority	Must
Name	Log-Based storage system with e	ventual consistency	
Description/ Rationale	There must be distributed storage solutions abstractions based on a log data model that enforce eventual consistency or strong eventual consistency.		
Dependency	No dependency with other requirements		
Traceability (backward)	RF-ACT-02		
Traceability (forward)	N/A		
KPIs	K-B-05		

#### Table 135: RF-WP6-SA-28

ID	RF-WP6-SA-29	Priority	Should	
Name	Available and durable blob-based	storage system		
Description/	There must be distributed sto	orage solutions abs	stractions based on	
Rationale	immutable blobs of data that are	available and durable	;	
Dependency	No dependency with other require	No dependency with other requirements		
Traceability	backward: RF-ACT-08			
(backward)	forward:			
Traceability				
(forward)				
KPIs	K-U-11 K-B-05			

#### Table 136: RF-WP6-SA-29

ID	RF-WP6-SA-30	Priority	Could
Name	Distributed data storage abstraction	on exposes telemetry	information.
Description/	Telemetry information should be p	provided (even if it rec	luires
Rationale	authentication) by components of	distributed storage al	ostractions.
Dependency	No dependency with other requirements		
Traceability (backward)	RF-WP6-TA-37		
Traceability (forward)	N/A		
KPIs	N/A		

Table 137: RF-WP6-SA-30



ID	RF-WP6-SA-31	Priority	Should
Name	Isolation between data segments	within a storage abst	tractions
	If a distributed storage abstraction	n supports different d	ata segments for a
Description/	single TaRDIS application (i.e., a	key space, data parti	ition, table, etc) there
Rationale	should be mechanisms that allow isolation on access policies for individual		
	data partitions.		
Dependency	No dependency with other requirements		
Traceability	RF-TID-04		
(backward)	RF-ACT-21		
Traceability	N/A		
(forward)	N/A		
KPIs	K-B-17		

# Table 138: RF-WP6-SA-31

ID	RNF-WP6-SA-32	Priority	Must
Name	Decentralized Storage Solutions	must be scalable	
Description/ Rationale	Independently of the architecture adopted by a TaRDIS integrated distributed storage management solution, it should be scalable, meaning that the operational cost of the abstraction (i.e., overhead) should grow sub-linearly with the number of components materializing or participating /interacting with the abstraction (i.e., usually what is called system size).		
Dependency	No dependency with other requirements		
Traceability (backward)	RNF-EDP-01 RNF-TID-01 RNF-GMV-01		
Traceability (forward)	N/A		
KPIs	K-B-11 K-O-4.2		

## Table 139: RF-WP6-SA-32

ID	RNF-WP6-SA-33	Priority	Must
Name	Always Available Distributed Stor	age Abstractions	
Description/	There must be distributed storage	e solutions abstractio	ns that are always
Rationale	available.		
Dependency	No dependency with other requirements		
Traceability	RF-ACT-01		
(backward)			
Traceability	N/A		
(forward)	IN/A		
KPIs	K-U-11		

#### Table 140: RF-WP6-SA-33

ID	RF-WP6-TA-34	Priority	Should
Name	Monitorization of memory and cor	mmunication for appli	cation components
Description/ Rationale	The communication cost and mer components that execute comput helpers used in split learning) sho	ations or part of com	outations (e.g.,



Dependency	RF-WP5-FL-ALG-06
Traceability	RF-TID-06
(backward)	KF-11D-00
Traceability	N/A
(forward)	IN/A
KPIs	K-B-12

## Table 141: RF-WP6-TA-34

ID	RF-WP6-TA-35	Priority	Must
Name	Durability of communication for a	uditing	
	All messages exchanged during t	he execution of a swa	arm protocol are
Description/	available afterwards for purposes	of auditing, further ar	nalysis, ML model
Rationale	training, etc. This does not need to be guaranteed by all swarm members, it		
	may be offered by specific archival nodes.		
Dependency	RNF-WP6-SA-33		
Traceability	RF-ACT-06		
(backward)	RF-ACT-07		
Traceability	N/A		
(forward)			
KPIs	K-B18 K-B-19		

## Table 142: RF-WP6-TA-35

ID	RF-WP6-TA-36	Priority	Must	
Name	Telemetry Acquisition should incl	ude membership info	mation	
Description/ Rationale	Telemetry information should include information about the system filiation even if with some amount of error. This should also include some flavour of fault detector for essential components.			
Dependency	No dependency with other requirements			
Traceability	RF-ACT-18	RF-ACT-18		
(backward)	R-TI-12			
Traceability (forward)	N/A			
KPIs	K-B-18 K-B-19			

