
`

D3.1: First Report on Programming
Model and APIs

Revision: 1.1

Work package WP3

Task T3.1, T3.2

Due date 31/Dec/2023

Submission date 9/Feb/2024

Deliverable lead Alceste Scalas (DTU)

Version 1.1

Authors

João Costa Seco (NOVA), Cláudia Soares (NOVA), Carla Ferreira (NOVA),
João Leitão (NOVA), António Ravara (NOVA)
Nicolas Kourtellis (TID), Dimitra Tsigkari (TID)
Carlos Reis (CMS), Carlos Coutinho (CMS)
Giovanni Granato (GMV)
Sebastian Alexander Mödersheim (DTU)
Ping Hou (OXF), Nobuko Yoshida (OXF)
Rafael Oliveira Rodrigues (EDP CNET), Manuel Pio Silva (EDP CNET)
Dušan Jakovetić (UNS), Lidija Fodor (UNS), Miroslav Zarić (UNS), Miroslav
Popovic (UNS)
Sotirios Spantideas (NKUA)
Roland Kuhn (ACT)

Internal Reviewers Ana Ribeiro (NOVA)
Amrita Prasad (Martel)

Abstract
This document reports the initial design of the programming model and APIs
which will be offered by the TaRDIS toolbox. The model and APIs are
illustrated using selected elements of the TaRDIS use case applications as a
reference.

Keywords decentralised programming toolbox, models, APIs

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

TaRDIS | D3.1: First report on programming model and APIs

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held responsible for
them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the
deliverable: R

Dissemination Level

PU Public, fully open, e.g. web (Deliverables flagged as public will be
automatically published in CORDIS project’s page) ✔

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

Page 2 of 74 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D3.1: First report on programming model and APIs

EXECUTIVE SUMMARY

The TaRDIS project aims at building a distributed programming toolbox to simplify the
development of decentralized, heterogeneous swarm applications deployed in diverse
settings. This report documents the current status in the design and development of the
TaRDIS programming model and APIs.

The main contribution of this deliverable is the first version of the TaRDIS programming
model and the first outline of the TaRDIS toolkit APIs. The deliverable explains how the
TaRDIS toolbox will support two main kinds of swarm components — called internal services
and perimeter services. To describe the intended use of the TaRDIS programming model and
APIs, this deliverable also outlines the APIs that will be made available by each work
package (as part of the TaRDIS toolbox), and how each use case plans to leverage them.
This contribution is a crucial stepping stone towards the project objectives, ensuring the
alignment of the various work packages.

Page 3 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

TABLE OF CONTENTS

1 INTRODUCTION 8
2 PROGRAMMING MODEL OVERVIEW AND DESIGN METHODOLOGY 9

2.1. The TaRDIS Programming Model and Toolbox Design 9
2.1.1. Internal TaRDIS Services, Swarm Protocols, and Workflows 10
2.1.2. Perimeter TaRDIS Services 12
2.1.3. Internal vs. Perimeter TaRDIS Services: Trade-Offs 13

2.2. TaRDIS Programming Model Extensions via DCR Graphs 13
2.2.1. An Overview of ReGraDa / DCR Graphs 14

2.3. How the TaRDIS Use Cases Will Leverage the TaRDIS Toolbox 16
2.4. Cross-Language Interoperability 17

3 OVERVIEW OF THE TaRDIS APIS 19
3.1. Initial API Sketches 19

3.1.1 Event-Driven API for Internal Services: Instantiating a TaRDIS Swarm 20
3.1.2 Event-Based Input-Output API for Perimeter Services 21
3.1.3 Machine Learning APIs 24

3.2. Analysis and Verification Facilities 24
3.2.1. Specifying and Verifying Communication Behaviour - T4.1 24
3.2.2. Specifying and Analysing Data Consistency - T4.2 27
3.2.3. Specifying and Analysing Security Properties - T4.3 29
3.2.4. Deployment and Orchestration Integration - T4.4 32

3.3. Artificial Intelligence and Machine Learning APIs 32
3.3.1. AI/ML Programming Primitives - T5.1 32
3.3.2. AI-Driven Planning, Deployment, and Orchestration - T5.2 34
3.3.3. Lightweight and Energy-Efficient ML Techniques - T5.3 43

3.4. Data Management and Distribution Primitives 44
3.4.1. Decentralised Membership and Communication APIs - T6.1 44
3.4.2. Decentralised Data Management and Replication APIs - T6.2 49
3.4.3. Decentralised Monitoring and Reconfiguration APIs - T6.3 51

4 OVERVIEW OF THE TaRDIS USE CASE APPLICATIONS 52
4.1. Actyx 52

4.1.1. Actyx App 0: Machine Requesting Maintenance 52
4.1.2. Actyx App 1: Maintenance Worker Tablet 53
4.1.3. Actyx App 2: Manager Dashboard 56
4.1.4. Actyx App 3: Real-Time Monitoring 58

4.2. EDP 58
4.2.1. Background and general objective of the Energy use case 58
4.2.2. Energy use case components and objectives 58
4.2.3. Working Principles 59
4.2.4. Requirements to TaRDIS 59
4.2.5. Scenarios 59

4.3. GMV 68

Page 4 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

4.3.1. Sequential (Centralised) Orbit Simulation Application 68
4.3.2. Distributed Simulation Application Based on PTB-FLA 69
4.3.3. Roadmap 69

4.4. Telefónica 69
4.4.1. Analyses for security (T4.3, Section 3.2.3) 70
4.4.2. AI/ML programming primitives (T5.1, Section 3.3) 70
4.4.3. Lightweight and energy-efficient ML library (T5.3, Section 3.3.3) 71
4.4.4. Decentralised membership and communication (T6.1, Section 3.4.1) 71
4.4.5. Decentralised monitoring and reconfiguration (T6.3) 72

5 CONCLUSION 73

Page 5 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

ABBREVIATIONS

API Application Programming Interface

AGV Automated Guided Vehicle

BDS-3 BeiDou 3rd Generation navigation satellite system

CDF Cumulative Distribution Function

DCR Dynamic Condition Relation

DER Distributed Energy Resources

DL Deep Learning

DNN Deep Neural Network

DP Differential Privacy

DRFL Deep Reinforcement Federated Learning

DSO Distribution System Operator

ERP Enterprise Resource Planning

FL Federated Learning

FLaaS Federated Learning as a Service

G2G Galileo 2nd Generation of satellites

HTTP Hypertext Transfer Protocol

IoT Internet of Things

ISL Inter-Satellite-Link

IP Internet Protocol

IPFS InterPlanetary File System

JS JavaScript

LEO Low Earth Orbit

LSTM Long Short-Term Memory

MES Manufacturing Execution System

ML Machine Learning

MPST Multiparty Session Types

ODTS Orbit Determination and Time Synchronization

Page 6 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

P2P Peer-to-Peer

PNT Position, Navigation and Timing

SGAM Smart-Grid Architectural Model

TCP Transmission Control Protocol

UDP User Datagram Protocol

Page 7 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

1 INTRODUCTION

This report documents the ongoing work on the design and development of the TaRDIS
programming toolkit — specifically, its programming models and APIs.

The TaRDIS programming model and APIs are central aspects of the project that require a
clear alignment between the requirements of the use cases, and the outputs of the research
and development work packages. Consequently, the definition and development of the
programming model and APIs is a collaborative effort that requires a close collaboration
among all project partners.

This document has been developed concurrently with Deliverable D2.2 (“Report on overall
requirements analysis”), and the two deliverables complement each other: specifically, the
use case excerpts described in this document are not exhaustive, and they focus on outlining
the intended use of key aspects of the TaRDIS APIs. The alignment between the TaRDIS
model and APIs (produced by WP3) and the use case and toolbox requirements (produced
by WP2) will be achieved throughout the rest of the project.

This document has the following structure:

● Section 2 outlines the TaRDIS programming model, and the methodology and
considerations leading to its design. It also provides a table that summarises how
each use case plans to leverage the various facets of the TaRDIS toolbox.

● Section 3 provides an overview of the APIs that will be offered by the TaRDIS toolbox.
● Section 4 provides an overview of relevant parts of the project use cases, with the

purpose of illustrating how each use case plans to use the TaRDIS model and APIs.

The conclusion (Section 5) summarises the main outcomes and outlines the next steps.

Page 8 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

2 PROGRAMMING MODEL OVERVIEW AND DESIGN
METHODOLOGY

The TaRDIS project proposal envisions an event-driven programming model and toolbox
allowing application programmers to take advantage of various facilities (communication,
verification, machine learning, monitoring and reconfiguration…) helping them develop safe
and reliable distributed swarm applications. Such facilities are made available through the
“TaRDIS Runtime” — which provides various higher-level APIs and abstractions over
lower-level libraries and services; moreover, the proposal envisions dedicated IDE support to
simplify the programmers’ tasks. This vision is summarised in the figure below (from the
TaRDIS project proposal); here the “abstract model” is an abstract representation of a
TaRDIS application, which enables the use of the toolbox verification facilities.

This vision has been refined and made more concrete during the first months of the TaRDIS
project. Since June 2023, WP3 has organised a series of 7 Workshops on Models and
APIs where all project partners have collaborated in analysing and discussing the definition
of the TaRDIS model and APIs: this close interaction ensures the alignment between the
ongoing work and outputs of the research work packages (WP4, WP5, WP6) and the
requirements and suggestions from the industry partners (stemming from WP2 and WP7).
The present deliverable is one of the outcomes of this collaborative process.

The rest of this section presents an overview of the design of the TaRDIS programming
model and toolbox (Section 2.1), and discusses a possible extension based on DCR graphs
(Section 2.2). Then, it outlines how each use case plans to leverage the TaRDIS toolbox
(model and APIs, Section 2.3), and how cross-language interoperability will be addressed
(Section 2.4).

2.1. THE TARDIS PROGRAMMING MODEL AND TOOLBOX DESIGN

Given the variety of the use cases and their requirements, the TaRDIS programming model is
being designed to support the development of swarm applications combining two main
kinds of programs: internal TaRDIS services and perimeter TaRDIS services. The intuition
is the following (and is depicted in the figure below):

Page 9 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

● a TaRDIS swarm application is an ensemble of concurrent, distributed, and possibly
heterogeneous services which interact over a network in an event-driven fashion,
using the communication facilities provided by the TaRDIS toolbox;

● an internal service can be more deeply integrated in a TaRDIS swarm application.
We foresee that internal services will have more complete access to the TaRDIS
toolbox - in particular, to its higher-level APIs, and its verification capabilities;

● a perimeter service can communicate with a TaRDIS swarm application and use
(most of) the TaRDIS APIs. However, a perimeter service may not have complete
access to the TaRDIS toolbox - in particular, it might not take advantage of its
verification capabilities, and may have limited access to its higher-level APIs.

The following subsections illustrate in more detail the differences between internal services
(Section 2.2.1) and perimeter services (Section 2.1.2), and their respective trade-offs
(Section 2.1.3).

2.1.1. Internal TaRDIS Services, Swarm Protocols, and Workflows
An internal TaRDIS service is a program that does not directly control its main execution
loop: instead, the program is written as a series of reactive call-back functions that are
executed by the TaRDIS execution engine depending on preconfigured events (e.g. the
arrival of a certain type of message in a certain state of the application).

Internal TaRDIS services follow the TaRDIS workflow model, i.e. they can be intuitively
depicted as state machines where state transitions are triggered by events, and call-back
functions are executed when entering or leaving a state. A workflow describes the behaviour
of an individual service that joins a larger swarm. The state transitions, event dispatch, and
call-back execution described in the workflow are handled by the aforementioned TaRDIS
execution engine.

Page 10 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Related kinds of event-driven programming styles and reactive execution engines are offered
by well-established distributed application programming libraries like Twisted,1 Akka,2 or
Orleans3 — but the TaRDIS workflow model will be able to describe more complex
applications with stateful communication protocols. Moreover, TaRDIS will offer tooling to
ensure that a program actually respects a desired workflow.

Developers are free to deploy services that follow arbitrary workflows and make them join a
same swarm application — however, if the individual workflows are incompatible with each
other, the overall application may misbehave (e.g. resulting in deadlocks, or communication
of events that are not handled by the intended recipients). To address this issue, TaRDIS
plans to provide:

● the possibility of specifying swarm protocols, which provide a global bird’s eye view
of the intended behaviour of all components that might join a swarm application (each
one implementing a specific role) to produce and consume events; and

● tools to project (i.e., synthesise) a local workflow out of a swarm protocol,
ensuring that the local behaviour of a service is compatible with the rest of the swarm.

The idea is illustrated in the figure below:

In the figure above:
● The swarm protocol describes a “global distributed state machines” where the edges

correspond to the intended interactions between roles R1, R2, and R3; such roles, in

3 https://github.com/dotnet/orleans
2 https://akka.io/
1 https://twisted.org/

Page 11 of 74 © 2023-2025 TaRDIS Consortium

https://github.com/dotnet/orleans
https://akka.io/
https://twisted.org/

TaRDIS | D3.1: First report on programming model and APIs

turn, may produce and consume events E1..E7 (the notation “E @ R” means that
event E is produced by some swarm participant having role R). These events
advance the overall state of the protocol.

● The swarm protocol is projected into workflows for the roles R1, R2, and R3: for
instance, the workflow for role R2 says that a swarm participant implementing role R2
is expected to await event E1, and then emit one of the events E2 or E3, and then
await E6 (looping back to a previous state) or E7 (which terminates the workflow).

The general idea of projecting correct-by-construction local specifications (called “workflows”
in TaRDIS) from a global protocol specification (called “swarm protocol” in TaRDIS) can be
found e.g. in the literature on cryptographic protocols (as “Alice-and-Bob notation”4 or
“protocol narrations”5) and modelling and verification of concurrent and distributed systems
(e.g. multiparty session types6). The availability of the global swarm protocol specification has
two advantages:

1. it provides an intuitive overview of the system behaviour that can be easier to
understand by non-experts, and

2. enables better analysis of the system behaviour using the analysis methodologies
and tools developed in WP4 (see the TaRDIS Deliverable D4.1).

Concretely, the TaRDIS swarm protocol, workflow model, and execution engine are being
designed and developed using as a starting point the machine runner7 model and tooling
created and released (under Open Source license) by the project partner Actyx: their
approach is described in recent publications8 9 and is being discussed and adapted and as
part of WP3, analysed as part of WP4, and implemented and improved as part of WP6 and
WP7. Examples of swarm protocol and workflow applications can be found in the “Actyx”
section of the use cases overview (Section 4.1).

In addition to the “top-down” approach outlined above, the TaRDIS project may also explore
novel “bottom-up” development methods and tools to directly check whether different
workflows can be correctly composed, even if a swarm protocol is not provided beforehand.

2.1.2. Perimeter TaRDIS Services
A perimeter TaRDIS service is a program that does not delegate its main execution loop to
the TaRDIS execution engine, hence does not follow the TaRDIS swarm protocol/workflow
model outlined in Section 2.1.1. A TaRDIS perimeter service might directly control its main
execution loop (or delegate it to other libraries, e.g. GUI toolkits like Qt10), and may use only
selected (and typically lower-level) TaRDIS APIs for specific purposes - e.g. producing or

10 https://www.qt.io/product/framework

9 Roland Kuhn, Alan Darmasaputra: Behaviorally Typed State Machines in TypeScript for
Heterogeneous Swarms. ISSTA 2023: 1475-1478. https://doi.org/10.1145/3597926.3604917 -
https://doi.org/10.48550/arXiv.2306.09068

8 Roland Kuhn, Hernán C. Melgratti, Emilio Tuosto: Behavioural Types for Local-First Software.
ECOOP 2023: 15:1-15:28. https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

7 https://www.npmjs.com/package/@actyx/machine-runner

6 Kohei Honda, Nobuko Yoshida, Marco Carbone: Multiparty Asynchronous Session Types. J. ACM
63(1): 9:1-9:67 (2016). https://doi.org/10.1145/2827695

5 Sébastien Briais, Uwe Nestmann: A Formal Semantics for Protocol Narrations. Trustworthy Global
Computing 2005. Lecture Notes in Computer Science. Vol. 3705. pp. 163–181.
https://doi.org/10.1007%2F11580850_10

4 R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 2 (Feb. 1978), 120–126.
https://doi.org/10.1145/359340.359342

Page 12 of 74 © 2023-2025 TaRDIS Consortium

https://www.qt.io/product/framework
https://doi.org/10.1145/3597926.3604917
https://doi.org/10.48550/arXiv.2306.09068
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://www.npmjs.com/package/@actyx/machine-runner
https://doi.org/10.1145/2827695
https://doi.org/10.1007%2F11580850_10
https://doi.org/10.1145/359340.359342

TaRDIS | D3.1: First report on programming model and APIs

awaiting some events, accessing communication or AI/ML primitives, etc. Generally
speaking, a perimeter TaRDIS service will use the lower-level APIs provided by the TaRDIS
toolbox.

2.1.3. Internal vs. Perimeter TaRDIS Services: Trade-Offs
The main advantage of writing an internal TaRDIS service is that the programmer has more
complete access to the verification capabilities of WP4 (ensuring e.g. that the code follows a
desired communication protocol, or handles its data in a correct way); moreover, the
programmer can access higher-level APIs that can hide more details about communication
and distribution. This is made possible by the fact that an internal service has to follow the
TaRDIS workflow model, hence the TaRDIS verification tools and the toolbox itself can make
more assumptions about the service’s behaviour. The main drawbacks in developing an
internal TaRDIS service are:

● a steeper learning curve, as the programmer needs to become familiar with the
TaRDIS workflow model, the execution engine, and the resulting programming style;
and

● the need to delegate the main execution loop to the TaRDIS execution engine, which
may make it harder to integrate already-existing applications written in a different
style.

To avoid these drawbacks, a programmer may choose to write a perimeter TaRDIS service
instead. In this case, the entry barrier is quite low: a programmer only needs to start using
the relevant parts of the TaRDIS APIs (e.g. for communication or AI/ML). This smooths out
the learning curve and simplifies the task of adapting an already-existing application to
interact with a TaRDIS swarm. The main drawbacks in developing a perimeter TaRDIS
services are:

● the programmer may not have access to all APIs provided by the TaRDIS toolbox. In
general, higher-level APIs may not be usable, and the programmer may need to use
the lower-level APIs, which may be more verbose and easier to misuse; moreover,

● the programmer cannot rely on the verification capabilities developed in WP4
(because a perimeter TaRDIS service can be written in any style and can be very
dynamic, thus going beyond the current capabilities of software verification).

These drawbacks may increase the risk of writing more code and introducing bugs.

