

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

D3.2: Integrated Development
Environment

Revision: v.1

Work package WP 3

Task Task 3.3

Due date 2024-03-31

Submission date 2024-03-31

Deliverable lead Carlos Coutinho (CMS)

Version 1

Authors

Carlos Coutinho (CMS), Carlos Reis (CMS)

Roland Kuhn (ACT)

Alceste Scalas (DTU)

João Costa Seco (NOVA), António Ravara (NOVA)

Miroslav Popovic (UNS)

Reviewers
Miodrag Djukic (UNS)

Rafael Oliveira Rodrigues (EDP)

Abstract

This document presents an in-depth evaluation of the TaRDIS IDE platform,
demonstrating its suitability for the development of the TaRDIS toolbox.
Through a thorough examination, the document analyses the requirements
and alternatives to select an IDE as the optimal choice for empowering the
TaRDIS swarm development endeavours.

Keywords Integrated Development Environment

TaRDIS | D3.2: Integrated Development Environment

 Page 2 of 59 © 2023-2025 TaRDIS Consortium

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 2023-11-15 Document first draft
Carlos Coutinho (CMS), Carlos Reis
(CMS)

V0.2 2024-03-20 First version for internal review
Carlos Coutinho (CMS), Carlos Reis
(CMS)

V1 2024-03-31 Final Version to be submitted Carlos Coutinho (CMS)

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme

Nature of the
deliverable:

R

Dissemination Level

PU
Public, fully open, e.g., web (Deliverables flagged as public will be
automatically published in CORDIS project’s page)

✔

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D3.2: Integrated Development Environment

 Page 3 of 59 © 2023-2025 TaRDIS Consortium

EXECUTIVE SUMMARY

The TaRDIS project aims at integrating a set of tools on an Integrated Development

Environment (IDE) to simplify the development of decentralized applications deployed in a

diverse setting.

This document presents an in-depth evaluation of the TaRDIS IDE platform, the core tool of

the proposed development environment to foster the creation of applications that conform to

the TaRDIS programming model. This document aims to demonstrate its suitability for the

development of the TaRDIS toolbox. It includes an alternatives analysis on the most suitable

candidates and the development of a customisation layer to ease the development of projects

related to TaRDIS. Moreover, this document also includes a brief description of the main

features and integration needs (still at an early stage) of the tools that are being developed in

the project’s WP4, WP5 and WP6, focusing essentially on their foreseen needs of user

interface and integration.