## Table 143: RF-WP6-TA-36

ID	RF-WP6-TA-37	Priority	Should
Name	Telemetry Acquisition sho nodes	uld include storage co	ost for data management
Description/ Rationale	Telemetry information sho currently hosted on a devi distributed data managem	ce that participates in	
Dependency	RF-WP6-SA-30		
Traceability (backward)	RF-ACT-19		
Traceability (forward)	N/A		
KPIs	K-B-12		
Funded b			2025 ToPDIS Consortium

К-В-18	
К-В-19	

#### Table 144: RF-WP6-TA-37

ID	RF-WP6-TA-38	Priority	Should
Name	Monitorization of metrics to suppo	ort training of self-mar	nagement
Description/ Rationale	Telemetry acquisition solutions should be able to gather from individual TaRDIS application components local metrics to feed (decentralized) machine learning processes to govern self-management of applications.		
Dependency	RF-WP5-FL-ALG-05, RF-WP5-FL-ALG-06		
Traceability (backward)	N/A		
Traceability (forward)	RF-WP5-RLALG-1 RF-WP5-RLALG-2 RF-WP5-RLALG-3		
KPIs	N/A		

## Table 145: RF-WP6-TA-38

ID	RNF-WP6-TA-39	Priority	Must
Name	Scalable Telemetry Acquisition m	nechanisms	
Description/	The cost (CPU and communication	on) of telemetry acqui	sition mechanisms
Rationale	should be low and grow sub-linearly with the size of the system.		
Dependency	No dependency with other requirements		
Traceability	RNF-ACT-01		
(backward)			
Traceability	N/A		
(forward)			
KPIs	K-B-11		

## Table 146: RNF-WP6-TA-39

ID	RNF-WP6-TA-40	Priority	Must
Name	Always Available Telemetry Abstr	action	
Description/	Telemetry information should be a	always available to sy	stem managers,
Rationale	even if data is based on trends or	predictions with some	e amount of error.
Dependency	No dependency with other requirements		
Traceability	RNF-WP6-SA-33		
(backward)			
Traceability	N/A		
(forward)	N/A		
KPIs	K-U-11		

Table 147: RNF-WP6-TA-40



ID	RF-WP6-CM-41	Priority	Should
Name	Dynamically adapt the memory consumption and communication patterns		
Name	of application components		
	There should be a decentralized	orchestration mechai	nism that can at run
Description/	time adjust the communication st	rategy and memory o	consumption of
Rationale	application components that execute computations or part of computations		
	(e.g., helpers used in split learning).		
Dependency	RF-WP6-TA-34		
Traceability	RF-TID-06		
(backward)	RF-TID-00		
Traceability	N/A		
(forward)			
KPIs	K-B-11		

## Table 148: RF-WP6-CM-41

ID	RF-WP6-CM-42	Priority	Must
Name	Replication of essential agents		-
Description/ Rationale	Essential software components that are part of a TaRDIS system must be ensured to be replicated and available even during network partitions, ensuring that they provide full functionality in all conditions.		
Dependency	RNF-WP6-MA-15 RNF-WP6-SA-33 RNF-WP6-CM-44 RF-WP6-TA-36		
Traceability (backward)	RF-ACT-03 RF-TID-08 RF-GMV-06		
Traceability (forward)	N/A		
KPIs	K-B-04		

## Table 149: RF-WP6-CM-42

ID	RF-WP6-CM-43	Priority	Should	
Name	Configure Data Retention and Replication on Distributed Data			
Namo	Management Systems			
Description/	Based on rules and the capacity	of devices / ar	mount of data, there should	
Rationale	be mechanisms to dynamically m	anipulate the	data retention and number	
Rationale	of replicas per data item on distributed data management systems.			
Dependency	No dependency with other requirements			
Traceability	RF-WP6-TA-37			
(backward)				
Traceability	N/A			
(forward)				
KPIs	K-B-12			

### Table 150: RF-WP6-CM-43

ID	RNF-WP6-CM-44 Priority Must		Must
Name	Always Available Configuration Management		
Funded b the Europ	Page <b>109</b> of <b>1</b> 1	<b>7</b> © 2023-2025 1	aRDIS Consortium

Description/	There must be configuration management mechanisms that are always
Rationale	available.
Dependency	WP6-TA-NF-22
Traceability	RF-ACT-01
(backward)	RF-ACT-02
Traceability	N/A
(forward)	N/A
KPIs	K-U-11

Table 151: RF-WP6-CM-44



# 3 KPIs

In this section we describe and compile the KPIs tables. The tables below refer to the KPIs available in the TaRDIS Project [1] proposal, described as "KPIs Table: Objectives", coming from the previous D2.2, described as "KPIs Table: Use cases" and finally from D7.1 [3] depicted as "KPIs Table: Baseline". The first table below describes the template used for compiling the previous ones.

KPIs Table: [ Objectives, Use cases, Baseline]				
ID	Description	Source	Verified on	
K-[O or U or B ]-[Number]				
K- KPI O- Objectives U- Uses Case B- Baseline Number-sequential number	KPI short description.	Source of the KPI document and place.	Where the KPI will be verified.	