By developing a programming model that supports both internal and perimeter services, we
aim at maximising the adoption of the TaRDIS toolbox: programmers may start writing
perimeter services (possibly by adapting already-existing programs), and progressively
consider the introduction of internal services as their applications evolve and the cost-benefit
trade-off becomes clearer.

2.2. TARDIS PROGRAMMING MODEL EXTENSIONS VIA DCR GRAPHS

The definition of internal services in a TaRDIS swarm application (Section 2.1.1), where the
workflow model is central to the behaviour of the swarm, demands specification and
programming languages that are both flexible, and human readable. In this section, we
introduce an extension of the language ReGraDa (Dynamic Condition Relation (DCR)

Page 13 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Graphs, with reactive computation and data mapped to a graph database)11 12 that provides a
business process-like language to specify and evolve the behaviour of a swarm. We are
extending our implementation to incorporate choreographies in the style of Hildebrandt’s
seminal work13 14. This extension is being actively researched (as part of WP3 and WP4) and
evaluated for inclusion in the TaRDIS toolkit.

Prior work exists to express a variety of workflow features in a declarative, stateful, and
flexible way, notably ranging from relationships between activities, dynamic creation of
behaviour, time constraints, and the relation with data and computation. However, the current
state of the art requires a centralized or synchronized management of the workflow state.

General DCR graphs are strictly more expressive than the state machines in the TaRDIS
workflow model and therefore this extension needs to be carefully studied, and fragments of
the language can be adopted to maintain the guarantees of the graph in the underlying
infrastructure. As a first step we plan to study the distribution and execution of
choreographies in swarms and study the consistency of the state of the workflow in a
decentralized environment. For instance, if there are causal dependencies between events in
the swarm that are executed by independent agents, how can we guarantee it without a
centralized entity?

Prior work shows that DCR graphs can be mapped to a state-machine formulation.15 In
particular, events in the workload are translated into events that the state-machine can
asynchronously process, and the enableness of an event (a central property to allow the
execution/triggering of an event) can be mapped directly to the existence of a given transition
on a particular state (or set of states). Our plan is to handle events across different machines
or agents (each one exciting its own state machine) taking advantage of decentralised
communication and storage mechanisms developed in the context of WP5. This allows,
among other things, to use these primitives to disseminate or route events generated by one
local workflow to all other workflows that might need it, or to store these events on
decentralised storage solutions to enabled the processing of events in a asynchronous way
when a state machine that should process that event is offline or unreachable at the time of
the event emission. Formally specifying how to model the conversion of the DCR graph
model towards a state-machine based implementation (or skeleton) is going to be a topic of
research in TaRDIS in the context of WP3.

15 Thomas T. Hildebrandt, Raghava Rao Mukkamala. 2010. Declarative Event-Based Workflow as
Distributed Dynamic Condition Response Graphs. In the Third Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software, PLACES 2010: 59-73.

14 Thomas T. Hildebrandt, Tijs Slaats, Hugo A. López, Søren Debois, Marco Carbone: Declarative
Choreographies and Liveness. FORTE 2019: 129-147

13 Thomas T. Hildebrandt, Hugo A. López, Tijs Slaats: Declarative Choreographies with Time and
Data. BPM (Forum) 2023: 73-89

12 Eduardo Geraldo, João Costa Seco, and Thomas Hildebrandt. 2023. Data-Dependent
Confidentiality in DCR Graphs. In Proceedings of the 25th International Symposium on Principles and
Practice of Declarative Programming (PPDP '23). Association for Computing Machinery, New York,
NY, USA, Article 7, 1–13. https://doi.org/10.1145/3610612.3610619

11 Galrinho, L., Seco, J.C., Debois, S., Hildebrandt, T., Norman, H., Slaats, T. (2021). ReGraDa:
Reactive Graph Data. In: Damiani, F., Dardha, O. (eds) Coordination Models and Languages.
COORDINATION 2021. Lecture Notes in Computer Science(), vol 12717. Springer, Cham.
https://doi.org/10.1007/978-3-030-78142-2_12

Page 14 of 74 © 2023-2025 TaRDIS Consortium

https://doi.org/10.1145/3610612.3610619
https://doi.org/10.1007/978-3-030-78142-2_12

TaRDIS | D3.1: First report on programming model and APIs

2.2.1. An Overview of ReGraDa / DCR Graphs
We now briefly describe ReGraDa / DCR graphs. A graph, representing a workflow, includes
input data elements that act as events triggered by an external agent and represent
user/system interactions, and data elements or computation events that represent internal
events and computations. These data elements also work as persistent records in a
database or distributed storage system.

We use the textual syntax in this section, which is interchangeable with the visual notation
that can be found in the literature.

The syntax for input events is as follows:

x:Label[?: Type]: R1 -> R2

Each event declaration has an identifier (x), visible in its definition scope, a label (Label) that
identifies the type of events, it features a question mark to signify that it defines an input
event, and a type to characterize the type of values that it receives. Events in this abstraction
represent messages exchanged by the agents in the system. The declaration of an event
also includes two roles: one for the emitter of the message and another for the receptor of
the message.

Data elements, or computation events are defined as follows:

x:Label[Expression]: R1 -> R2

All events are assigned a state consisting of three Boolean values and one value of a given
type. The Boolean values indicate respectively if the event was executed (or happened)
previously, if it is included, i.e. visible and ready to be executed (or to happen), and if the
event is pending response, this means that all pending events must be executed for the
process to be considered in a terminal state. When assigning roles to events, we define a
choreography, where the execution of an event corresponds to a message being sent
between two (or more) members of a choreography (R1 and R2 above). The “happened”
state of an event is set by executing an event, and the pending response state is set to false
by executing an event. The “included” state is changed by the control-flow relations and the
execution of the preceding events in the graph. The value associated with an event is
obtained by external sources in input events and computed internally in other cases by
evaluating the associated expression. The state is kept by a mapping from events to state,
and the initial value is “not happened”, “included”, and “not pending”. The symbols “%” and “!”
can be used in declarations to represent that the initial state is “excluded” and “pending”
respectively.

The structure of a process P is defined by a sequence of event declarations and a sequence
of control flow and data relations (for simplicity we omit data relations in the following
graphs).

The control flow relations that are used are the following:
● Condition relation (A -->* B) means that event B cannot happen before event A
● Response relation (A *--> B) means that if A happens, B becomes a pending

response event (must be executed in the future)
● Milestone relation (A --><> B) means that if A is pending, B cannot be executed.
● Include relation (A -->+ B) means that if A happens, B becomes included in the

process.

Page 15 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

● Exclude relation (A -->% B) means that if A happens, B becomes included in the
process.

● Spawn relation (A -->> P) means that if A happens, the elements of process P are
instantiated and added to the process.

Note: we are still not considering timeouts in this example, but those will be necessary to
model certain parts of the scenarios.

For example, consider the global workflow (with simplified syntax ignoring data and roles):

r:request
% s:start
% f:finish
;
r -—>+ s
r *-—> s
r -—>% r
s -—>+ f
s *-—> f
s -—>% s
f -—>% f

This workflow has three events to request a task to be made, to start the task and finish the
task. Once the event r (request) is executed the event s (start) is included in the workflow
and made pending response (the -—>+ and *-—> relations between r and s). The event r
excludes itself (the -—>% relation), and can be executed only once. A similar behaviour is
defined for the start and finish events that need to be executed in sequence and only once
for the workflow to reach a final state.

In the description of the EDP use case (Section 4.2), the reader may find examples of
DCR/ReGraDa graphs to illustrate the application of this extension in the context of TaRDIS.

2.3. HOW THE TARDIS USE CASES WILL LEVERAGE THE TARDIS TOOLBOX

The following table summarises how each use case of the TaRDIS project plans to leverage
the TaRDIS toolbox. Each column and row header in the table links to the corresponding
subsection of the API overview (Section 3) and the use case applications overview (Section
4).

Actyx
Application
1 (Section

4.1.2)

Actyx
Application
2 (Section

4.1.3)

EDP
(Section

4.2)

GMV
(Section

4.3)

Telefónica
(Section

4.4)

Service type(s) (Section 2.1) 1+ internal
(100x)

1 perimeter

1 internal
(1000x)

1 perimeter

Internal Perimeter Perimeter

Programming language(s) TypeScript TypeScript Java/Python Matlab/
Python

Python/Java

Page 16 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Actyx
Application
1 (Section

4.1.2)

Actyx
Application
2 (Section

4.1.3)

EDP
(Section

4.2)

GMV
(Section

4.3)

Telefónica
(Section

4.4)

Specifying and analysing
communications behaviour
(T4.1, Section 3.2.1)

✅ �

Specifying and analysing
data consistency (T4.2,
Section 3.2.2)

�

Specifying and analysing
security properties (T4.3,
Section 3.2.3)

� � � �

Deployment &
orchestration integration
(T4.4, Section 3.2.4)

� �

AI/ML programming
primitives (T5.1, Section
3.3.1)

� � �

AI-driven planning,
deployment & orchestration
(T5.2, Section 3.3.2)

� �

Lightweight and
energy-efficient ML library
(T5.3, Section 3.3.3)

� � � �

Decentralised membership
and communication (T6.1,
Section 3.4.1)

� � � � �

Decentralised data
management and
replication (T6.2, Section
3.4.2)

� � � �

Decentralised monitoring
and reconfiguration (T6.3,
Section 3.4.3)

� �

Page 17 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

2.4. CROSS-LANGUAGE INTEROPERABILITY

The TaRDIS toolkit aims at being language-independent and offering APIs that can be
leveraged by multiple programming languages; this is necessary for the development of
heterogeneous distributed applications where different services may be implemented using
different programming languages.

At this stage, the APIs and facilities provided by WP4, WP5, and WP6 are being prototyped
and developed using the most suitable (given their applications) programming languages —
but the plan is to make such APIs available to other languages, too (giving a higher priority to
the programming languages used by the TaRDIS use case applications). To achieve this, we
will proceed in two phases:

● As a first step, we plan to leverage cross-language translation layers to make an API
developed with programming language A available to programs written in
programming language B ≠ A. To this end, we may e.g. expose the APIs via gRPC,16

OpenAPI,17 or WebSockets18/JSON schema.19 When possible, more direct
integrations will be evaluated — e.g. APIs written in C, C++, Rust, or Go can be often
directly used from Python code through its ctypes module,20 and from JVM-based
languages through the Foreign Function and Memory API.21 This integration will be
sufficient for developing application prototypes and inform the next step.

● In a second phase, the integration will be refined based on the findings in the first
step (with improvements e.g. in terms of performance or usability when needed).

21 https://docs.oracle.com/en/java/javase/21/core/foreign-function-and-memory-api.html
20 https://docs.python.org/3/library/ctypes.html
19 https://json-schema.org/
18 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
17 https://www.openapis.org/
16 https://grpc.io/

Page 18 of 74 © 2023-2025 TaRDIS Consortium

https://docs.oracle.com/en/java/javase/21/core/foreign-function-and-memory-api.html
https://docs.python.org/3/library/ctypes.html
https://json-schema.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.openapis.org/
https://grpc.io/

TaRDIS | D3.1: First report on programming model and APIs

3 OVERVIEW OF THE TARDIS APIS

This section outlines the ongoing work in the design and development of the TaRDIS APIs.
Here we use the term “API” in a broad sense, covering all facilities that will be made available
to programmers that use the TaRDIS toolkit; this includes both APIs in the “classic” sense
(i.e. the specification of functions, procedures, and methods callable by user’s code), and
facilities and tooling supporting the programmer (e.g. the verification facilities developed in
WP4).

The contents of this section represents the current status and plans for the API work, which
will evolve throughout the rest of the TaRDIS project. The titles of each subsection highlight
which WP is working on the related APIs and features of the TaRDIS toolbox.

● Section 3.1 provides some initial API sketches, outlining how some key facilities of
the TaRDIS toolbox will be organised and made available to programmers.

● Section 3.2 outlines the analysis and verification facilities.
● Section 3.3 outlines the APIs that will be provided for AI and machine learning-related

functionality.
● Section 3.4 outlines the data management and distribution primitives.

3.1. INITIAL API SKETCHES

This section provides initial sketches of the TaRDIS APIs, organised by functionality. These
sketches are not complete: they represent an initial collection of key features (necessary for
the TaRDIS use cases to access the functionalities illustrated in the subsections 3.2-3.4
below) and they will evolve throughout the next iterations of this deliverable (D3.3, D3.5).

The description of a well-designed API encompasses a clear definition of its purpose and
scope and an understanding of the specific functionalities it needs to expose and the types of
interactions to be supported. While consolidating these initial sketches, TaRDIS plans to use
standard API specification formats such as OAS (OpenAPI Specification),22 RAML (RESTful
API Modelling Language),23 AsyncAPI,24 or a combination of formats that suits a clearer
explanation.

These API sketches below are divided between those conceived for internal services
(Section 3.1.1), those conceived for perimeter services (Section 3.1.2), and those giving
access to machine learning functionality (Section 3.1.3). The APIs deal with aspects such as
the creation and validation of a swarm protocol, the creation of a role in a swarm protocol,
creation of a workflow to handle that role, finding individuals running specific workflows or
that are part of a specific role, creating communication overlays and channels, and handling
events and messages.

24 https://www.asyncapi.com/
23 https://raml.org/
22 https://swagger.io/specification/

Page 19 of 74 © 2023-2025 TaRDIS Consortium

https://www.asyncapi.com/
https://raml.org/
https://swagger.io/specification/

TaRDIS | D3.1: First report on programming model and APIs

3.1.1 Event-Driven API for Internal Services: Instantiating a TaRDIS
Swarm
The following API sketches are intended to support the development of internal TaRDIS
services (Section 2.1.1).

Defining a Swarm Protocol

Defines the protocol (set of rules) that will be the core of the swarm.

defineSwarmProtocol(options)
Parameters:

● options: SwarmProtocolOptions
Return:

● SwarmProtocol

Checking the Correctness of a Swarm Protocol

Checks the state of the swarm protocol.

checkSwarmProtocol(protocol)
Parameters:

● protocol: SwarmProtocol
Return:

● SwarmProtocolState
{

state: String,
}

Creating a Workflow for a Role

Registers a workflow, which could be specific for a given role, or general (if the role is
omitted).

createWorkflow(protocol,role?)
Parameters:

● protocol: SwarmProtocol
● role: String

Return:
● Workflow

{
id: UUID,
State1: Object,
State2: Object,
…

}

Page 20 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Finding running instances of a workflow

Finds instance of a registered workflow by workflow instance ID

findWorkflow(workflow, id)
Parameters:

● workflow: Workflow
● id: UUID

Return:
● Workflow | null

Finds instances of registered workflows by desired workflow state.

findWorkflows(workflow, cutoff?, states[]?)
Parameters:

● workflow: Workflow
● cutoff: Milliseconds
● states[]: WorkflowState[]

Return:
● Workflow[]

3.1.2 Event-Based Input-Output API for Perimeter Services
The following API sketches are intended to support the development of perimeter TaRDIS
services (Section 2.1.2).

Creating a Communication Overlay

Creates the communication overlay for a certain workflow. We can have different
communication protocols for different workflows.

createCommunicationOverlay(workflow, options)
Parameters:

● workflow: Workflow
● options: CommunicationOverlayOptions

{
routing: Object,
membership: Object,
sampling: Object,
dissemination: Object,
resourceLocation: Object,
type: CommunicationOverlayType
{

Kadmelia,
Chord,

Page 21 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

HyParView,
Scamp,

}
}

Return:
● CommunicationOverlay

Creating a Channel

Creates a channel on top of the communication overlay.

createChannel(options, overlay)
Parameters:

● options: ChannelOptions
{

type: ChannelType
{

P2P,
Multicast,
Broadcast,

}
}

● overlay: CommunicationOverlay
Return:

● Channel

Creating an Event

Register events on a channel.

createEvent(channel, event)
Parameters:

● channel: Channel
● event: Event

Emitting an Event

Emits the event on a channel.

emitEvent(channel, event, data)
Parameters:

● channel: Channel
● event: Event
● data: Object

Page 22 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Subscribing to an Event

Subscribes to an event.
subscribeToEvent(channel, event, handler)
Parameters:

● channel: Channel
● event: Event
● handler: (data) => {}

Unsubscribing from an Event

Unsubscribes from events.

unsubscribeFromEvent(channel, event)
Parameters:

● channel: Channel
● event: Event

Closing a Channel

Closes a communication channel.

closeChannel(channel)
Parameters:

● channel: Channel
● event: Event

Sending a Message

Send a message through a channel.

sendMessage(channel, message)
Parameters:

● channel: Channel
● message: Object

Subscribing to Messages

Subscribe to messages on a channel.

subscribeToMessages(channel, handler)
Parameters:

● channel: Channel
● handler: (message) => {}

Page 23 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Unsubscribing from Messages

Unsubscribes from messages on a channel.

unsubscribeFromMessages(channel)
Parameters:

● channel: Channel

3.1.3 Machine Learning APIs

Loading a Model

Loads an ML model to the system.

loadModel(model)
Parameters:

● model: Object

3.2. ANALYSIS AND VERIFICATION FACILITIES

3.2.1. Specifying and Verifying Communication Behaviour - T4.1

3.2.1.1. Correctness-By-Construction Guarantees for Internal TaRDIS
Applications

The workflow-based communication used by internal TaRDIS applications will guarantee
deadlock-freedom by construction, provided that the individual workflows of all components
are compatible with each other –- e.g. because they are projected from an overall correct
swarm protocol (as outlined in the description of TaRDIS internal services, swarm protocols,
and workflow, Section 2.1.1), or because they are analysed with one of the techniques for
verifying communication behaviour (Section 3.2.1.2).

Since the TaRDIS swarm protocols allow cycles, correctness-by-construction cannot always
guarantee process termination; however, the processes will terminate if:

1. swarm participants are available for each role and act when it is their turn, and
2. the protocol contains reachable final states and each swarm participant only selects

available branches for a bounded number of times.

In addition, swarm protocols guarantee eventual consensus between all participants on the
sequence of states visited, under the condition that the protocol definition fulfills a set of
well-formedness conditions. These are checked using an API (outlined e.g. in the Actyx use
case in section 4.1.1), which is typically used as part of the unit tests of the application.

const swarmProtocol = TaRDIS.defineSwarmProtocol(...)
const result = TaRDIS.checkSwarmProtocol(swarmProtocol)
expect(result).toEqual({ type: 'OK' })

Page 24 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

3.2.1.2. Communication Behavioural Properties

A primary goal of T4.1 is to develop innovative techniques based on behavioural types25 26 —
specifically, typestates27 and (multiparty) session types.28 29 These techniques will be used to
assess if programs using the TaRDIS APIs satisfy desirable communication behavioural
properties, chiefly focusing on internal TaRDIS services based on workflows (Section 2.1.1).
The communication behavioural properties of interest include:

1. Communication safety: the exchanged data in a workflow-based communication
(protocol) adheres to the expected types, ensuring the absence of any type errors.