Table 152: KPI description



KPIs Table: Objectives				
ID	Description	Source	Verified on	
K-O-1.1	Expressivity of the language primitives covers the needs of use cases (at least 80% of the use cases code base is expressed using TaRDIS' languages and toolbox). Event-driven model effectively captures swarms'	O.1: Novel programming	WP6- Requirements	
K-O-1.2 K-O-1.3	complexity and scale. Decrease median development time by 25% (80% of industrial partners' devices are supported on a large-scale setting of up to 5000 devices).	model for heterogeneous swarms	UC-04-ACT- Requirements UC-02-TID- Requirements	
	Implementation and integration of analysis techniques for communication, security, and data integrity in at least 2 mainstream languages. Verification of at least 70% of the	O.2: Development environment for		
K-O-2.2	communication, security, and data integrity properties determined during use case requirements analysis.	correct-by- design heterogeneous	UC-04-ACT- Requirements	
K-O-2.3	Formal verification of 80% of TaRDIS runtime protocols	swarms		
K-O-3.1	Use TaRDIS ML to autonomously manage system operations (used by 50% of use cases). Improved edge orchestration (15% faster	-	WP5- Requirements UC-04-ACT- Requirements	
K-O-3.2	response time, 20% faster event processing throughput).	O.3: Decentralised		
K-O-3.3	Reduced transmission overhead by 20% (wrt FedAvg).	intelligence for heterogeneous		
K-O-3.4	Model reduction/compression increased by 15% (compared to NN model coding with ISO/IEC 15938-17 - NNR).	swarms		
K-O-3.5	Reduced model training time by 25% (compared to current KubeFlow training operator's implementation).			
K-O-4.1	Decentralised membership service (80% of industrial partners' devices are supported on a large-scale setting of up to 5000 devices).	O.4:	WP6- Requirements UC-04-ACT- Requirements	
K-O-4.2	Distributed data storage service, supporting partial replication (80% of industrial partners' devices are supported on a large-scale setting of up to 5000 devices).	Runtime support for distributed heterogeneous swarms		
K-O-4.3	Adapters for external tools and libraries used by industrial partners (50% of middleware systems).			
K-O-5.1	Industrial partners' devices are supported by the TaRDIS toolbox (80% of devices).	O.5:	WP3- Requirements	



	Programming languages used by industrial	Interoperable	WP6-
K-O-5.2	partners are supported by the TaRDIS toolbox	execution	Requirements
	(50% of languages).	environment	
	TaRDIS toolbox support for integration with		UC-04-ACT-
K-O-5.3	external middleware/systems, e.g. Kafka, Actyx		Requirements
	(50% of middleware/systems).		

Table 153: KPIs for the objectives



KPIs Ta	KPIs Table: Use cases			
ID	Description	Source	Verified on	
K-U-01	By using local renewable energy, less primary fossil energy from the grid will be required, thus reducing CO2 emissions.	UC #1: EDP	UC-01-EDP- Requirements	
K-U-02	Number of simulated citizens that take a more active role in the energy community and participate in Energy selling by using their own vehicles, with a target of 2 simulated citizens.		UC-01-EDP- Requirements	
K-U-03	Reduction in development months of a privacy preserving solution ~50%.	UC#2:	WP6-Requirements	
K-U-04	Utilisation of the available resources across the infrastructure ~99%.	TID	UC-02-TID- Requirements	
K-U-05	Achievable distributed on-board ODTS performances versus the classical centralised on- ground ODTS. Quantitatively measured against known ground ODTS performances. Same order of magnitude is expected.	UC #3: GMV	UC-03-GMV- Requirements	
K-U-06	Reduction of the use of computational resources: memory, CPU time, and energy. Quantitatively measured against known ground ODTS performances. Several orders of magnitude reduction are expected.		UC-03-GMV- Requirements	
K-U-07	Software process development metrics based on ECSS standard [81]. Quantitatively measured during the development process.		To be address UC-03-GMV- Requirements Under D2.3	
K-U-08	Software product metrics based on ECSS standards (e.g., lines of code LOC, percentage of comments).		To be address UC-03-GMV- Requirements Under D2.3	
K-U-09	Reduced effort for incremental solution adaptation (like adding a new manufacturing process or BI report); target is at least 50%.	UC #4: ACT	UC-04-ACT- Requirements	
K-U-10	Solution is running live with sub-second latency on at least twenty nodes.		UC-04-ACT- Requirements WP6-Requirements	
K-U-11	Local availability is >99% on every device.		UC-04-ACT- Requirements WP6-Requirements	

Table 154: KPIs specific for the use cases



KPIs Table: Baseline				
ID	Description	Source	Verified on	
K-B-01	Programmer effort for overlay	D7.1 [3]	UC-01-EDP-Requirements	
	Network bandwidth used	D7.1 [3]	UC-01-EDP-Requirements	
		D7.1 [3]	UC-02-TID-Requirements	
		B7.1 [0]	UC-04-ACT-Requirements	
K-B-03	Programmer confidence		WP3-Requirements	
			WP6-Requirements	
	Number of contingencies to be	D7.1 [3]	UC-04-ACT-Requirements	
K-B-04	handled		WP6-Requirements	
		D7.1 [3]	UC-04-ACT-Requirements	
K-B-05	Delay caused by conflict resolution		WP6-Requirements	
		D7.1 [3]	UC-02-TID-Requirements	
K-B-06	FL CPU usage for training		UC-03-GMV-Requirements	
N-D-00	TE CFO usage for training		UC-04-ACT-Requirements	
		D7.1 [3]	UC-02-TID-Requirements	
K-B-07	FL training latency		WP5-Requirements	
		D7.1 [3]	UC-02-TID-Requirements	
	EL storage/BAM requirements por	טי.ו [ט]	UC-02-11D-Requirements	
K-B-08	FL storage/RAM requirements per		UC-04-ACT-Requirements	
	node		-	
			WP5-Requirements	
	FL privacy	D7.1 [3]	UC-02-TID-Requirements	
K-B-10	FL accuracy	D7.1 [3]	WP5-Requirements	
		D7.1 [3]	UC-01-EDP-Requirements	
K-B-11	Scalability		UC-02-TID-Requirements	
			UC-04-ACT-Requirements	
			WP6-Requirements	
K-B-12	Data storage size needed per peer	D7.1 [3]	UC-04-ACT-Requirements	
			WP6-Requirements	
		D7.1 [3]	UC-01-EDP-Requirements	
K-B-13	Latency at interested peers		UC-04-ACT-Requirements	
	Latency at interested peers		WP3-Requirements	
			WP6-Requirements	
	Non-conformance rate	D7.1 [3]	UC-04-ACT-Requirements	
K-B-15	Programmer effort for conformance	D7.1 [3]	UC-04-ACT-Requirements	
K-B-16	Programmer & expert confidence	D7.1 [3]	UC-04-ACT-Requirements	
		D7.1 [3]	UC-01-EDP-Requirements	
			UC-02-TID-Requirements	
K-B-17	Security verification effort		WP3-Requirements	
			WP4-Requirements	
			WP6-Requirements	
K P 10	Property varification affert	D7.1 [3]	UC-04-ACT-Requirements	
r\-D-10			WP6-Requirements	
		D7.1 [3]	UC-04-ACT-Requirements	
K-B-19	Properties verified automatically		WP4-Requirements	
			WP6-Requirements	
K-B-18	Property verification effort		WP3-Requirements WP4-Requirements WP6-Requirements UC-04-ACT-Requirements WP6-Requirements UC-04-ACT-Requirements WP4-Requirements	

Table 155: KPIs Use cases baseline



Page 115 of 117 © 2023-2025 TaRDIS Consortium

# 4 CONCLUSION

In conclusion, within this deliverable, we synthesized the first version of the functional and nonfunctional requirements for TaRDIS, performed a review and update of the use cases, and presented the findings from this iteration. The information gathered throughout previous tasks, namely T7.1 and T2.1, enriches the depth and context of our current insights.

The main results achieved during this report include the construction of use case stories, along with the use case scenarios. This effort enabled the creation of the initial use case requirements, followed by a collaborative endeavour between industrial and academic partners to derive the first set of toolbox requirements capable of addressing this use case needs.

For future-proof and enhance its robustness of the project as-a-all, the ICT partners suggested the creation of a generic use case with generic requirements. This approach allows the toolbox to adapt to use cases from different fields besides those four within the consortium.

Our main challenges were to establish a common approach to the subject of this deliverable and unite the entire consortium to define the requirements, despite being in the early stages of the project. The result is our initial set of overall requirements, open to improvement and enhancement throughout the project. Nevertheless, we believe this comprehensive set already addresses the main project targets.

To finalize, the ongoing cooperation between technical teams and pilots' leaders is essential and encouraged throughout the project to identify the evolving requirements typical of ICT projects. Therefore, the initial requirements will be extended, and new requirements will be elicited with new iterations in later project phases, notably for the next task T2.3. We anticipate that this document will serve as a reference throughout the project's lifetime.



# REFERENCES

[1] Home - TaRDIS project. Retrieved December 15, 2023, from https://www.project-tardis.eu/

**[2]** D2.1: Report on the Initial Requirements Analysis from Co-Design. (2023). www.project-tardis.eu

[3] D7.1-Public deliverables - TaRDIS project. Retrieved December 20, 2023, from https://www.project-tardis.eu/deliverables/