2. Deadlock-freedom: a group of TaRDIS services involved in a workflow-based
interaction will never get stuck.

3. Termination: TaRDIS services involved in a workflow-based interaction will terminate
finitely.

4. Never-termination: a workflow-based interaction between TaRDIS services will
continue indefinitely.

5. Liveness: in a workflow-based interaction between TaRDIS services, an event
awaited by at least one service will be eventually emitted (i.e. all services will be able
to progress).

6. Protocol conformance and completion: in a workflow-based interaction, valid
sequences of calls of an API’s methods can be defined with a typestate specification
(henceforth called protocol). The code can be statically type-checked to ensure that
services following the protocol never generate run-time errors like null-pointer
exceptions (a safety property known as protocol conformance). Moreover, in the
absence of divergent computation, it is also possible to ensure that the service code
completes the intended workflow protocol (a weak liveness property known as
protocol completion). In the context of a communication protocol, local conformance
of all participants ensures the network's overall conformance to the initial protocol.
Likewise, when considering a message-passing process, protocol conformance
guarantees that the process behaves conforming to its declared types.

Based on behavioural type system methodologies, these behavioural properties will be
verified utilising exhaustive static reasoning methods, such as static type checking and model
checking, whenever feasible. We plan to combine three main approaches:

1. Model checking swarm-protocol-level and workflow-level behavioural
properties, such as communication safety, deadlock-freedom, termination,
never-termination, and liveness, as modal μ-calculus formulas, using tools such as
mCRL2;30

2. Type checking API usage against workflow specifications, to check/enforce that
client code interacting with the TaRDIS API correctly follows the workflow protocol;

30 https://mcrl2.org/

29 Honda, Kohei, Nobuko Yoshida, and Marco Carbone. 2016. ‘Multiparty Asynchronous Session
Types’. Journal of the ACM 63 (1): 1–67. https://doi.org/10.1145/2827695

28 Honda, Kohei, Vasco T Vasconcelos, and Makoto Kubo. 1998. ‘Language Primitives and Type
Discipline for Structured Communication-Based Programming’. In ESOP (1998).
https://doi.org/10.1007/BFb0053567

27 R. E. Strom and S. Yemini, "Typestate: A programming language concept for enhancing software
reliability," in IEEE Transactions on Software Engineering, vol. SE-12, no. 1, pp. 157-171, Jan. 1986.
https://10.1109/TSE.1986.6312929

26 Ancona et al, "Behavioral Types in Programming Languages", Foundations and Trends® in
Programming Languages: Vol. 3: No. 2-3, pp 95-230 (2016). http://dx.doi.org/10.1561/2500000031

25 Hüttel et al: Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. 49(1):
3:1-3:36 (2016). https://doi.org/10.1145/2873052

Page 25 of 74 © 2023-2025 TaRDIS Consortium

https://mcrl2.org/
https://doi.org/10.1145/2827695
https://doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1561/2500000031
https://doi.org/10.1145/2873052

TaRDIS | D3.1: First report on programming model and APIs

3. Use workflow specifications to monitor the use of the TaRDIS communication
APIs, only allowing, for each client, the sequences of requests prescribed by the
workflow.

To this end, we work towards extending the core theories of session types and multiparty
session types by incorporating features that allow for the application of behavioural types in
supporting swarm protocols:

1. CLASS,31 the first proposal for a foundational language able to flexibly express
realistic concurrent programming idioms, features a type system ensuring all the
following three key properties: CLASS programs never misuse or leak stateful
resources or memory, they never deadlock, and they always terminate. CLASS
expressiveness is illustrated with several examples involving memory-efficient linked
data structures, sharing of resources with linear usage protocols, and sophisticated
thread synchronisation

2. Teatrino,32 a toolchain that utilises asynchronous multiparty session types (MPST)
with crash-stop semantics to support failure handling protocols, providing
correctness-by-construction guarantees to the users of the TaRDIS workflow-based
APIs even in the presence of crashes and failures.

3. Dynamically Updatable Multiparty Session Protocols,33 an extension to multiparty
session types with the ability to add unbounded participants dynamically during a
protocol execution. This allows the possibility of specifying and verifying swarm
protocols.

3.2.1.3. Join Patterns API with “Fair Matching” Guarantees

As a contribution to WP4 / T4.1, DTU is developing an API for distributed systems based on
join patterns, with correctness-by-construction guarantees ensuring that complex
combinations of incoming messages/events are processed in a correct and “fair” way (as
outlined in the next paragraphs). This API will be evaluated as part of the Actyx use case
(Section 4.1), in a perimeter service for monitoring the occurrence of certain combinations of
events (such as interrelated machine fault notifications) within certain time frames.

Join patterns are a programming construct originally introduced by the join calculus,34

superficially reminiscent of the pattern matching constructs available in many programming
languages: a programmer can write a join pattern to succinctly express that an application
must listen for certain combinations (patterns) of incoming messages, whose payloads must
satisfy certain conditions (guards); if a desired combination of messages becomes available,
then the program must continue its execution accordingly.

For instance, the pseudo-code below shows a join pattern construct for an online trading
system that inspects combinations of incoming Sell and Buy messages; the trading system
looks for combinations of 2 or 3 messages where the amount of stocks being sold (sA, sA1,
sA2) covers the amount being bought (bA). (For brevity, we omit payload data besides the
stock amounts.)

34 Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus. In ACM-SIGACT
Symposium on Principles of Programming Languages, 1996. https://doi.org/10.1145/237721.237805

33 David Castro-Perez and Nobuko Yoshida. Dynamically Updatable Multiparty Session Protocols:
Generating Concurrent Go Code from Unbounded Protocols. ECOOP (2023).
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6

32 Adam D. Barwell, Ping Hou, Nobuko Yoshida, Fangyi Zhou: Designing Asynchronous Multiparty
Protocols with Crash-Stop Failures. ECOOP 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.1

31 Pedro Rocha and Luís Caires: Propositions-as-types and shared state. Proc. ACM Program. Lang.
5(ICFP): 1-30 (2021). https://doi.org/10.1145/3473584

Page 26 of 74 © 2023-2025 TaRDIS Consortium

https://doi.org/10.1145/237721.237805
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.1145/3473584

TaRDIS | D3.1: First report on programming model and APIs

receive {
case Sell(..., sA) & Buy (..., bA) if bA ≤ sA ⇒

// Code to execute upon match
case Sell(...,sA1) & Sell(...,sA2) & Buy (...,bA) if bA ≤ sA1+sA2 ⇒

// Code to execute upon match
}

Observe that the pseudo-code above only specifies which messages are of interest, and
what conditions apply to their payloads — without detailing all possible combinations arising
from the order of arrival of such messages (e.g. a Buy may arrive before a matching Sell,
or vice versa). The manual handling of all such message combinations would be required by
more traditional programming APIs based e.g. on actors or sockets, leading to complicated,
error-prone, and potentially inefficient code.

DTU is working on a prototype implementation of a join patterns API similar to the
pseudo-code above (implemented in the Scala 3 programming language). The
implementation is based on a novel optimised message matching algorithm that is showing
promising performance, and is being proven correct and “fair” — in the sense that (unlike
previous work) all incoming messages will be eventually consumed if they can be matched.
This ongoing work is outlined in a recent workshop paper.35

3.2.1.4. Verified Control Plane API for Software-Defined Networking

In some constrained swarm scenarios (involving e.g. smart devices in a local network, for
instance within the same factory or IoT devices in a same domestic network) the
configuration and maintenance of an overlay network of swarm components (Section 3.4.1.1)
may take advantage of the possibility of configuring the underlying data link network. Such a
dynamic reconfiguration is made possible by software-defined networking (SDN) — and
more specifically, the Open Source SDN standard P436 specifies a control plane API37 for
programmatically querying and updating the current data link network configuration. Building
upon these open SDN standards, DTU is developing a verified API, called P4R-Type,38 to
statically ensure that network control plane queries and updates are compatible with the
underlying network configuration. We are investigating the integration of such an API in the
TaRDIS toolbox.

3.2.2. Specifying and Analysing Data Consistency - T4.2
Analyzing and checking data consistency comprises verifying two main properties – state
convergence (according to a specific convergence policy, over a spectrum of consistency
requirements) and data invariant preservation. To support these analyses it is necessary to
extract from the application code an abstract specification amenable for automated
verification. The usual approach is to annotate code with the consistency policy required for
each resource, application-specific invariants and, for some analyses, the operations’ pre
and post-conditions. We present next an illustration of a basic annotation language used to

38 Jens Kanstrup Larsen, Roberto Guanciale, Philipp Haller, and Alceste Scalas. 2023. P4R-Type: A
Verified API for P4 Control Plane Programs. Proc. ACM Program. Lang. 7, OOPSLA2, Article 290
(October 2023), 29 pages. https://doi.org/10.1145/3622866

37 https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
36 https://p4.org/

35 P. Haller, A. Hussein, H. Melgratti, A. Scalas, A. Sébert, E. Tuosto. A New Take on Join Patterns.
Presented at NWPT 2023.
https://conf.researchr.org/details/nwpt-2023/nwpt-2023-papers/16/A-New-Take-on-Join-Patterns

Page 27 of 74 © 2023-2025 TaRDIS Consortium

https://doi.org/10.1145/3622866
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/
https://conf.researchr.org/details/nwpt-2023/nwpt-2023-papers/16/A-New-Take-on-Join-Patterns

TaRDIS | D3.1: First report on programming model and APIs

complement a Java interface for a (simple) tournament application with data invariants and
operations’ postconditions.39

@Inv("forall(Player:p, Tournament:t) :-
enrolled(p, t) ==> player(p) and tournament(t)")

@Inv("forall(Tournament:t) :- active(t) => nrPlayers(t) >= 1")

@Inv("forall(Player:p,Tournament:t) :- nrPlayers(t) <= Capacity")

public interface TournamentApp {
@True("player(p)")
addPlayer(Player p);

@False("player(p)")
remPlayer(Player p);

@True("tournament(t)")
addTourn(Tournament t);

@False("tournament(t)")
remTourn(Tournament t);

@True("enrolled(p, t)")
@Increments("nrPlayers(t),1)")
enroll(Player p, Tournament t);

@False("enrolled(p, t)")
@Decrements("nrPlayers(t),1)")
disenroll(Player p, Tournament t);

@True("active(t)")
beginTourn(Tournament t);

@False("active(t)")
finishTourn(Tournament t);
}

In this approach an invariant is described by a first-order logic formula. More formally, it
assumes the invariant is an universally quantified formula in prenex normal form (i.e., the
formula has the shape ∀x, φ(x) where φ is quantifier-free). The operations’ postconditions
are defined by basic clauses that abstract the operation effects.

Another possible alternative for the annotation language would be to use VeriFx,40 which is a
high-level functional programming language for defining and automatically verifying safety
properties. A relevant feature of the language is the inclusion of a proof construct to express
generic safety properties. For each proof, VeriFx automatically derives proof obligations and
discharges them using SMT solvers (these solvers try to automatically determine whether or
not a given formula is satisfiable). Therefore, VeriFx can be used, not only as an annotation
language, but also as a push-button verification tool for data consistency properties and
other safety properties.

40 Kevin De Porre, Carla Ferreira, Elisa Gonzalez Boix. VeriFx: Correct Replicated Data Types for the
Masses. ECOOP 2023.

39 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M. Preguiça, Mahsa
Najafzadeh, Marc Shapiro. Putting consistency back into eventual consistency. EuroSys 2015.

Page 28 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

To allow an application to support different consistency policies for different resources, and
crucially, to identify calls on commutative operations and gather information on calls that in
distributed runtime featuring replicas can be anticipated (w.r.t. calls requiring global replicas
coordination), Giunti et al.41 developed a language-based static analysis methodology. The
intuition is: locally permissible operations can be immediately executed; strongly consistent
ones require coordination among replicated sites. So, locally permissible ones can be
anticipated safely with respect to strongly consistent ones. For instance, in a banking
application, withdraw requires global coordination but deposit can always be executed. The
code would look like this:

class Account {
balance : int weak [this.balance≥0] ...
def withdraw(amount : int) : Unit [amount>0]
{ this . balance −= amount }
def deposit(amount : int) : Unit [amount>0]
{ this.balance += amount }

...
}

The annotation burden is small – requires only to define consistency policies for resources
that may not be strongly consistent - and assertions (boolean expressions) for state variables
and operation parameters. The outcome is information to optimise the runtime, anticipating
the execution of operations that do not need to wait for others to complete before, since they
are commutative and manipulate resources that only require weak consistency.

Notice that any of the three approaches described can be easily integrated in the TaRDIS
API formalism and in the adopted languages.

3.2.3. Specifying and Analysing Security Properties - T4.3
There are largely two general tasks for the security of information:

1. Ensuring the secure communication/transmission of data as part of events
2. Ensuring the secure storage of data

Here secure stands for any security aspects we might have, where we shall basically support
the following:

1. Confidentiality: a security policy that describes who can read particular data
2. Integrity/Authentication: a policy who can write/author particular data

Here confidentiality is normally a basic form of protection by encryption in case of
transmissions, so that unauthorized people cannot read the data itself. This does not include
full non-interference guarantees, i.e., somebody observing the network traffic may be able to
link transmitted messages of the same participant, may link messages to particular protocol
steps, and may thus learn about the truth value of conditions in statements, which may in
turn leak information about confidential data. To achieve higher levels of confidentiality, it is
necessary to introduce "decoy" traffic as it is done for instance in onion routing protocols. We
do not envision doing this for most TaRDIS use cases, but we investigate if such channels
should be added as an option.

41 Marco Giunti, Hervé Paulino, António Ravara:
Anticipation of Method Execution in Mixed Consistency Systems. SAC 2023.

Page 29 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Integrity here also has several aspects. In its most basic form, for transmissions this is
ensured by simply ensured by cryptography to ensure authentication (e.g. suitable encryption
or MACs) which guarantees only that an attacker cannot create data under somebody else's
identity or change/influence the data produced by somebody else. However, the attacker may
be able to intercept and replay messages. Disruptions/availability problems cannot be solved
by cryptographic protocols, and naturally all communication structures must have some fault
tolerance, but this is not regarded here as a security issue. The replay indeed may cause
security problems, as an attacker may with this influence decisions, e.g., replaying an old
event, the attacker may cause an action by an honest participant that the attacker should not
be able to cause. We thus distinguish between non-injective and injective agreement
between participants: in the latter case, there is an injective mapping of acceptance of
messages by a recipient to the issuing of messages by a sender. We leave this as an option
since the replay protection may not be needed if the data sufficiently ensures freshness.

Another aspect of integrity/confidentiality in communication is the identity of the endpoints.
For instance, TLS is the most common example of a secure channel between endpoints
where only one side is authenticated: typically, only the server has a certificate and proves its
identity with respect to it, but the client typically does not. Anyway, we have a secure
connection between the two for a given connection; the channel can then be used to
authenticate the client by (securely) sending their password with the server if they are a
registered user. We currently envision that such authentication mechanisms should rather be
part of the protocol and not visible at the event/transmission level.

We thus require the following specification items for all events that are for secure
transmission:

● The policy about the issuer of the event: who is allowed to issue the event, i.e.,
what guarantees about the author of the event will the recipients have? Default is
untrusted, i.e., no guarantee about the issuer.

● The policy about the recipients: who is allowed to receive this event, i.e., what
guarantees about the confidentiality of the event does the sender have. Default is
public, i.e., everyone can see it.

● A flag whether injective agreement must be ensured by the communication
channel; the default is no, so there is no replay protection

The policy about origin and destination of an event can be specified as a set of entities which
can be individual users, devices, roles, groups etc. Let C (for confidentiality) and I (integrity)
be two such sets of users, we can regard (C,I) as a policy for a piece of data or an event: it
must be ensured that only members of C can read and only members of I can write. The
default for C (public) is all entities, the default for I (untrusted) is the emptyset. We have the
usual security lattices by the subset/superset relation on the C and I components.

3.2.3.1. Formats

Not all information in an event/message has necessarily the same security level: one may
transmit public data along with secret data and untrusted data along with trusted data. To
allow that such public or untrusted data can flow after transmission also into positions that
are public or untrusted, respectively, we allow that a message is like a record-type data type
where each field may have different security levels, the entire format has then the supremum
of the levels of the fields, and can only be transmitted on a suitable channel.

The implementation of a format can be any way to serialize the data, e.g., XML, ASN1,
JSON, etc., where only two properties must be satisfied:

Page 30 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

1. For each format, a given string can be parsed in at most one way (unambiguous)
2. For different formats (that are used in the same communication system), a given

string can be parsed as at most one format (disjoint)

These requirements allow for some relative soundness result of the form: if there is an attack,
then there (also) exists an attack where the attacker only sent “well-typed” messages. This
rules out so-called type-flaw attacks where the attacker abuses confusion of messages of
different types like “agent” vs. “key”.

Again, with respect to privacy, we do not protect in general the information which format is
transmitted, but just its concrete contents. For instance, if we have formats f1 and f2
representing two kinds of events in the system, one needs to generally assume that the
attacker knows for a given message whether it contains an f1 or f2 format.

3.2.3.2. Security Analysis

The security analysis is now on the level of the application issuing and consuming events,
and on the level of protocols that implement the communication of events.

On the application level, we shall check with information flow methods, that there is not
explicit or implicit flow from data with a higher level to an event or memory location of a lower
level (so confidential information cannot leak into public, and untrusted information cannot
leak into trusted).

For the security protocols, we need to verify that they indeed provide the security guarantees
that they claim to implement, e.g., that upon transmission they ensure the integrity and
confidentiality from senders to receivers.

For each format in use, we need to check that their implementation satisfies the above
properties (unambiguity and disjointness).

Moreover, are currently working on extending compositionality results that show: given the
transmission protocol is proved secure for abstract data, and given the application satisfies
information flow given a secure implementation of the protocol, then the entire system of
application over channel is secure. The application of such a result to a concrete application
requires only some static checks that the employed formats of application and channel are
also sufficiently disjoint.

3.2.3.3. Specification of the setup

Note that it needs to be specified which protocols the application shall be using for the
transmission of events. It may even be that different protocols are used for different kinds of
events. This also ensures how cryptographic keys are set up in these cases for each
participant that needs to encrypt/decrypt/verify anything as part of the channel
implementation.

3.2.3.4. Specification of administration protocols

During operation, the groups of an application may change, e.g., we may have new users of
an electric grid, or a user may change its group membership. In these cases, updates of the
cryptographic keys may be necessary and the TaRDIS API should allow "events" that trigger
respective key update protocols.

Page 31 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

3.2.4. Deployment and Orchestration Integration - T4.4
In Task T4.4, the correctness of the federated learning algorithm implemented by PTB-FLA
(whose API is described below, as part of T5.1, Section 3.3.1.1) has been verified for
deadlock-freedom and termination.42 This provides correctness-by-construction guarantees
to the users of the API, ensuring that the federated learning algorithm will never get stuck.
Future work of T4.4 includes proving that the federated learning algorithm will always
converge to a result.

3.3. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING APIS

3.3.1. AI/ML Programming Primitives - T5.1

3.3.1.1. Python Test Bed for Federated Learning Algorithms (PTB-FLA) API

T5.1 plans to integrate in TaRDIS the PTB-FLA API, based on the federated learning
research described in several recent papers.43 44 45

The PtbFla API is offered by the class PtbFla, which comprises the constructor, the two
generic FLAs, and the destructor:

1. PtbFla(noNodes, nodeId, flSrvId=0)
2. ret fl_centralized(sfun, cfun, ldata, pdata, noIters=1)
3. ret fl_decentralized(sfun, cfun, ldata, pdata, noIters=1)
4. PtbFla()

The arguments are as follows:
● noNodes is the number of nodes (or processes)
● nodeId is the node identification
● flSrvId is the server id (default is 0; this argument is used by the function

fl_centralized)
● sfun is the server callback function
● cfun is the client callback function, ldata is the initial local data
● pdata is the private data
● noIters is the number of iterations that is by default equal to 1 (for the so called

one-shot algorithms), i.e., if the calling function does not specify it, it will be internally
set to 1.

The return value ret is the node final local data.

Data (ldata and pdata) is application-specific. Typically, ldata is a machine learning
model, whereas pdata is a training data that is used to train the model. Normally, the

45 I. Prokić, S. Ghilezan, S. Kašterović, M. Popovic, M. Popovic, I. Kaštelan, “Correct orchestration of
Federated Learning generic algorithms: formalisation and verification in CSP,” ECBS 2023 (to appear).
arXiv:2306.14529 [cs.DC] https://arxiv.org/abs/2306.14529

44 M. Popovic, M. Popovic, I. Kastelan, M. Djukic, I. Basicevic, “A Federated Learning Algorithms
Development Paradigm,” ECBS 2023 (to appear). arXiv:2310.05102 [cs.DC]
https://doi.org/10.48550/arXiv.2310.05102

43 M. Popovic, M. Popovic, I. Kastelan, M. Djukic and S. Ghilezan, "A Simple Python Testbed for
Federated Learning Algorithms," 2023 Zooming Innovation in Consumer Technologies Conference
(ZINC), Novi Sad, Serbia, 2023, pp. 148-153, https://doi.org/10.1109/ZINC58345.2023.10173859

42 M. Popovic, M. Popovic, I. Kastelan, M. Djukic and S. Ghilezan, "A Simple Python Testbed for
Federated Learning Algorithms," 2023 Zooming Innovation in Consumer Technologies Conference
(ZINC), Novi Sad, Serbia, 2023, pp. 148-153, https://doi.org/10.1109/ZINC58345.2023.10173859

Page 32 of 74 © 2023-2025 TaRDIS Consortium

https://arxiv.org/abs/2306.14529
https://doi.org/10.48550/arXiv.2310.05102
https://doi.org/10.1109/ZINC58345.2023.10173859
https://doi.org/10.1109/ZINC58345.2023.10173859

TaRDIS | D3.1: First report on programming model and APIs

testbed instances only exchange ldata and they never send out pdata (that is how they
guarantee the training data privacy). The pdata is only passed to callback functions within
the same process instance to immediately set them in their working context.

Cross-references: Provides service to (i.e., is used by). PTB-FLA API might be used by
LSTM and DRFL models. Roadmap: In October 2023, NKUA and UNS started collaboration
on testing the testbed. The idea is to first test the testbed with a simple LSTM model in a few
nodes both in its centralized and decentralized versions. Then, at later stages of the TaRDIS
project, it might be useful to also host in the testbed the training of DRFL models for the EDP
use case.

Cross-reference: Uses service of (i.e., depends on). At present, PTB-FLA uses its own
message passing solution that is implemented in the module mpapi.py, which in turn uses the
Python module multiprocessing.46 Therefore, PTB-FLA API may be classified as a
perimeter TaRDIS service. However, since mpapi.py API comprises functions (sendMsg,
rcvMsg, broadcastMsg, and rcvMsgs) that seem to be close to API offered by WP6, it might
be feasible to adapt mpapi.py to use the latter API, in this case PTB-FLA might become an
internal TaRDIS service (assuming that WP6 API would be a service of that type).

Formalization and Verification. PTB-FLA generic algorithms have been formalized using
CSP (Communicating Sequential Process) calculus and verified using model checker PAT
(Process Analysis Toolkit).47 Two properties were checked: deadlock freedom (safety) and
termination (liveness). It seems appropriate to mention that TaRDIS formal verification tools
should use a compositional approach, and if they do, then they should take these two
properties for granted for PTB-FLA, rather than keep rechecking them at application build
time. It is also worth noting that converting Python to CSP was done manually, but could be
automated, and since PAT is maintained by the University of Singapore, it might be possible
to arrange its usage from the TaRDIS toolkit.

3.3.1.2. Flower-based Federated Learning (FFL) APIs

Here we describe the candidate APIs that relate to the work on Flower-based FL (FFL)
implementations in the context of Task 5.1 carried out by FTN, which is complementary to
PTB-FLA (FFL is cloud-based whereas PTB-FLA is targeting smart IoTs in edge systems).
Each of the three FFL APIs described below might be of interest and “called”, e.g., from the
Actyx use case - manager view application (Section 4.1.3).

3.3.1.2.1. FFL training models API
This API focuses on offering a list of algorithms, implemented in the Flower framework, that
can be called for the purposes of TaRDIS use cases. Currently, it contains the
implementation for FedAvg and Personalized Federated Learning with Moreau Envelopes.
The API will also offer a solution for anomaly detection with noisy labels, that is of interest for
the Actyx use case, App 1. Distributionally robust FL algorithms are also considered. The
complete list of the algorithms will evolve according to use cases’ needs.

The Flower framework offers tools for defining a ML model and the basic skeleton for building
FL strategies. The algorithms in the API will use the structure provided by Flower, and
implement custom strategies for ML algorithms.

Different client selection protocols may be implemented as well. Moreover, some of these
techniques could possibly be integrated with the FLaaS system by Telefonica (Section 4.4).

47 https://pat.comp.nus.edu.sg/
46 https://docs.python.org/3/library/multiprocessing.html

Page 33 of 74 © 2023-2025 TaRDIS Consortium

https://pat.comp.nus.edu.sg/
https://docs.python.org/3/library/multiprocessing.html

TaRDIS | D3.1: First report on programming model and APIs

The provided FL algorithms will naturally support pre-trained models but will also be
constructed so that incremental model retraining is possible, which is an important feature to
enable incremental model enhancement, as it is the case, e.g., with the Actyx use case
(Section 4.1). The FL ML pseudocode can be viewed as follows:

Begin:
Load data and specify input parameters
Perform preprocessing

Set up the model
Begin loop:

Re-train the model with FL
Perform inference

3.3.1.2.2. FFL Input data preprocessing API
In order to bridge the gap between the raw input data and FL ML algorithms, an API for data
preprocessing and preparing is also planned. It will enable the transformation of the data into
the format suitable for analysis by the ML model. Besides applying usual data preparation
techniques for profiling, cleansing, and transformation, it may also support additional
features, such as pseudo-labeling, required, e.g., by the Actyx use case (Section 4.1).

3.3.1.2.3. FFL ML inference and evaluation API
Inference represents an important component in FL, as it enables gaining output for the
relevant data on a trained model. Besides inference, the FL ML library will provide evaluation,
in the form of the corresponding metrics of the gathered results where possible.

3.3.2. AI-Driven Planning, Deployment, and Orchestration - T5.2

3.3.2.1. Reinforcement learning orchestration API

This API provides the functionality to create, manage, and connect to the TaRDIS framework
the reinforcement learning agents for computer network orchestration. The action space for
the agents is composed of task offloading decisions.

The initial training of the agent is done by interaction with a simulation environment that
should exhibit properties as close as possible to the real network to orchestrate. Then, the
agents should be deployed in a safe and controlled set of real hardware. Lastly, the agents
are deployed for continual learning and orchestration of the real computer network.

The reward function in the context of reinforcement learning for computer network
orchestration is a crucial component that quantifies the success of a given action or
sequence of actions taken by the agent. It is a function that maps each state-action pair to a
real number, which represents the desirability of that action in that state. In the context of
network orchestration, the reward could be based on various factors such as latency,
throughput, cost, or any other relevant metric. The aim of the agent is to learn a policy that
maximizes the cumulative reward over time.

3.3.2.1. Reward Function Configuration

To configure the reward function, one needs to define the specific metrics that the function
will consider. For instance, the reward function could be set to prioritize latency, in which
case it would assign higher rewards to actions that minimize latency. Conversely, if the
priority is to reduce costs, the reward function could be set up to allocate higher rewards to
actions that result in cost reductions.

Page 34 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

One can also configure a reward function that balances multiple metrics. For example, a
reward function could be set to assign high rewards to actions that both minimize latency and
cost. This would require careful tuning of the reward function to ensure that the trade-offs
between the different metrics are appropriately balanced.

In general, the configuration of the reward function should be guided by the specific
objectives of the network orchestration. The reward function should be set up in such a way
that it encourages the reinforcement learning agent to take actions that align with these
objectives.

3.3.2.1.1. Reward Function Configuration

class RewardFunction:
def __init__(self, weights):

self.weights = weights

def calculate_reward(self, state, action):
calculate metrics based on state and action
latency = calculate_latency(state, action)
cost = calculate_cost(state, action)
... calculate other metrics

calculate reward based on metrics and weights
reward = self.weights['latency'] * latency + self.weights['cost'] * cost
... add other metrics to the reward calculation

return reward

3.3.2.1.2. Agent Call Function

def agent(s_t, r):
s_t represents the current state
r represents the reward function
a_t = policy(s_t, r) # a_t represents the action taken by the agent
return a_t

The configuration of the simulation environment is detailed next. The agents can be
centralized and decentralized. The following sections detail the api with Tardis for the
programmer.

3.3.2.2. Deployment interface

As shown in the pseudo-code above, the agent inference and the computation of the reward
both depend on the state of the simulation. In the remainder of this section, we will detail the
state space for a centralized version of the agent and a decentralized version of the agent.

3.3.2.2.1. Centralized version

The state space of the centralized version of the simulation consists of the tuple:

<allNodeIds, allQueueSizes, allProcessingPower, allNodeLayers, allPositions,
allMaxBandwidths, allTransmissionPowers, allAverageCompletionTimes>

Page 35 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

allNodeIds - An array with the identifiers of all the nodes in the network; all the other
arrays respect the order of the IDs in this array. This means that the entry 'n' in any other field
represented by an array in the global state would pertain to the node with the ID stored in
entry 'n' of this array.

● allQueueSizes - An array storing the last known queue size of all the nodes in the
network.

● allProcessingPower - An array storing the latest known processing power of all
the nodes in the network.

● allNodeLayers - An array storing the layer every node in the network belongs to
● allPositions - An array storing all the known positions of all the nodes in the

network.
● allMaxBandwidths - An array storing the bandwidth of the channels of the

centralized node to all its neighbors.
● transmissionPower - The transmission power of the central node’s antenna

3.3.2.2.2. Decentralized version

The state space of the decentralized version of the agent consists of the tuple:

<nodeId, maxQueueSize, neighbourQueues, maxProcessingPower, position,
bandwidthCapacity, transmissionPower>

● nodeID - The identifier of the node in the current simulation
● maxQueueSize - The capacity of the node’s task queue
● neighbourQueues - An array storing the latest knowledge the node has of the

neighbors’ queue sizes.
● maxProcessingPower -The maximum processing power of the node
● position - The coordinates of the node in a 100x100 grid
● maxBandwidth - The bandwidth capacity of the channels the node has access to.
● transmissionPower - The transmission power of the node’s antenna.

3.3.2.3. Initial training simulation

To develop the simulation interface we utilized the Peersim simulation engine,48 which allows
for large-scale simulations with high dynamicity to be run. Furthermore, the Peersim Engine
allows for customizable and in-depth configuration of the simulation through configuration
files. A feature we find very useful.

In the subsequent section, we will delve into a comprehensive explanation of the simulation
configurations.

3.3.2.3.1. Configuration of the simulation

Before beginning to explain the possible configurations of the different parts of the network
we need to go over what these parts are. The simulation works by first generating a set of
nodes that can be of two different types, Workers and Clients. The Clients act as task
generators of work and collect metrics on the conclusion of tasks. Whereas the Worker Node
acts as a processing node for said tasks, meaning the Worker node is the one doing the

48 Alberto Montresor and Mark Jelasity. PeerSim: A scalable P2P simulator. In Proc. of the 9th Int.
Conference on Peer-to-Peer (P2P’09), pages 99–100. Seattle, WA, September 2009.

Page 36 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

actual computing of the tasks. The Worker nodes also may host a controller component,
which is a protocol that will run on the same node of the workers and is responsible for
collecting information about the node's neighborhood and sending such information in
one-hop broadcasts.

The challenge of task offloading encompasses various configurations, and we have
implemented some of these specific instances. These include Online-Binary task offloading,
where the decision to offload the next available task is made dynamically; and Batch Task
offloading, where, at each time step, decisions are made for every task that arrived in the last
time-step regarding offloading. Furthermore, we are working on implementing a
dependency-cognizant task offloading simulation. The selection of these modes is done by
defining a base file that outlines the appropriate protocols for each instance of the problem.
Beyond determining the simulation mode, the configurability extends to a range of global
parameters applicable to all instances, in the remainder of this section we will be going over
the different configurations that are allowed.

The global configurations encompass six domains: Global Configurations, Worker-specific
configurations, Controller-specific configurations, Client-specific configurations,
Cloud-specific configurations, and lastly, topology and network-specific configurations.

3.3.2.3.2. Global Configurations

Overall configurations of the simulation
Size of the Network. Defines the number of nodes in the simulation, due to the properties of
Peersim, if we have stipulated size N to the simulation then there are N workers and N
Clients.

SIZE 10
network.size SIZE

Number of times the simulation is executed. The constant 'CYCLES' defines the total
number of complete cycles (ticks in the simulation) that a simulation starting from 0 takes to
end. We should note the actual variable that sets this value is 'simulation.endtime', but for
convenience

The constant 'CYCLE' is used to define the number of ticks to reschedule the making of an
offloading decision. For example, if the value is left at one an offloading decision will be made
every time step.

CYCLES 1000
CYCLE 1

You only need to set CYCLE and CYCLES, not recommended to alter the
settings below directly. They are shown for informative purposes only.
...
simulation.endtime CYCLE*CYCLES

Bounds of the delay a message can have. Setting MINDELAY and MAXDELAY will allow
messages to randomly be delayed when being delivered. The delay will be such that
MINDELAY <= delay <= MAXDELAY and MAXDELAY == MINDELAY == 0 means no delay.

MINDELAY 0
MAXDELAY 0

Page 37 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

The probability of a package/message being lost. Allows messages to be lost.

DROP 0

Define the indexes of the nodes that have the controller function. This parameter
specifies the indexes of the nodes on the global network vector that have a controller
function.

CONTROLLERS 0,1,2

The flag that manages the existence of the Cloud. This flag can take values of either 1 or
0. If the flag is set to 1 an extra node not included in the nodes specified from 'SIZE' is
created. This means that if 'SIZE 10' and 'CLOUD_EXISTS 1' then there is a total of 11
nodes.

CLOUD_EXISTS 1

Configurations of the Simulation Flow and the PettingZoo environment
Utility Reward. a parameter of the reward function acts as a weight in the expression that
computes the utility of a reward. This parameter receives an integer. It is directly used by the
environment and not the simulation.

protocol.mng.r_u 1

Delay Weight. A parameter of the reward function acts as a weight in the expression that
computes the cost associated with the delay induced by taking an action. This parameter
receives an int. It is directly used by the environment and not the simulation.

protocol.mng.X_d 1

Overload Weight. A parameter of the reward function acts as a weight in the expression that
computes the cost associated with node overloading (overloading of a node happens when
the node has too many tasks assigned and starts losing tasks) induced by taking an action.
This parameter receives an int. It is directly used by the environment and not the simulation.

protocol.mng.X_o 150

Configurations of the Client

All the work generated on the simulation is in the form of applications, which in turn consist of
groups of tasks. The Clients generate applications, and the types of applications generated
have different properties depending on the type of simulation being implemented. In the case
of Binary-Online and batch offloading an application consists of a single task. In a simulation
with dependencies, an application consists of a Directed Acyclic Graph (DAG) of tasks.

A task consists of an amount of instructions to be processed, a total data size inputted, and a
cost in CPU cycles per instruction.

Similarly to the tasks, there can also be multiple types of DAGs, in the simulations with
dependencies the DAG type is selected randomly whenever the client is generating an
application. A DAG is modeled as a set of tasks, in which the type is randomly selected on
creation, a list of dependencies that must always start with task 0 and end in the last task.

Page 38 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

For each of the DAG or task types, all the configurations must be specified, otherwise an
error is thrown on environment creation. In the case of the dependency-less simulations,
there must be only one DAG type with one vertex and no edges.

Client's parameters
Task Arrival Rate per Client. This parameter acts as the event rate of an exponential
distribution, which rules when the next application to be sent to a given node will be
generated. Each client keeps track of when to send a new application to each of the workers
it can see independently. The computation of the time for the next event is done by inverting
the cumulative distribution function of the exponential distribution and sampling a uniform
distribution between 0 and 1, by applying the inverse distribution on the sampled value we
obtain the time for the next event corresponding to the sampled value.

protocol.clt.taskArrivalRate 0.1

Task Parameters
Max Possible deadline. This parameter allows for defining the minimum deadline. To disable
deadlines, set this parameter to be less or equal to zero.

protocol.clt.minDeadline 100

Number of Tasks. This parameter specifies the total number of task types in the simulation.

protocol.clt.numberOfTasks 2

Ratios of each task type. The ratio at which each task type is selected is specified through
this parameter. The actual values used do not matter as the weights will be scaled and
converted into probabilities.

protocol.clt.weight 4,6

Average Number of Cycles in an Instruction. The number of cycles per instruction of each
task type. This parameter is used in two ways:

○ In computing the reward function. Specifically, affects the delay function and
represents the execution cost of the tasks.

○ It is considered in computing the time it takes for a simulation to finish a task.

protocol.clt.CPI 1,1

Byte Size of Task. The byte sizes of each task type. This parameter is measured in Mbytes
and used in computing the cost in time of communication when offloading tasks and impacts
the communication cost in the Reward function.

protocol.clt.T 150,100

Number of Instructions per Task. The byte sizes of each task type. This parameter,
similarly to the CPI, is used in two ways:

● In computing the reward function. Specifically, it affects the delay function and
represents the execution cost of the tasks.

● It is considered in computing the time it takes for a simulation to finish a task.

protocol.clt.I 200e6,250e6

Page 39 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

DAG Parameters

Number of DAGs. This parameter specifies the total number of DAG types in the simulation.

protocol.clt.numberOfDAG 2

Ratios of each DAG type. The ratio of each DAG type. The actual values used do not
matter as the weights will be scaled and converted into probabilities.

protocol.clt.dagWeights 4,6

Edges. This parameter specifies the edge configurations of each of the DAG types. an edge
is represented by a string of the form predecessorVertice->successorVertice; different edges
within a DAG are separated by a ','. The edge sets of different DAGs are separated by a ';'.
Furthermore, the edges of a DAG must obey the following rules:

○ Task 0, the initial task, must be a predecessor to all tasks and have no
predecessors of its own.

○ If there are n+1 vertices the vertice of index n, must be a successor to all
tasks and have no successors of its own.

protocol.clt.edges 0->1,1->2,2->3,3->4,4->5,5->6,6->7,0->8,8->7,7->9

The number of vertices in the DAG. This parameter indicates the total amount of vertices
in the DAG. This value must be the value of the highest indexed vertice in the edges plus
one.

protocol.clt.vertices 10

Configurations of the Worker

The workers are defined in sets of nodes with the same properties, which we call layers. The
layers are organized in a vector and for each layer there is a processing power that consists
of the number of available cores multiplied by the frequency of the worker's CPU, and a
maximum queue size. We can add heterogeneity to the nodes in a layer by specifying a
deviation term to the frequency of each CPU in that layer.

Nodes can only communicate with nodes on its layer, the layer immediately below and the
one immediately above, for example, a node in layer index 1, would only be able to
communicate with nodes in the layer index 0 and index 2. This can be overridden by
manually specifying the links of the network, we shall explain how to do this later. Only nodes
in layer 0 can communicate directly with the clients.

Specify the number of layers in the simulation, This flag informs the simulation of the total
number of layers to be created. The value of this flag must be equal to the number of entries
in the 'NO_NODE_PER_LAYER'.

NO_LAYERS 2

Number of nodes in each layer, this flag defines the number of nodes in each of the layers
of the simulation. The sum of the nodes in all the layers must total the value in SIZE. Each
entry is separated by a ',' and indicates the number of nodes to be put on the layer of index
equal to its position, for example, if we have the configuration '5,0' then we would have 5
nodes in the layer of index 0 and 1 node in the layer of index 1.

Page 40 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

NO_NODES_PER_LAYERS 5,1

Number of Cores in Worker CPU. This parameter specifies the number of cores a node in
each layer will have, the value for each layer is separated by a ','. For example, given the
value '4,8', the nodes in layer index 0 will have 4 cores and the nodes in layer index 1 will
have 8 cores. The parameter is used for two things:

○ In computing the reward function. Specifically, affects the delay function and
represents the execution cost of the tasks.

○ It is considered in computing the time it takes for a simulation to finish a task.

NO_CORES 4,8

Frequency of Worker CPU. This parameter is measured in instructions/second, and
specifies the base frequency a node in each layer will have, the value for each layer is
separated by a ','. For example, given the value '1e7,3e7', the nodes in the layer index 0 will
have a frequency of 1e7 instr/second and the nodes in the layer index 1 will have a
frequency of 3e7 instr/second. The parameter is used for two things:

○ In computing the reward function. Specifically, affects the delay function and
represents the execution cost of the tasks.

○ It is considered in computing the time it takes for a simulation to finish a task.

FREQS 1e7,3e7

Variations between frequencies of nodes in the same layer This parameter specifies the
variation of the frequency between nodes in each layer. This means that a node that is
created in a layer with frequency 1e7 and variation 1e3 can be created with a frequency
between [1e7-1e3, 1e7+1e3]

VARIATIONS 1e3,1e3

Maximum Queue size. This parameter is used multiple times when computing the reward
function and is used as the threshold for a node to overload and start dropping tasks.
Similarly to the frequency and number of cores, it is specified for each layer as a list of
maximum queue lengths separated by ','.

Q_MAX 10,50

Configuring the Topology

There are three ways of configuring the topology of the network. The first is the manual way,
where we can specify a concrete topology by indicating the position of the nodes and their
links, alternatively. The second is the automatic way, where we randomly place the nodes
and they will be able to communicate with everyone in a neighborhood of user-defined
radius. Lastly, it is possible to specify the position of the nodes and have them linked to every
node in a neighborhood of a user-specified radius.

Randomize Positions Flag, this flag is the one that specifies whether the nodes are to be
placed randomly or a topology was specified manually.

RANDOMIZEPOSITIONS true

Page 41 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Specify the Positions of the nodes, the coordinates of the nodes are specified in one
String with the format "X0,Y0;X1,Y1;...". The coordinates of each node are separated by a ';',
so the coordinates of the first node are (X0, Y0) and the coordinates of the second are (X1,
Y1).

init.Net0.POSITIONS
18.55895350495783,17.02475796027715;47.56499372388999,57.28732691557995;5.366
872150976409,43.28729893321355

Randomize Positions Flag, this flag is the one that specifies whether nodes are to be linked
using the radius method or using the manual definition of the links.

RANDOMIZETOPOLOGY true

Specify the links between the nodes. This parameter allows for manually specifying the
links between nodes. The parameter is of the form, 'node_idx,neigh0,neigh1,...' where the
first entry is the node's index, then we list the indexes of the nodes it has links to. Entries are
separated by a ';'. If a node has no neighbours, we must specify the node's index without any
following indexes, for example '0;'.

init.Net1.TOPOLOGY 0,1;1,0,2;2,1;

The Radius of the neighbourhood. This parameter defines the radius of the neighbourhood
of a node, the area in which a node knows all other nodes.

init.Net1.r 50

Configuration of the links between the nodes

The Bandwidth of a Link. This parameter is measured in Mhz and is used in computing the
cost in time of communication when offloading tasks and impacts the communication cost in
the Reward function. Currently, the bandwidth is equal for all links.

protocol.props.B 2

The Path Loss Constant of a link. This parameter is used in computing the cost in time of
communication when offloading tasks and impacts the communication cost in the Reward
function. Currently, the path loss constant is equal for all links.

protocol.props.Beta1 0.001

The Path Loss Exponent of a link. This parameter is used in computing the cost in time of
communication when offloading tasks and impacts the communication cost in the Reward
function. Currently, the path loss exponent is equal for all links.

protocol.props.Beta2 4

The Transmission Power of a node. This parameter is measured in dbm and is used in
computing the cost in time of communication when offloading tasks and impacts the
communication cost in the Reward function. Currently, all nodes have the same transmission
power.

protocol.props.P_ti 20

Page 42 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Specify which flags have a link to the cloud. This parameter indicates for each layer if the
nodes in that layer can access the cloud or not. If the value at the index of the layer is 1, then
that layer can communicate with the cloud. Otherwise, if it is 0, then the nodes in the layer
are barred from communicating directly with the cloud. For example, for the configuration
'0,1', the nodes in the layer of index 1 would be able to communicate with the cloud, but the
nodes in the layer of index 0 would not.

CLOUD_ACCESS 0,1

Configuration of the Cloud

We consider the cloud as a collection of virtual machines that allow for processing multiple
tasks concurrently, one per VM. Each of these virtual machines is similar to a Worker in the
sense that every time-step they will be able to process a given number of instructions. Each
one will need to have processing power specified.

Number of VMs available to the Cloud - This specifies the number of VMs that can process
concurrent tasks in the Cloud at the same time.

protocol.cld.no_vms 3

Processing Power of the VMs - This is the number of instructions that a VM in the cloud
can produce in a time step.

protocol.cld.VMProcessingPower 1e8

These parameters are evolving and the most recent version will be available in the
documentation of the github repository for the RL orchestration of TaRDIS.

3.3.3. Lightweight and Energy-Efficient ML Techniques - T5.3
At the moment, we foresee three techniques for making a ML model more lightweight and
energy-efficient. All three techniques are related to the use of Deep Neural Networks (DNNs)
- lightweight methods for “simple” ML models (e.g., Support Vector Machines, Random
Forest, etc.) are out of scope of the project, since the DNNs require the most computational
resources. Moreover, DNNs are currently state of the art and are going to be implemented
most probably for all 4 use cases. In specific, the three methods are:

● Early exit of inference: This method can be implemented in a DNN that includes
multiple hidden layers. Assuming that the ML model is already trained, during its
inference phase the test/unseen data move through the input layer and are
fed-forward to the DNN. The DNN has multiple hidden layers that may also span
multiple architectural/hierarchical layers, i.e, some layers are in an IoT device, the
sequential hidden layers are in an edge server, the final hidden and output layers are
in the cloud. Thus, in order to make the inference of the ML model, data has to go
through IoT to edge to cloud and through all the layers (computationally heavy and
time-consuming). In the early exit of inference, several exit points (output layers) are
included in the architecture of the DNN during its training. The DNN is therefore
trained with the multiple output layers. During the inference, the output result provided
in the first model exit (e.g., after 2 hidden layers in a mobile device) is accompanied
with a confidence/accuracy score. In case that the latter score is acceptable, the
model early exits and the data does not run through all the rest of the hidden layers,
making it more energy and computationally efficient and faster. This method can be

Page 43 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

applied to both classification tasks (e.g., object detection) and regression tasks (e.g.,
orbit determination); preferably it is implemented in classification tasks. It requires:

○ The base ML model (model that the ML developer wants to transform to more
lightweight)

○ Type (classification or regression)
○ Number of exits (number of early exits/outputs that will be included in the

designed model)
○ Accuracy threshold (in order to locate the exits in the DNN architecture and

train the model)
○ Finally, the new early-exit version of the DNN must have access to the training

dataset

● Knowledge Distillation (KD): this method targets to transform a large DNN model
(with multiple hidden layers) to a smaller one that is more compact, more energy and
computationally-efficient, without losing significant accuracy in the DNN
output/prediction/estimation. In this context we have a teacher model (the original
DNN) and a student model (the lightweight DNN). The training dataset is used to infer
both the teacher and the student DNNs and then, the student uses as a label the
output of the teacher model. This method can be applied to both classification and
regression tasks (better results with classification tasks). It requires:

○ The base ML model (model that the ML developer wants to transform to more
lightweight)

○ Type (classification or regression task); if regression, we possibly need as
input from the user/ML developer a selection among several loss functions

○ Number of hidden layers (required by the developer for the student model)
○ Accuracy threshold (try to train the lightweight student network without

dropping below an accuracy threshold)
○ The student and the teacher DNNs must have access to the training dataset

● Pruning: this technique practically sets to zero some of the weights in several
neurons of a DNN that play a negligible role in the performance of the ML model. The
main idea is that some of the NN connections will not be triggered, thus making the
DNN more computationally- and energy-efficient, as well as speeding up the
inference process. This method works well both for classification and regression
tasks. It requires:

○ The base ML model (model that the ML developer wants to transform to more
lightweight)

○ Compression rate (%) and Accuracy (%) compared to the original DNN. In
general compression rate and accuracy should experience a trade-off

○ Speedup factor (e.g., make the inference 2 times faster)
○ Method that will be utilized (global magnitude, global gradient magnitude,

laywise magnitude, laywise gradient magnitude)
○ The new DNN must have access to the training dataset

3.4. DATA MANAGEMENT AND DISTRIBUTION PRIMITIVES

3.4.1. Decentralised Membership and Communication APIs - T6.1
The TaRDIS approach emphasises decentralised distributed architectures, potentially
composed by a large number of independent computational components that interact among
themselves - in a dynamic fashion - to ensure the operation of an application as a whole.

Page 44 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

To support this type of architecture, TaRDIS relies on several types of distributed (and
decentralised) protocols that provide different abstractions (potentially with different
guarantees) for TaRDIS applications. The distributed abstractions that we consider in TaRDIS
are the following:

a) Overlay Networks (Section 3.4.1.1), which fundamentally define and maintain a
logical network interconnecting the different components of a TaRDIS application, and
that self-manages in face of changes on the system affiliation (components joining,
leaving, or failing) and potentially to other dynamic aspects of the environment (e.g.,
reliability of a network link) or system (e.g., variations in the workload).

b) Communication Primitives (Section 3.4.1.2), which operate on top of overlay
networks, provide the fundamental mechanisms that allow different components of a
TaRDIS application to interact, exchange information, and coordinate. In the context
of TaRDIS we consider several types of communication primitives, including
point-to-point and several point-to-multipoint abstractions (e.g., broadcast, multicast,
publish-subscribe). As detailed further ahead, these primitives can provide different
types of guarantees for applications.

c) Distributed Storage Abstractions, which provide the fundamental mechanisms for
managing the state of TaRDIS applications, including API for defining a distributed
data model, and operations that both expose the state of the application or modify it.
These abstractions, as detailed further ahead, can provide a wide range of
guarantees and properties for applications.

While the specification of these distributed abstractions and their materialisation through a
distributed protocol is provided by TaRDIS and can be freely implemented in any
programming language or development ecosystem, concrete implementations of these
abstractions will also be provided as part of the TaRDIS toolbox. In the following we discuss
the properties and specific APIs that are currently planned to be provided and implemented
by the TaRDIS team for each class of abstractions.

3.4.1.1. Overlay Network Specifications and APIs

Overlay network reside at the lowest level of our distributed protocols stack (we assume
these operate above the operating system layer which provides a TCP/IP and UDP/IP stack
with a standard Posix interface), at the most fundamental level, overlay networks provide a
form of system membership management which allows components of a TaRDIS application
to track (even if partially) other components of that application, enabling the construction of
other primitives (communication and storage) on top of them.

The literature in peer-to-peer systems is rich in the proposal of several different types of
overlay designs, which can be classified in terms of the type of topology they strive to build
and maintain, either unstructured overlays (when the topology is random and impossible to
predict a-priori) or structured overlays (when the protocol strives to enforce some known
apriori topology invariants, typically based on probabilistic unique identifiers of
nodes/processes in the overlay network). These topology properties allow some overlays to
provide additional functionality for applications in addition to a form of membership tracking,
consider for instance Distributed Hash Tables (DHTs), a specific form of a structured overlay
network, which in addition to be able to provide to each node in the system a sample of other
nodes currently in operation, also can provide application-level routing within the identifier
space of the nodes that compose the overlay. Naturally, some functionalities that can be
provided by overlay depend on their specific topology, however, in our API to manage overlay
networks, we allow programmers to specify only the functionalities that the application
requires from the overlay, and having the runtime select the better overlay (or overlays) to
provide the target functionalities. Optionally, the programmer can indicate the specific overlay
they wish to use (in addition to functionality) which allows the runtime to validate the

Page 45 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

selection at compile time. (A more extensive discussion on overlay designs and
functionalities can be found in the TaRDIS deliverable D6.1)

In general, the API for managing overlay networks that TaRDIS plans provide is the following:

● net = create_overlay(functionality[], type (optional))
● initialise(net, entry-points[])
● get_neighbors(net, number [optional])
● shutdown_overlay(net)

Where the functionality parameter in the create_overlay operation is a set containing one or
more of the following values: routing, membership, sampling, dissemination, or
resourceLocation; and the type in the same operation is an optional parameter that allows
the programmer to specify a specific overlay network (e.g., Kadmelia, Chord, HyParView,
Scamp).

The other operations provide the fundamental and necessary interfaces for any overlay
network, including a mechanism to allow a process to join an existing overlay by providing a
list of processes currently in the system (usually called contacts); obtain a sample of other
processes in the systems; and leave the overlay network.

The API also includes events that can be asynchronously triggered for the application (if the
application registers handlers for these events), which include:

● NeighborUp(Id)
● NeighborDown(Id)

However not all overlays support this functionality.

Some types of overlay provide additional functionality which are exposed to other
components of the system (e.g., communication protocols) and applications through
additional API calls. These include, for instance, mechanisms to locate processes within an
application-specific identifier space or to route messages to nodes given the
application-specific identifier space being employed, and will be discussed in further detail on
Deliverable D6.1.

In terms of additional functionality that can be provided at the Overlay Network level, the
existence of a distributed certification platform may allow us to provide identity verification for
processes when new neighbouring relationships are established at the overlay layer.

3.4.1.2. Communication Abstractions and APIs

Within the context of TaRDIS we plan to provide distributed protocols for a wide range of
different communication primitives, going from simpler point-to-point primitives to more
complex point-to-multipoint primitives, the latter usually operating on top of an overlay
network. We aim also to provide mechanisms for inferring the appropriate type of overlay
network to be used when the application developer identifies the type of point-to-multipoint
communication primitive that they require.

Overall, all communication abstractions provided follow a similar API (presented below)
where a method allows to create a communication channel, another allows to deactivate that

Page 46 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

channel, and then a set of abrasion-specific methods allow to interact with the
communication channel (e.g., send a message, or register a topic of interest in a
publish-subscribe channel).

Furthermore, we consider a set of desired properties that can be defined when a
communication channel is instantiated, and that directly affect the implementation of the
communication channel used at runtime. These include:

● Reliability guarantees — which specify if the communication channel operates in
best effort, or if it provides more robust and fault-tolerant semantics (potentially with a
notification to the application when the communication channel cannot guarantee
delivery.

● Order — which specifies if the communication channel provides any guarantees over
the ordering of messages (events) delivered across processes, these can be the
following: node, fifo (first-in first-out), causal, or total.

● Delivery semantics — which specifies if delivery of events have specific guarantees,
which can range from: none, at least once, at most once, and exactly once.

● Security properties — which allow to specify if the communication channel enforces
any of the following security mechanisms (notice that some mechanisms might
require the existence of an external distributed certificate authority): none,
authentication, privacy, integrity (or combinations of the latter three).

In the following we illustrate the API proposed for the several classes of communication
abstractions planned for TaRDIS, in all cases there is an additional mechanism that allows a
component or application to register a handler to asynchronously process received events
from a communication channel.

Point-to-Point
createDirectChannel(properties, destination, overlayNetwork (optional)) -> channel
send(channel, msg)
registerHandler(channel, handler())
tearDown(channel)

Broadcast
createBroadcastChannel(properties, overlayNetwork (optional)) -> channel
send(channel, msg)
registerHandler(channel, handler())
tearDown(channel)

Multicast
createMulticastChannel(properties, address, overlayNetwork (optional)) -> channel
send(channel, msg)
registerHandler(channel, handler())
tearDown(channel)

Publish-Subscribe
createPubSubChannel(properties, overlayNetwork (optional)) -> channel
publish(channel, event)
subscribe(channel, topic)
unsubscribe(channel, topic)
registerHandler(channel, handler())
tearDown(channel)

Page 47 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

3.4.1.3. Workflow-Based Communication API

Building upon the overlay network and messaging primitives described in Section 3.4.1.1, the
TaRDIS toolbox provides a high-level abstraction for inter-process cooperation based on
declared workflows. A workflow consists of an initial state and further states reachable by
transitions that are represented by events replicated between the swarm participants. The
workflow is driven forward by a group of nodes in the swarm, each playing a given role  —
 each state transition is allocated to one role, the members of which are permitted to initiate it.

In accordance with the preliminary requirements described in D2.1, the replication and
cooperation model adopted by the workflow API is fully asynchronous and permits each node
to independently perform all actions that are allowed based on the partial knowledge that is
locally available. Since eventual consistency is another requirement, TaRDIS offers
verification tools that ascertain that a given workflow is a projection of the global swarm
protocol onto a certain role — which guarantees that all non-failing participants will reach
eventual consensus on the state progression performed by any execution of the workflow,
without employing further coordination (see section 3.2.1.1 on communication analyses).

// definition language for specifying swarm protocols
const swarmProtocol = TaRDIS.defineSwarmProtocol(...)

// derivation of the workflow as seen by one particular participant role
const workflow = swarmProtocol.projectionFor("someRole")
const { State1, State2 } = workflow

// obtain a running instance of a workflow
const instance = await TaRDIS.findWorkflow(workflow, id)

// obtain a list of running instances of a workflow in a given set of states
const flows = await TaRDIS.findWorkflows(workflow, cutoff, [State1, State2])

// interrogate an instance’s state
const state = instance.get()
if (state.is(State1)) {

const cmd = state.commands() // commands currently enabled
await cmd.command1(args…) // invoke a command to emit an event
const state2 = await.instance.next() // instance now has a new state

}

// consuming state update streams
for await (const state of instance) {

// observe state changes, invoke commands, possibly break the loop
}
// `instance` is now destroyed, resources released

// event listener interface
instance.on('next', (state) => { ... })

// stop background updates and release associated resources
instance.destroy()

Page 48 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

The above API is presented in the TypeScript language as per the Actyx use case (Section
4.1), with provided elements marked in red. This API makes extensive use of the expressive
features of the host language’s type system to statically ensure correct usage of the
workflow. A notable difference to linear channel usage models favoured by session types is
that due to the dynamic swarm nature the state of a workflow can change at any time in the
background, meaning that dynamic pattern matching is required for type-safe state access
(in contrast to the statically known progression of channel types in linear channel models).

3.4.2. Decentralised Data Management and Replication APIs - T6.2
Different storage solutions can be produced to support the operation (and be integrated into)
the TaRDIS toolbox. Storage solutions will differ between their architectural pattern (Section
3.4.2.1) and the guarantees provided to the application (Section 3.4.2.2): we discuss each
one in turn, and then outline the proposed APIs (Section 3.4.2.3).

3.4.2.1. Architectural Patterns

● Independent Subsystem: This is the common approach now-a-days where a data
management subsystem exists independently of the application, usually executing on
dedicated infrastructure. This is the case, for instance, when an application interacts
with a database that is centralised (such as a MySQL database) or distributed but
logically centralised, or geo-distributed (such as Cassandra,49 DynamoDB,50 or
CosmosDB51). While a geo-distributed/replicated database can be considered as
fitting within the scope of TaRDIS, within the context of this architectural pattern it is
more defensible to leverage on highly distributed data storage systems that have
components both on the cloud and at edge locations (potentially extending towards
the client applications).

● Integrated Component: This is an approach where the data management system is
fully decentralised and emerges from the interactions between the different
application components of a distributed system. In this context, each application
process will run a local component of the data management system that interacts with
similar components in other application processes of the system to collaboratively
maintain the data management systems. Replication can be exploited within this
context for both availability of data and data locality (which in network partition
scenarios will directly impact availability). There are no obvious solutions now-a-days
that completely fit within this model, so this is a venue of strong research and
innovation for TaRDIS.

Notice that his architectural patterns are independent of other architectural choices such as
the use of total or partial replication, static or dynamic replication/data placement, and others.

3.4.2.2. Provided Guarantees

Independently of the architectural pattern employed, each data management solution to be
provided as part of the TaRDIS toolbox will provide a set of well defined guarantees at the
interface level exposed to the programmer of applications. These include, but are not limited
to:

51 https://learn.microsoft.com/en-us/azure/cosmos-db/introduction

50 Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: a seamlessly scalable non-relational
database service. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (SIGMOD '12). Association for Computing Machinery, New York, NY, USA,
729–730. https://doi.org/10.1145/2213836.2213945

49 Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40. https://doi.org/10.1145/1773912.1773922

Page 49 of 74 © 2023-2025 TaRDIS Consortium

https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/1773912.1773922

TaRDIS | D3.1: First report on programming model and APIs

● Durability guarantees: This type of guarantee captures in which conditions the
effects of an operation that modifies the data managed by the system and that was
confirmed by the system are ensured to remain durable (and visible) in the future of
the system whatever happens. Can be defined in a quantified way (e.g., up to 3
faults).

● Availability guarantees: This type of guarantee captures conditions in which the
data management system is able to return a result for any operation issued by an
application. Can potentially be quantified, although unclear which metric could be
employed.

● Consistency guarantees: These guarantees effectively restrict the data that can be
returned by the data management system for an operation. These restrictions
consider the history of the system and previous operations and their return values.
Materializations of this includes causal consistency, read committed, etc

● Data Integrity guarantees: This type of guarantees captures invariants and other
application-level restrictions for the data being managed by the data storage system.

● Security: Involves a set of properties that include: none (for no security), Integrity,
Privacy, Access Control (or combinations of the three later).

3.4.2.3. Proposed APIs
create(dataSpace, properties)
create(dataSpace, tableID/keyspace, properties)
execute(dataSpace, tableID/keyspaceID, condition over objects, operation) -> result
delete(dataSpace, tableID/keyspace)
delete(dataSpace)

3.4.2.4. Existing and available solutions

The TaRDIS consortium has a large experience in the design and implementation of
large-scale distributed storage systems, namely in geo-replicated data storage system
offering causal+ consistently, such as ChainReaction52 and C353, edge-systems providing
configurable consistency guarantees such as the Engage54 system, and even on the
operation of decentralized storage systems such as Legion55 and the Inter-Planetary File
Systems (IPFS).56

56 Costa, P.Á., Leitão, J., Psaras, Y. (2023). Studying the Workload of a Fully Decentralized Web3
System: IPFS. In: Patiño-Martínez, M., Paulo, J. (eds) Distributed Applications and Interoperable
Systems. DAIS 2023. Lecture Notes in Computer Science, vol 13909. Springer, Cham.
https://doi.org/10.1007/978-3-031-35260-7_2

55 Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santiago Castiñeira, and Annette
Bieniusa. 2017. Legion: Enriching Internet Services with Peer-to-Peer Interactions. In Proceedings of
the 26th International Conference on World Wide Web (WWW '17). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, CHE, 283–292.
https://doi.org/10.1145/3038912.3052673

54 M. Belém, P. Fouto, T. Lykhenko, J. Leitão, N. Preguiça and L. Rodrigues, "Engage: Session
Guarantees for the Edge" 2022 International Conference on Computer Communications and Networks
(ICCCN), Honolulu, HI, USA, 2022, pp. 1-10. https://doi.org/10.1109/ICCCN54977.2022.9868846

53 P. Fouto, J. Leitão and N. Preguiça, "Practical and Fast Causal Consistent Partial Geo-Replication"
2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 2018, pp. 1-10. https://doi.org/10.1109/NCA.2018.8548067

52 Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: a causal+ consistent
datastore based on chain replication. In Proceedings of the 8th ACM European Conference on
Computer Systems (EuroSys '13). Association for Computing Machinery, New York, NY, USA, 85–98.
https://doi.org/10.1145/2465351.2465361

Page 50 of 74 © 2023-2025 TaRDIS Consortium

https://doi.org/10.1007/978-3-031-35260-7_2
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1109/ICCCN54977.2022.9868846
https://doi.org/10.1109/NCA.2018.8548067
https://doi.org/10.1145/2465351.2465361

TaRDIS | D3.1: First report on programming model and APIs

3.4.3. Decentralised Monitoring and Reconfiguration APIs - T6.3
The TaRDIS toolbox provides primitives to support reconfiguration of the applications
components in the runtime, as well as acquire the decentralised telemetry information from
the deployed system, including information about the load and health conditions of different
components. The toolbox will provide primitives to export fine-grained stored metrics to other
parts of the toolbox, such as machine learning components that require time series of the
stored metrics over some period of time.

This part of the toolbox will leverage the cloud-edge continuum, but also rely on open-source
solutions as part of its core.

Though it is early to specifies APIs for these tasks, some of the proposed APIs may include:

● Decentralised monitoring:
metricsAggregate(type, namespace, range) -> metric

metricSeries(type, range) -> metric_range

● Reconfiguration management:
create(type, namespace, properties) -> result
delete(type, namespace) -> result
get(type, namespace) -> result

3.4.3.1. Existing and available solutions

For store and metrics manipulations, TaRDIS can leverage InfluxDB57, Prometheus58 as
complete solutions, but we can also use some distributed databases if more complicated
queries are required such as Cassandra59, Scylladb60 etc. and for metrics extraction, we can
rely on metrics extracted from container platforms such as Docker61, Containerd62 etc. and to
collect other metrics, traces OpenTelemetry63 could be used. All projects are open-sourced.

63 https://opentelemetry.io/
62 https://containerd.io/
61 https://www.docker.com/
60 https://www.scylladb.com/

59 Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40. https://doi.org/10.1145/1773912.1773922

58 https://prometheus.io/
57 https://www.influxdata.com/

Page 51 of 74 © 2023-2025 TaRDIS Consortium

https://opentelemetry.io/
https://containerd.io/
https://www.docker.com/
https://www.scylladb.com/
https://doi.org/10.1145/1773912.1773922
https://prometheus.io/
https://www.influxdata.com/

TaRDIS | D3.1: First report on programming model and APIs

4 OVERVIEW OF THE TARDIS USE CASE APPLICATIONS

This section contains an overview of relevant parts of the use cases of the project partners
Actyx (Section 4.1), EDP (Section 4.2), GMV (Section 4.3), and Telefónica (Section 4.4).

The purpose of this section is to outline how each use case plans to leverage the
programming model and APIs provided by TaRDIS, and ensure that the use case
requirements are aligned to what the TaRDIS toolkit will provide. The contents of this section
complement Deliverable D2.2, which includes detailed use case and toolbox requirements,
and has been developed concurrently with the present Deliverable D3.1.

4.1. ACTYX

The Actyx use case involves the collaboration of applications according to the swarm
protocol depicted above: a machine in a factory floor requests maintenance, which is then
carried out by factory workers, while a manager overlooks the process.

It should be noted that in the pseudo-code presented below the swarm communication and
data management primitives from WP6 are not explicitly visible, as we expect these to be
used within the TaRDIS infrastructure to provide the more high-level facilities showcased
below. For example, publishing events or invoking workflow commands will be communicated
to other swarm peers using pub-sub primitives on an overlay network managed within
TaRDIS.

4.1.1. Actyx App 0: Machine Requesting Maintenance
This simple application demonstrates how a machine operating on a factory floor asks for a
maintenance task to be performed. It uses the TaRDIS communication primitives directly
(e.g. Tardis.publish(event)), i.e. it presents an external application of these TaRDIS
functions instead of the internal usage (shown in the next two applications). APIs provided
by TaRDIS are highlighted in red, comments in green, and the language is TypeScript.

// workflow definition that includes which role is allowed to see
// what events
const maintenanceTask = TaRDIS.designSwarmProtocol(...)
const workflow = maintenanceTask.projectionFor("machine")

// we assume that there is an application which uses the code module
// below to request maintenance tasks when needed
const requestMaintenance = async (machineId, machineType, instructions) => {

Page 52 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

const payload = { machineId, machineType, instructions }
const id = uuid.v4()
const event = maintenanceTask.events(id).create(payload)
await TaRDIS.publish(event)
return id

}

// this function can be used to obtain a future maintenance result
// using the `id` returned by an earlier call to
// `requestMaintenance`
const maintenanceResult = (id) => new Promise((resolve, reject) => {

const task = await TaRDIS.findWorkflow(workflow, id)
if ((await task.peekNext()).is(workflow.Initial)) {

reject(new Error(`maintenance task ${id} not found`))
}
task.on('next', (state) => {

if (state.is(workflow.Finished)||state.is(workflow.Failed)) {
resolve(state)
task.destroy()

}
})

})

While the requestMaintenance function directly emits the event that represents the request
for maintenance (and hence stays outside the scope of behavioural verification), the
maintenance result is computed by following the protocol embodied by the workflow object.
This object describes the shape of the workflow, including the currently available actions, as
seen by a particular participant role — the role of the “machine” in this case, as shown in the
usage of the projectionFor method. The holistic workflow description from which the
participant’s view is projected must obey some well-formedness conditions to ensure that all
foreseen roles will contribute to the workflow in a consistent fashion, reaching eventual
consensus on how the execution proceeded. This is expressed in a unit test like the
following:

// inspect the workflow for ambiguous messages or transitions
const result = TaRDIS.checkSwarmProtocol(maintenanceTask)
// this will print a detailed error report if the workflow has flaws
expect(result).toEqual({ type: 'OK' })

We demonstrate this verification step only here, but it applies equally to the other
applications described below.

4.1.2. Actyx App 1: Maintenance Worker Tablet
This application is used by maintenance workers in a factory as their main planning and
communication tool: they see open maintenance requests, select which one to work on next,
and log their progress including completion or handover (e.g. due to their shift ending). Each
maintenance request pertains to a specific machine in the factory and can be scheduled (for
preventive or predictive maintenance) or immediate (in case the machine broke down).

The application is implemented in the TypeScript language, using the React UI framework. It
interacts with the rest of the factory via the MaintenanceTask workflow: a machine, worker,

Page 53 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

manager, or an automated scheduling process creates a task and the app follows its
progress and allows its user to interact with one MaintenanceTask at a time. It also can
display an overview of a selection of currently open tasks with their current state details.

It should be noted that, during the execution of a task, the maintenance worker will also
interact with the machine under maintenance, using a set of processes designed for this
purpose (like transitioning the machine electronics and mechanics from production into
maintenance mode, or the reverse process). The application will thus be part of more than
one active process at a time; as each of these processes has a similar interplay with the
React UI like the MaintenanceTask, we do not describe these aspects in greater detail. The
important takeaway is that process execution cannot be exclusive, multiple processes can
proceed in parallel. This ability is also required for updating a live overview of the eligible set
of open maintenance tasks so the worker may select one.

In terms of security concerns (see also the related analysis of security properties in Section
3.2.3) the factory scenario offers only a limited amount of adversity: while some information
shall not be available to some participants, the general setup is highly collaborative. It is
sufficient to ensure the privacy of selected event payloads, we won’t have to ensure the
confidentiality of whether communication happened or who the participants were  —  the
associated cost in terms of required network bandwidth and increased communication
latency is not justifiable or even acceptable.

Pseudocode

The workflow as seen by the maintenance worker proceeds as follows:

begin:
query list of all open maintenance tasks, filtered by capability (⇒ query the event store)
sort list by priority, distance, ML inference, …
select one task and observe its state (⇒ instantiate workflow and subscribe to state changes)

reserve the task (⇒ invoke command to cause workflow transition)
walk to the machine
start the task (⇒ invoke command to cause workflow transition)
perform maintenance
finish, fail, or hand over the task (⇒ invoke command to cause workflow transition)

⇒ catch select: if the task is meanwhile reserved for someone else, stop working on it
loop begin

We first show the controller of this app that decides the UI states based on the model data
(i.e. the maintenanceTask entities stored in TaRDIS). APIs provided by TaRDIS are
highlighted in red, comments in green, and the language is TypeScript.

setUiState(Loading()) // populate UI state storage and trigger UI render

// workflow definition that includes which role is allowed to see what events
const maintenanceTask = TaRDIS.designSwarmProtocol(...)
const workflow = maintenanceTask.projectionFor("worker")

const capabilities = { ... } // machine types this worker knows

const prioModel = await TaRDIS.loadMLmodel(...) // task prioritisation

loop {
// limit look-back to seven days for finding open tasks

Page 54 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

const cutoff = new Date() - 7 * 24 * 60 * 60 * 1000
// find tasks that are within the given set of states
const tasks = await TaRDIS.findWorkflows(workflow, cutoff,

[workflow.Created, workflow.Requested, workflow.Started])
// treat the tasks as an array, which opts out of background updates
tasks.filter((task) => task.get().payload.machineType in capabilities)
tasks.sortBy((task) => prioModel.infer(task.get()))
// yield tasks to UI for selection; tasks list is self-updating
const selectionPromise = new Promise((resolve) =>

setUiState(Overview(tasks, (id) => resolve(id)))
const selected = await selectionPromise
// switch to working on the selected task
const task = tasks.find((t) => t.id === selected).clone()
// release resources for keeping non-selected tasks updated
// (TaRDIS should implement a caching strategy to optimise retrieval)
tasks.destroy()
await new Promise((resolve) => {

// UI can make task progress or invoke closure to leave task
setUiState(SingleTask(task, () => resolve()))
// monitor task progress and switch back to overview when done
task.on('next', (state) =>

state.is(workflow.Finished) || state.is(workflow.Failed)
? resolve() : null

)
})
task.destroy()

}

Note that the tasks list of tasks is a dynamic object that offers event emitter functionality.
The same goes for the task entity object. The UI makes use of these facilities to update
itself and offer the available choices to the end user as shown below on the example of the
SingleTask view.

const SingleTaskView = (task, exit) => {
const state = useWorkflow(task)
if (state.is(workflow.Created)) {

// state type is refined for Created, including commands
const request = state.commands()?.request
// commands get disabled once they have been invoked
const disabled = request === null
// barebones sketch of a UI with two buttons
return <div>

<button onClick={exit}>Exit</button>
<button onClick={request}

enabled={!disabled}>Request</button>
</div>

} else if (state.is(workflow.Requested)) {
return <div>...</div>

} else if (state.is(workflow.Started)) {
return <div>...</div>

Page 55 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

} else {
return <DoneView />

}
}

4.1.3. Actyx App 2: Manager Dashboard
This application is used by the production manager in a factory to oversee the planning and
execution of maintenance tasks as described above. The manager can reassign or close
tasks as well as fix mistakes made by maintenance workers (like leaving at the end of their
shift without handing their current task over to the next shift). By labelling task executions as
nominal or anomalous the manager provides ongoing training data for machine learning so
that the application can identify anomalous tasks in real-time, allowing the manager to
intervene and thus reduce overall machine downtime.

The application is implemented in the TypeScript language, using the React UI framework.
Like the worker app it interacts with the rest of the factory via the MaintenanceTask process.
In addition to task overview and single task interaction, it also monitors the completion of
maintenance tasks, labels them as nominal or anomalous via heuristics or user interaction,
and feeds the thusly labelled task execution traces to an ML process. The continuously
trained ML model is then used to monitor ongoing task execution for anomalies and alert the
user of each one found.

This application demonstrates that historical data needs to be stored such that the manager
dashboard can access them: execution traces need to be extracted to train ML models.
Besides this TaRDIS-related usage, the execution traces are also needed by the factory
management in order to perform cost evaluation, identify optimisation potential, and if
necessary perform audits.

The security concerns exhibited by this application match those of App 1 above.

Pseudocode

The manager dashboard application offers a single screen that presents useful information
and allows some actions (like stopping a task that was completed but where the worker
forgot to register that fact). Conceptually it keeps updating the screen in an endless loop like
this:

initialise two lists as empty: closedTasks and openTasks
begin:

query list of IDs of all maintenance tasks that were recently closed (⇒ query the event store)
remove task IDs that are already on closedTasks from this list
run ML inference to get nominal/anomalous status for each task’s whole history (⇒ use ML API)
add heuristic labels to tasks (noisy) based on production expert inputs
append task IDs to closedTasks (to prevent them from being processed again)
feed labelled tasks into federated learning service (⇒ use ML API)

query list of IDs of all open maintenance tasks (⇒ query the event store)
run ML inference to get nominal/anomalous status for each task’s whole history (⇒ use ML API)
compute current workflow state for each task (⇒ instantiate workflow state)
replace openTasks with list of tuples (task ID, anomaly status, workflow state)

display closedTasks, openTasks, and FL training status & metrics in suitable UI,
allowing manager to perform state updates like a worker (⇒ run workflow command)

loop begin (after suitable delay)

Page 56 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

As the UI uses the same primitives as in App 1, we concentrate on the controller. This one
consists of two loops that continually update the UI state: one event-driven by the completion
of tasks, the other driven by a timer to assess the progress of ongoing tasks at all times (i.e.
also when no new events are produced).

setUiState(Loading()) // populate UI state storage and trigger UI render

// workflow definition that includes which role is allowed to see what events
const maintenanceTask = TaRDIS.designSwarmProtocol(...)
const workflow = maintenanceTask.projectionFor("manager")

const taskModel = await TaRDIS.loadMLmodel(...) // task anomaly detection

// subscribe to the dynamically changing set of ongoing tasks
const tasks = TaRDIS.findWorkflows(workflow, cutoff,

[workflow.Created, workflow.Requested, workflow.Started])

// upon completion of a task, run inference (for UI display) and feed into
// machine learning infrastructure with (noisy) label for model improvement
tasks.on('remove', (task) => {

const eventLog = task.history()
const score = taskModel.infer(eventLog)
const noisyLabel = computeHeuristicLabel(eventLog)
taskModel.addTrainingRecord(eventLog, noisyLabel)
addUiClosedTask(task, score, noisyLabel)

})

// ML background process can provide state updates for the UI as well
taskModel.on('update', (state) => setUiMLstate(state))

// regularly inspect ongoing tasks to see whether they are still on track
setInterval(() => {

const tasksForUi = tasks.map((task) => {
const eventLog = task.history()
eventLog.push(new Date()) // inference needs to know current
time
const score = taskModel.infer(eventLog)
return [task, score]

})
setUiOpenTasks(tasksForUi)

}, 30_000) // update ongoing task inference every 30sec

It should be noted that the loadMLmodel function receives as arguments a definition of the
model design, the function that converts event histories into ML inputs, and any other
parameters that are needed for starting a federated learning agent that can asynchronously
perform incremental training improvements and exchange improved models with swarm
peers. We expect the number of generated training records to be of the order of 100–1000
per day, with mostly stable workflow conditions for weeks at a time.

Page 57 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

4.1.4. Actyx App 3: Real-Time Monitoring
This application is in a very early design stage. The goal is to develop a perimeter TaRDIS
service that monitors a running system for specific combinations of events — for instance,
whether a machine (or group of machines) emits multiple requests for maintenance in a short
time frame. Manually writing programs that identify complex combinations of events can be
error-prone and time-consuming, hence we plan to leverage the join pattern matching API
provided by TaRDIS (Section 3.2.1.3) (in collaboration with DTU) to tackle the problem and
reduce development time.

4.2. EDP

4.2.1. Background and general objective of the Energy use case
An Energy community is a network of consumers and producers, in a delimited geographical
region, who collectively manage and share energy resources.

For electricity, the connection between producers and consumers is established through
physical cables with connection points called nodes, establishing a grid. At these grid nodes,
voltage levels, frequency and phase need to be always stable within the limits - then one can
say that the grid is balanced - and this happens for both direct-current (DC) and
alternate-current (AC) grids.

Having the grid balanced is a sufficient condition to say that production meets consumption.
Nowadays, due to Renewables with no primary energy costs associated, one can also work
the other way around by, for instance, deferring consumption in time.

Geography and demographics drive electric grid sizing. Technically, cables and nodes should
support the power flow but as distance from generation increases, losses in the cables
become not neglectable. So, having production nearby demand is way better than energy
transportation. In this context, Energy communities (i.e., localised ensembles of energy
producers and consumers that are interconnected) play an important role.

Although there are several Energy communities already in place, centralization on the role of
the community aggregator or the distribution system operator (DSO) is a limitation to citizens’
energy trading participation, since registration, day-ahead forecast of production or faults
need to have human intervention, due to regulation.

If each peer is able to connect within its community and make automatic agreements all the
processes would be optimized, it could run 24h/7d with reduced human intervention and
costs would be reduced also. This is the perfect ground for applying the TaRDIS toolbox.

4.2.2. Energy use case components and objectives
The interactions between peers within a community take the major part of the specifications,
while the format of the message stands as the second most important. The former will be
described using communication diagrams, depicting the interaction between prosumers in
both the role of a consumer and producer, and the community orchestrator -responsible for
the external interactions with other communities’ orchestrators and DSO. The latter is
statically described, remaining simple and stable, and will be used in different contexts, with
different purposes.

There are three different messages with different fields:
1. Post - This message signifies the posting of a new offer to our market, and thus it

has an amount of energy in kWh that the supplier is offering, it has a price per kWh

Page 58 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

offered, it has a time which is the period in which the supplier is claiming to produce
the energy, and it has a location, so that offers from very far away can be dismissed,
and it also has an id, so we can identify this posting in other messages.

2. Bid - This message has an amount of energy we want to buy, it has a price we
suggest to buy the energy at, it has a postId, to know which post message this bid
refers to, and it has its own id.

3. AcceptBid - This message simply has the id of the Bid that it attempts to accept.
The objectives are by precedence:

1. Maximize the use of Renewable energy inside an Energy community;
2. Have all consumers within the community with Energy supply guarantee;
3. Reduce the number of messages between peers within the communication network;
4. Use same code and equipment for all actors;
5. Have a system that can, in the future, incorporate intraday market bids.

4.2.3. Working Principles
For the system to operate two stages are needed, the agreement on supply-consume
planning (ex-ante working mode) and the effective exchange of energy.

Demand should lead the process as human needs are based on energy consumption.
Demand-side management is not yet considered.

As in a market, a match occurs when the supply cost and demand offer are met. In this case,
an energy request from each consumer triggers bids from energy suppliers and each
consumer can choose its suppliers, for the period, based on its own criteria (price, source,
energy peak, etc.)

4.2.4. Requirements to TaRDIS
This use case has three crucial requirements from the TaRDIS runtime support.

1. Data storage mechanisms in the maintenance of the log of transactions and standing
energy offers and energy requests. The properties required in this case are durability,
authentication and non-repudiation (accountability).

2. Confidentiality and integrity of the matching process needs to be ensured by both
analyzing the specified workflows and protecting communication channels using
appropriate security protocols.

3. The decentralised machine learning mechanisms are relevant towards this use case
to allow the system to predict the ability of a specific community to serve a request for
energy, or if that request should be immediately routed towards the grid. These
predictions must be performed while ensuring the privacy of prosumers regarding
their energy production and consumption over time. This will take advantage of
decentralised and privacy-enhanced techniques developed within WP5.

4.2.5. Scenarios
For the energy use case, we plan to have at least six scenarios, with two considered as main
scenarios. The sequence chart, along with event-based pseudo-code, represents these main
scenarios. The goal is to specify the base dependencies and minimum configuration for
functionality.

Of the remaining four scenarios, two address specific situations in the energy community
when the energy is not balanced. The first situation involves a deficit of energy, while the
second deals with a surplus. The final two scenarios describe the “Run” mode, where we

Page 59 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

have already prepared the next hour time slot and entered into operation. In this mode, we
can either have normal operation or operate with faults.

In the following diagrams, we describe a set of scenarios for this use case, considering
one-hour periods. The scenarios are divided into two groups, one regarding the planning
work “Ex-ante” where all peers agree on Energy production and distribution just before the
new period starts and another group where real-time (operation) work is described as “Run”.

This extended DCR graphs-based language outlined in Section 2.2.1 is used here to define
the use case workflows by means of events and event relations that are statically defined but
whose instances are dynamically created on top of a communication API that supports the
local execution of events and propagation of state to other members of the swarm.

DCR graphs provide a high-level declarative programming model that allows easy
specification and reconfiguration of workflows. Event declarations also define the associated
data items and their data dependencies; thus, the data storage model can be defined
implicitly in the workflow.

The language includes the capability of querying the state of other input events or other data
elements (computation events). A connection to the ML APIs is essential here to guide the
matchmaking process in this use case. The semantics of query expressions used in the DCR
graphs can be powered by ML mechanisms and APIs.

External applications can register to execute events of the workflow having the appropriate
emitter role. Said applications can also register to listen to events that they are set to receive
and that they depend on to proceed. The enableness of an event, which declares that the
workflow is in a state that allows the execution of an event, should be established locally
based on the notice of execution of events in the system, propagated/replicated through the
decentralized system (swarm).

4.2.5.1. Scenario 1 - Ex-ante working Energy generation forecast for the next
hour

We outline the process for obtaining the energy generation forecast for the next hour. The
scenario describes the stage when the Community Orchestrator requests the producers how
much energy they will produce in the next period, calculating the total available. The process
then moves to the collection of feedback, concluding with the update of the Community
Orchestrator's records of generation.

Page 60 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

*Figure from D2.2 “S1 sequence diagram”

DCR/ReGraDa specification code
We now depict this sequence chart using DCR graphs. We use the roles Prosumer and
Orchestrator.

rpf: RequestProductionForecast: Orchestrator(cid) —> Prosumer(cid,*)
gpf1: GenerateProductionForecast: Prosumer(cid, 1) —> Orchestrator(cid) // producer 1
gpf2: GenerateProductionForecast: Prosumer(cid, 2) —> Orchestrator(cid) // producer 2
gpf3: GenerateProductionForecast: Prosumer(cid, 3) —> Orchestrator(cid) // producer 3
acc: AccountingCommunity[?:{kw}]: Orchestrator(cid) —> Orchestrator(cid)
;
rpf *—> gpf1
rpf *—> gpf2
rpf *—> gpf3
rpf *—> acc
gpf1 —><> acc (with timeout)
gpf2 —><> acc (with timeout)
gpf3 —><> acc (with timeout)

This depicts the instances of data elements (events) representing the community in the
sequence chart, different instances of the same event (GenerateProductionForecast) exist
per prosumer involved (gpf1, gpf2, gpf3). The explicit creation of these elements will be
made at the end of this section.

Page 61 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

In this definition, we can observe that the event rpf will make the three instances gpf1,
gpf2, and gpf3 pending. That means that the prosumers will have to execute them. It also
makes the event acc pending. Then, a milestone relation flows in the reverse order from all
gpf events to the acc event in that community, which means that acc will not be executed
while the former are pending (not been executed since rpf was executed.)

Pseudo-code Scenario 1

We now present the projected behaviour of each one of the roles in the different respective
applications. We use an event-based pseudo-code that uses the TaRDIS API.

Orchestrator app for Generation Forecast:

State:
i: iteration (logical clock)
broadcastChannel: community broadcast channel identifier

Upon init do:
broadcastChannel<-TaRDIS.createBroadcastChannel(props) // props are a set of properties

// that specify the type of
// properties desired from the
// broadcast channel

TaRDIS.create(“EnergyCommunityData”, “GenerationForecasts”,
props) // props are a set of properties related with the storage abstraction

// being requested
i <- 1
BroadcastPeriod <- 60 min
ResponseTimeOut <- 10 min
setup periodic timer (“HourlyForecastUpdate”, BroadcastPeriod)
TaRDIS.send(broadcastChannel, RequestProductionForecast(i))
setup timer (“TimeOut”, ResponseTimeOut)

Upon timer (“HourlyForecastUpdate”) do:
i <- i + 1
TaRDIS.send(broadcastChannel, RequestProductionForecast(i))
setup timer (TimeOut) (ResponseTimeOut)

Upon Receive GenerateProductionForecast (v, i’) from Prosumer(p) do:
// v: forecast value; i’: period considered; p: prosumer’s id
if(i == i’) then
CollectionData <- CollectionData U (p,v)
TaRDIS.execute(“EnergyCommunityData”, “GenerationForecasts”, STORE(p,v,i))

Upon timer (“TimeOut”):
// check available information
listOfForecasts <-

TaRDIS.execute(“EnergyCommunityData”, “GenerationForecasts”,
“id = i”, RETRIEVE *)

globalGenerationForecast <- computeGlobalHourlyForecast(listOfForecasts)
TaRDIS.execute(“EnergyCommunityData”, “GenerationForecasts”,

Page 62 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

STORE(globalGenerationForecast, i))

Prosumer app for Generation Forecast:

Upon Receive RequestProductionForecast(i) from Orchestrator do:
v <- TaRDIS.ML(“computeGenerationForecastNextTimePeriod”, i)
Send GenerateProductionForecast(v, i) to orch

4.2.5.2. Scenario 2 - Ex-ante working Energy consumption forecast for the next
hour

Consumers take scenario 1 as a tacit signal from the orchestrator that the new period is
about to start and broadcast their consumption, then negotiation between producers and
consumers starts and, using its own criteria, each consumer books production from
producers. The model can optionally use the price. The orchestrator can now totalize the
community’s internal consumption.

In the second scenario, we outline the process of acquiring the energy consumption forecast
for the next hour. The process initiates from the consumer side, where a consumer,
considered as a prosumer unable to meet their own energy requirements for this timeslot,
begins by requesting available energy from their prosumer peers. Subsequently, the
consumer seeks energy offers from the prosumer peers (producers), proceeding to the third
step of consumer selection of the best offer. The process concludes with the communication
of information to the selected producer and the community orchestrator for the updating of
accounting records.

Page 63 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

*Figure from D2.2 “S2 sequence diagram”

DCR/ReGraDa specification code

Once again we depict the scenario with DCR/ReGraDa graphs.

r1:EnergyRequest[?:{kw, t, prosumer}] : Prosumer(cid, pid1) —> Prosumer(cid,*),
Orchestrator(cid)
o2:EnergyOffer[?:{kw, t, pid}]: Prosumer(cid, pid2) —> Prosumer(cid,pid1)
o3:EnergyOffer[?:{kw, t, pid}]: Prosumer(cid, pid3) —> Prosumer(cid,pid1)
o4:EnergyOffer[?:{kw, t, pid}]: Prosumer(cid, pid4) —> Prosumer(cid,pid1)
s:SelectionOfSupplier[?:{consumer,producer}]: Prosumer(cid, pid1) —> Prosumer(cid,pid2)
c:Confirmation[?:{}]: Prosumer(cid,pid2) —> Orchestrator(cid)
acc: AccountingCommunity: Orchestrator(cid) —> Orchestrator(cid)
;
r1 *—> acc
s -->% r1
s —>% o2
s —>% o3
s —>% o4
s *—> c
c -->* acc

This depicts the instances of data elements (events) representing the community in the
sequence chart, different instances of the same event (EnergyOffer) exist per prosumer
(producer) involved (o1, o2, o3). The explicit creation of these elements will be made at the
end of this section.

Page 64 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

In this definition, we can observe that the event r1 will make pending the accounting event in
the community and that the event represents the explicit selection of a match. The three
instances o1, o2, and o3 are excluded when the selection is made. The selection also
makes the confirmation mandatory. The process also prevents the acc event from happening
before the confirmation is executed.

Pseudo-code Scenario 2

The projected behaviour of each role can be therefore illustrated by the following
(event-based) pseudo-code.

Consumer(c) app for getting supply offers:

State:
i: iteration (logical clock)
broadcastChannel: community broadcast channel identifier
directChannels: map (by process) of direct communication channels

Upon init do:
TaRDIS.create(“EnergyCommunityData”, “SupplyOffers”,

props) // props are a set of desired properties for the data storage
// abstraction and data collection being accessed.

// current period (iteration i) retrieved from community context storage
i <- TaRDIS.execute(“EnergyCommunityData”, “GenerationForecasts”, RETRIEVE MAX(i))
ResponseTimeOut <- 10 min
broadcastChannel <- TaRDIS.createChannel(broadcast,

props) // attach to the broadcast channel,
// the props is a set of properties
// specified for this communication
// channel

TaRDIS.send(broadcastChannel, EnergyRequest(i))
setup timer (“TimeOut”, ResponseTimeOut)

Upon Receive broadcast RequestProductionForecast(i’) //This message was sent in scenario 1
i <- i’
TaRDIS.send(broadcastChannel, EnergyRequest(i))
setup timer (“TimeOut”, ResponseTimeOut)

Upon Receive EnergyOffer(v, i’) from Prosumer(p) do:
if(i == i’) then

CollectionData <- CollectionData U (p,v)
TaRDIS.execute(“EnergyCommunityData”, “SupplyOffers”, STORE (p,v,i,c,RECEIVED))

Upon timer (“TimeOut”):
// check available offers - assumes inherently getting offers only for myself
listOfOffers <- TaRDIS.execute(“EnergyCommunityData”, “SupplyOffers”, “id = i”, RETRIEVE *)

if (listOfOffers is empty) then:
supply from EDP grid // exiting out of the TaRDIS context

else:
// internal function for picking the best match

Page 65 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

selectedProducer <- TaRDIS.ML(“calculateBestMatch”, listOfOffers)
// create direct communication link to selected producer
if directChannels[selectedProducer] == NIL

directChannel <- TaRDIS.createDirectChannel(properties,
SelectionOfSupplier)

TaRDIS.send(directChannel, SelectionOfSupplier(v,i))

Upon Shutdown do:
TaRDIS.tearDown(broadcastChannel)
for(dc in: directChannels):

TaRDIS.tearDown(dc)

Prosummer(p) app for Generation Forecast:

Upon init do:
TaRDIS.create(“EnergyCommunityData”, “SupplyOffers”, props //props are a set of desired

properties for the data storage abstraction and data collection being accessed.

Upon Receive EnergyRequest(v,i) from consumer(c) do:
availableGenerationValue <- TaRDIS.ML(“computeGenerationForecastNextTimePeriod”, i)

if(v<=availableGenerationValue) then:
TaRDIS.send(consumer, EnergyOffer(v,i))
TaRDIS.execute(“EnergyCommunityData”,“SupplyOffers”, STORE (p,v,i,c,OFFERED))
setup timer(“ConfirmationTimeOut(p,v,i,c,OFFERED)”, ConfirmationTimeOut)

Upon ConfirmationTimeOut(p,v,i,c,OFFERED) do:
TaRDIS.execute(“EnergyCommunityData”,“SupplyOffers”, STORE (p,v,i,c,UNFULFILLED))

Upon Receive SelectionOfSupplier(v,i) from Prosumer(c):
TaRDIS.send(c.directChannel, Confirmation(v,i,c))
TaRDIS.execute(“EnergyCommunityData”,“SupplyOffers”, STORE (p,v,i,c,CONFIRMED))

Community Orchestrator(O) App for Generation Forecast:

Upon Receive Confirmation(v,i,c) from Prosumer(p):
// internal functions for accounting
executeAccounting(Confirmation(v,i,c),p)

4.2.5.3. Consolidated DCR/ReGraDa code for the two previous scenarios

Finally, we gather the above examples in a complete DCR/ReGraDa program that depicts
both scenarios as well as the bootstrap process. In this final example, we use the spawn
relation to create the communities and their prosumers, thus instantiating the different events
that correspond to the different elements of the graphs above. With relation to the previous
excerpts, this example contains an event consume and an event replyConsume that are
needed to correctly pair the events and allow a prosumer to issue multiple requests and
offers.

createCommunity[?:{ cid }]

Page 66 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

;
createCommunity —>> {
ci: CommunityInfo[{@trigger.cid}]: * —> *
cp:createProsumer[?:{pid}]: Orchestrator(@trigger.cid) —> *
acc:accountingCommunity[?:{kw}]: Orchestrator(@trigger.cid) —> Orchestrator(@trigger.cid)
rpf:requestProductionForecast: Orchestrator(cid) —> Prosumer(@trigger.cid,*)
;
rpf *—> acc
cp —>> {
pi: ProsumerInfo[{pid = @trigger.pid}]
pf: generateProductionForecast[?:{}]:
Prosumer(ci.cid, @trigger.pid) —> Orchestrator(ci.cid)

c: consume[?:{kw}] :
Prosumer(ci.cid, @trigger.pid) —> Prosumer(ci.cid, @trigger.pid)

p: replyConsume[?:{kw, consumer}]: Prosumer(ci.cid, @trigger.pid) —>
Prosumer(ci.cid, consumer)

;
rpf *—> pf
pf —><> acc (with timeout)
consume —>> {
r:!EnergyRequest[{kw,t}]:
Prosumer(c.cid, @trigger.pid) —> Prosumer(c.cid,*), Orchestrator(ci.cid)
s: selectionOfSupplier[?:{producer}]:
Prosumer(c.cid, @trigger.pid) —> Prosumer(ci.cid, producer)

;
r *—> acc
s —>% r
s —>% o:EnergyOffer if(s.producer == o.producer)
s —>% c:Confirmation if(s.producer != c.produce and c.consumer == pi.pid)

}
replyConsume —> {

o:EnergyOffer[{consumer = @trigger.consumer, producer = pi.pid}]:
Prosumer(c.cid, pi.pid) —> Prosumer(c.cid, @trigger.consumer)

c:Confirmation[{consumer = @trigger.consumer, producer = pi.pid}}]:
Prosumer(ci.cid,pi.pid) —> Prosumer(c.cid,@trigger.consumer), Orchestrator(c.icid)

;
c —>% c
o —>* c

}
}

}

This code is just a sketch of what a process capturing the behaviour of the prosumers could
look like.

4.2.5.4. More scenarios

The remaining 4 scenarios are described shortly in the next items:

● Scenario 3 - Ex-ante working with total energy consumption forecasted for next hour
and balance of deficit.

o After Scenario 1 and 2, in this scenario where the community is unbalanced
and requires energy from external sources, the community orchestrator takes
on the role of a consumer and requests energy from other community
orchestrators. Two possible situations arise from this: either the remaining
energy needs are fulfilled by the other community orchestrators, or if not, the
community orchestrator requests the remaining deficit from the grid (DSO)

● Scenario 4 - Ex-ante working with total energy consumption forecasted for next hour
and balance of surplus.

Page 67 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

o After Scenario 1 and 2, it is possible that our community has surplus of energy
being also unbalanced, the community orchestrator takes on the role of a
producer and offers energy to other requesting community orchestrators
Scenario 3. Two possible situations arise from this: either the surplus of
energy is fulfilled by the other requesting community orchestrators, or if not,
the community orchestrator injects the remaining surplus to the grid (DSO).

● Scenario 5 – Running in Normal operational mode.
o In the normal operation mode, following Scenario 2, the consumer receives

the energy offer from the selected producer, acknowledges this offer, informs
the community orchestrator, and ask the producer to initiate the energy
transaction. Finally, the consumer notifies both the producer and orchestrator
of the total energy consumed, allowing them to verify and update the records.

● Scenario 6 – Running with faults.
o In this final scenario, two types of faults may occur, either from the supply side

or the demand side. In the case of a supply fault, the consumer notifies the
community orchestrator of the issue. The orchestrator resolves the energy
problem using information from Scenario 1. If it progresses to Scenario 3, the
grid will always fulfil the consumer's needs. The orchestrator then tags the
producer as not meeting the agreement. If maintenance is required, it will be
carried out by a human, and if the fault is recurring, the producer may be
excluded from the pool. In the case of a demand fault, the producer notifies
the community orchestrator, ceases production if unable to do it, starts
injecting into the grid, and the consumer is not alerted.

While in the presentation of these use case scenarios we have relied on the notion of a
centralised orchestrator, for both simplifying the exposition of these scenarios and to ensure
that these closely maps to the baseline of this use case; in the context of TaRDIS the
orchestrator will be materialised in a decentralised way, where different processes across
presumers can coordinate between them to provide this functionality. The distribution (and
decentralisation) of the orchestrator can be achieved while ensuring that the API (and
events) processes are the same as the ones modelled here.

4.3. GMV

The GVM use case application will be used by space engineers for designing distributed
Orbit Determination and Time Synchronization (ODTS) algorithms for a constellation of
satellites, to study and optimize their performance.

The GMV use case applications will leverage the following TaRDIS APIs providing a
perimeter service:

● AI/ML programming primitives (Section 3.3.1): will be used to define ML models for
the Orbit Determination and Time Synchronization algorithms

● Lightweight and energy-efficient ML library (Section 3.3.3): will be used to minimize
computational load of the ML models/tasks. This is particularly important in view of a
future implementation of the models on a satellite on-board computer.

The GMV use case will produce two applications:

● a reference sequential simulation of the decentralised orbit determination (Section
4.3.1), written mainly using Matlab and Python. This application will use the TaRDIS

Page 68 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

AI/ML APIs in combination with well-established modelling and simulation techniques
adopted in the space industry; and

● a distributed simulation (Section 4.3.2) that will additionally leverage the TaRDIS APIs
for communication and distribution, to simulate a swarm of satellites performing
decentralized ODTS by modelling each satellite as an independent distributed
application instance.

4.3.1. Sequential Orbit Simulation Application

An example of a very high level pseudo-code of a simulation is outlined below.

settings = setParameters() // establish parameters settings for ODTS simulation
orbital_data = getOrbitalData(orbit_data_file) // get satellites orbital data
connections = islScheduling(orbital_data) // inter-sat connections over time
for block_number = 1 : N // iterate over blocks

for t_slot = 1 : n // iterate over time slots
for sv_number = 1 : n_sats

obs = getMeas(connections(t_slot),
orbital_data,
settings) // simulate measurements

state_update = odts(state, obs) // performing ODTS
state = state_update

end
end

end

TaRDIS APIs will be used within the ‘odts’ function mentioned in the pseudo-code.

4.3.2. Distributed Simulation Application Based on PTB-FLA

The pseudo-code of a distributed PTB-FLA based simulation is outlined below:

ptb = PtbFla(no_nodes, node_id) // create the object ptb (testbed start up)
settings = setParameters() // parameters settings for the ODTS simulation
orbital_data = getOrbitalData(orbit_data_file) // get satellites orbital data
connections = islScheduling(orbital_data) // inter-sat connections over time
for block_number = 1 : N // iterate over blocks

for t_slot = 1 : n // iterate over time slots
obs = ptb.getMeas(node_id, connections(t_slot),

orbital_data,
settings) // simulate measurements

state_update = odts(state, obs) // performing ODTS
state = state_update

end
end
del ptb // delete the object ptb (testbed shutdown)

Obviously, transforming the original pseudocode for the sequential (centralised) orbit
simulation (Section 4.3.1) into the pseudocode for the distributed PTB-FLA simulation
(Section 3.3.1.1) is rather straightforward and requires just two modifications:

1. create the object ptb at the beginning of the simulation and delete it at the end,

Page 69 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

2. replace the call to the function getMeas with the call to the function getMeas on the
object ptb (denoted as ptb.getMeas); note that the latter function requires the
additional argument node_id.

Although the two pseudo code samples look almost identical, there is one major difference
between them: in the first pseudocode the variables obs, state_update, and state
contain data for the complete system (i.e., the satellite constellation), whereas in the second
pseudocode they contain data only for the local node of the system (i.e., the individual
satellite being simulated by the local node) whose PTB-FLA ID is node_id. The big
difference between the two pseudo-codes is that with PTB-FLA the loop over the number of
satellites is avoided, thus allowing to simulate the ODTS algorithm for each satellite in
parallel (and potentially in a distributed system) and not in a sequential mode.

4.3.3. Roadmap
GMV and UNS plan to try to implement the second pseudocode later during the TaRDIS
project; tentatively GMV will translate their sequential simulation from Matlab to Python, UNS
will implement the new function getMeas, and the resulting PTB-FLA based distributed
simulation will be tested as a group of processes on a single computer.

4.4. TELEFÓNICA

Telefónica’s use case is a Federated-Learning-as-a-Service (FLaaS) platform designed to
support various types of applications running on end-user or edge devices. At the moment,
this application also requires a centralized back-end server to coordinate the construction of
the FL global model.

Main languages used for the service are Python for the backend server and Java for the
Android OS-based applications using FLaaS middleware.

TaRDIS primitives, APIs and tools that FLaaS will take advantage of are described in the
following subsections.

4.4.1. Analyses for security (T4.3, Section 3.2.3)

This analysis is expected to be useful for the secure communications between the various
entities of FLaaS, i.e., backend server, intermediate / super-nodes, end-user or edge
devices. The use of this analyses’ outputs will be useful to provide guarantees about the
entities participating in the communications between such entities. The pseudo-code below
outlines how secure connections are expected to be established.

(NetId, Conn) = check_connectivity # prompts the network (swarm)
for connectivity status

The output consists of:
● NetId is the array of identities of the all the network nodes (e.g., end-users,

super/compute nodes, aggregator),
● Conn is the array of communications links between all the network nodes (e.g., 0 or

1)

Sec_conn = establish.sec.connections(NetId, TrFlag, Conn,
security_parameters,

Page 70 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

Thresholds) # establishes secure
connections in the network
according to predefined
rules, i.e., encryption
protocols to be applied.

The arguments are:
● NetId as defined above
● TrFlag is an array of the trust level of each node
● Conn as defined above
● security_parameters: the predefined rules for security among the nodes
● threshholds: an array with acceptable thresholds related to security_parameters

The functionalities above can be either part of an API or built-in within the FLaaS
middleware.

4.4.2. AI/ML programming primitives (T5.1, Section 3.3)

The output of this task is expected to be used for providing:
1. examples of readily deployable code for distributed AI applications (which can be of

use while building the new version of FLaaS);
2. an optimization-based module for configuring execution of FL tasks on end-user and

edge devices, by taking into account constraints at hand such as device types and
on-device system parameters (computation power, memory, communication), FLaaS
network topology, etc.;

3. a way to help deployment of FLaaS tasks on devices, by taking into account the
different execution environments: swarms (e.g., for distributed optimisation/P2P
federated learning for the organization of FLaaS resources in a hierarchical fashion)
and device-edge-cloud environments (e.g., for using split learning for the FLaaS
tasks).

FLaaS will make use of the runtime environment for FL algorithms, PTB FLA API, as
described in the related Section 3.3.1.1 above. In particular, it will call the constructor
(PtbFla) to initiate an instance and then the fl_centralized function (for FL execution
between the server and the end-users). It can possibly make use of the fl_decentralized (in
the case of cross-app on-device FL). Finally, it calls the destructor to end the instance
(PtbFla()).

4.4.3. Lightweight and energy-efficient ML library (T5.3, Section 3.3.3)

This library is expected to be used within FLaaS to provide:
1. novel ways and mechanisms to perform the machine learning training of FL models

on device, using energy-efficient methods (e.g., with early stopping of the training
when sufficient performance is achieved);

2. new communication protocols for initializing and managing FLaaS tasks, that will
allow the reduction of overhead while transmitting the local and global models
between end-user (or edge) devices and the server/backend.

This library will allow the FLaaS developer to adjust the processing demand of the learning
tasks and their energy footprint. This can be achieved through library’s modules that make
use of the following methods:

Page 71 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

● Knowledge distillation:
studentNN = KD(teacherNN, NNtype, Nhl, accuracy, td)
where the inputs and output are described in the related Section 3.3.3 above.

● Pruning:
newNN = pruning(baseNN, compr_rate, accuracy, speedup, pr_method, td)
as described in the related Section 3.3.3 above.

4.4.4. Decentralised membership and communication (T6.1, Section
3.4.1)
This task will provide 2 services that are useful for the new version / generation of FLaaS:

1. decentralized membership service that will help FLaaS, under its hierarchical version,
to maintain information at the intermediate/overlay layer about the end-user or edge
devices participating in the FLaaS platform and which of them can execute an FL task
at any given moment, as well as which devices can take the elevated roles of
super-peers (intermediary nodes in the overlay) given that there is heterogeneity
expected in the resources available per node;

2. communication service that will provide point-to-point and point-to-multipoint
communication primitives with different guarantees to the FLaaS third-party
application developer.

The main function of this API would be the method:
create_overlay(functionality, type (optional))

that is described in the related Section 3.4.1.1. above.

Input parameters except the specified ones would be:
● NetId as defined in Section 4.4.1 above,
● Conn as defined in Section 4.4.1 above,
● Sec_conn: the connections flagged as secure, output of the

establish.sec.connections function described in Section 4.4.1 above.

Then, the functions described above for subscribing, publishing, multicasting, etc. can be
applied on top of the overlay network.

4.4.5. Decentralised monitoring and reconfiguration (T6.3)
This task will help FLaaS to support FL task execution across heterogeneous and highly
dynamic settings. This means FLaaS backend (and super-nodes in the hierarchical version)
will use the decentralized telemetry information collected (by the module build in this task)
from the different participating end-user and edge devices, to assess health and load
conditions, and to make continuous decisions on where to train the FL tasks. FLaaS will also
use the solutions designed within this task to perform membership, communication, and
replication decisions at the overlay layer (hierarchical FLaaS), as well as the ML training
execution on participating FL devices.

state_T = current_state(T) # this call (at the time instance T) will give as
output the characteristics of the current system
state

The returned state_T is an array consisting of (not exhaustive list):
● NetId as defined in Section 4.4.1 above,
● Conn as defined in Section 4.4.1 above,
● Sec_conn as defined in Section 4.4.1 above,
● B_u : amount of data per end user u to be processed.

Page 72 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

update_overlay(state_(T-1), state_T) # updates the overlay network

where the arguments are
● state_(T-1): the state of the previous time instance (T-1) stored in memory and
● state_(T): the current state (T), which is the output of the current_state function.

Output: list of modifications in the overlay network and orchestration of the network. Effective
immediately and before T+1. This is closely related to the decentralised membership and
communication API (Section 4.4.4) (create_overlay). In particular, this API will account
for potential failures (as discussed in the Deliverable D4.1, Section 5.1) such as
communication failures, imbalanced data distribution, participant dropouts, etc. by making
adjustments on the decision variables.

Page 73 of 74 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.1: First report on programming model and APIs

5 CONCLUSION

This report has documented the ongoing work on the specification of the TaRDIS
programming model, and on the specification and development of the TaRDIS toolkit APIs. It
has outlined how the APIs made available by each work package (as part of the TaRDIS
toolbox) will be leveraged by each project use case. This documentation is an important step
towards the project objectives, ensuring the alignment of the various work packages.

The outcomes of this deliverable have been made possible by the close collaboration
between the project partners. As the TaRDIS project activity progresses, the TaRDIS
programming model and APIs will undergo further consolidation and alignment with the use
case and toolbox requirements produced in Deliverable D2.2 (released concurrently with the
present Deliverable D3.1). To this end, the TaRDIS project tasks T3.1 (models) and T3.2
(APIs) will continue their activity by maintaining up-to-date documentation of the model and
APIs, and fostering collaborative design through workshops. The results of these activities
will be documented in the next iterations of this deliverable (D3.3 and D3.5).

Page 74 of 74 © 2023-2025 TaRDIS Consortium