TaRDIS | D3.2: Integrated Development Environment

 Page 4 of 59 © 2023-2025 TaRDIS Consortium

TABLE OF CONTENTS

Executive Summary .. 3

1 IDE Analysis ... 8

1.1 TaRDIS Requirements ... 8

1.2 IDE Alternatives Analysis ... 8

1.3 Discussion of Results ..28

2 Introduction to the Eclipse IDE ..30

2.1 Workspaces ..30

2.2 Plug-in Development Environment ..31

3 Eclipse Plug-in Integration for TaRDIS ..32

3.1 Installation ...32

3.2 Extending the TaRDIS Plug-in ..32

3.3 How to use the TaRDIS Plug-in ..33

3.4 Examples ..35

4 TaRDIS Candidate Applications ..37

4.1 WorkflowEditor (WP4) ...37

4.2 Ant (WP4) ...39

4.3 Data preparation for Flower-based FL model training (WP5).................................40

4.4 Flower-based FL model training (WP5) ...42

4.5 Flower-based FL model inference and evaluation (WP5)44

4.6 Early-Exit (Lightweight Functionality) (WP5) ...45

4.7 Federated AI Network Orchestrator (WP5) ..47

4.8 IFChannel (WP4) ..47

4.9 Java Typestate Checker (JaTyC) (WP4) ...48

4.10 Knowledge Distillation (Lightweight Functionality) (WP5)49

4.11 P4R-Type (WP4) ...50

4.12 Pruning (Lightweight Functionality) (WP5) ..52

4.13 PSPSP (WP4) ...53

4.14 PTB-FLA-based FL or ODTS model training (WP5) ..54

4.15 ReGraDaIFC (WP4) ..56

5 Conclusions ...57

TaRDIS | D3.2: Integrated Development Environment

 Page 5 of 59 © 2023-2025 TaRDIS Consortium

LIST OF FIGURES

Figure 1: Customisation of Apache NetBeans 11
Figure 2: Apache NetBeans ProjectFactory 12
Figure 3: Customising Project Display on NetBeans 13
Figure 4: Generating a new project type in NetBeans 13
Figure 5: Creating a menu entry in IntelliJ IDEA 16
Figure 6: Registering a new class in the plugin.xml file 16
Figure 7: Creating a menu item in IntelliJ IDEA 16
Figure 8: Registering a menu item in IntelliJ IDEA 16
Figure 9: Creation of a ModuleBuilder class in IntelliJ IDEA 17
Figure 10: Creation of a ModuleType class in IntelliJ IDEA 17
Figure 11: Registering the classes in plugin.xml 18
Figure 12: Adding an image to the Eclipse project nature 20
Figure 13: Defining properties for creating a new nature in Eclipse 21
Figure 14: Extension setup in Eclipse 21
Figure 15: Definition of nature class in Eclipse 21
Figure 16: Defining the TaRDIS wizard in Eclipse 22
Figure 17: Defining the code for the wizard behaviour in Eclipse 22
Figure 18: Adding a project Wizard in Eclipse 23
Figure 19: Definition of the nature of the current Eclipse project. 23
Figure 20: Define a perspective in Eclipse 23
Figure 21: Code to use the defined perspective in Eclipse 24
Figure 22: Creating a separator for TaRDIS in VSCode 26
Figure 23: Add commands to the VSCode welcome views 26
Figure 24: VSCode configuration 26
Figure 25: Adding an action to the create button in VSCode 27
Figure 26: Registering configuration options in VSCode 27
Figure 27: Clean installation of Eclipse IDE with the TaRDIS plug-in 33
Figure 28: Wizard for creating a TaRDIS project 34
Figure 29: Menu for creating specific Babel Java classes 35
Figure 30: TaRDIS WorkFlowEditor 39
Figure 31: Data Preparation for Flower-Based FL Model Training 41
Figure 32: Data Preparation for Flower-Based FL Model Training Mock-up 42
Figure 33: Flower-Based FL Model Training 43
Figure 34: Flower-based FL model training Mock-ups 44
Figure 35: Flower-Based FL Model Inference and Evaluation 45
Figure 36: Flower-Based FL Model Inference and Evaluation Mock-ups 45
Figure 37: Example of a program using an API generated by P4R-Type 52
Figure 38: ODTS algorithm execution 56

TaRDIS | D3.2: Integrated Development Environment

 Page 6 of 59 © 2023-2025 TaRDIS Consortium

LIST OF TABLES

Table 1: Comparison between selected IDEs ...28

TaRDIS | D3.2: Integrated Development Environment

 Page 7 of 59 © 2023-2025 TaRDIS Consortium

ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interfaces

DNN Deep Neural Network

FL Federated Learning

GUI Graphical User Interface

HMI Human-Machine Interface

IDE Integrated Development Environment

JAR Java Archive

JaTyC Java Typestate Checker

ML Machine Learning

ODTS Orbit Determination and Time Synchronization

OS Operating System

OSGi Open Services Gateway Initiative

PDE Plug-in Development Environment

PTB-FLA Python TestBed for Federated Learning Algorithms

SDK Software Development Kit

SPMD Single Program Multiple Data

TDM Time Division Multiplexing

UI User Interface

TaRDIS | D3.2: Integrated Development Environment

 Page 8 of 59 © 2023-2025 TaRDIS Consortium

1 IDE ANALYSIS

The definition of an Integrated Development that fosters and promotes the development of

distributed and decentralised SWARM applications needs to be carefully planned. It must take

into account the needs of the businesses being served by swarm applications, expressed on

the requirements of the existing project pilots, but additionally the foreseen developer

experience, and finally the initial vision of the tools being developed in the other WPs of the

TaRDIS project that are foreseen to be integrated in the TaRDIS toolbox.

1.1 TARDIS REQUIREMENTS

The TaRDIS project entails distinctive requirements, elicited in the project’s deliverable D2.2,

that entail a highly resilient and adaptable IDE. Key project specifications encompass

communication, membership and storage abstractions, telemetry acquisition, configuration,

and state management. The proposed IDE should exhibit broad OS support, efficiently handle

numerous projects and files, offer comprehensive programming language support, and allow

graphical customization to facilitate the creation of intuitive GUIs for developer assistance.

1.2 IDE ALTERNATIVES ANALYSIS

The choice of an IDE for the development of projects is essentially a personal choice, similar

to the choice of a web browser or the choice of a text editor. Nevertheless, it was important to

capture the state of the art in development to ensure the choice would be consistent with the

opinion of a large group of developers. To make an educated analysis, the team selected a

set of research articles which are not only relevant to the development discussion but are

recent to ensure it follows the current trends in development.

Hence, [1] performs an interesting analysis over the choice of cloud-based IDEs versus the

traditional “desktop” IDEs, stating that cloud-based IDEs may be helpful in supporting the

integration of Artificial Intelligence (AI) and Machine Learning (ML). From the team’s

experience, many IDEs now support cloud-based or web-based IDEs, e.g., Eclipse CHE or

Visual Studio Code are or have web-based interfaces. On the other hand, [2] analyses the

migration from education towards development, focusing on the JetBrains platforms for

supporting students to learn how to develop properly. In [3], the authors used the Jupyter

platform integration with Visual Studio Code to teach programming to students, describing the

benefits of this integration. Going on a more popular approach, numerous technical portals

perform comparisons on these platforms. The KeyCDN blog [4] lists their top IDEs with an

inclusion of Visual Studio Code, NetBeans, IntelliJ IDEA and Eclipse, among several other

choices depending on the developed language. [5] also enumerates multiple IDEs according

to the developed language, but for Java*-like languages, the choice also falls on Eclipse,

NetBeans, Visual Studio or IntelliJ IDEA. And while Stackify [6] made a large and

comprehensive list of the 51 most popular IDEs, they did not rank the list or determine the best

ones, just listed them, and showed some of their advantages and cons. Same with CTO [7],

which lists a shorter list, including again tools such as Xcode, IntelliJ IDEA, Visual Studio Code,

RubyMine, NetBeans or WebStorm. [8] also lists Eclipse, IntelliJ IDEA, Visual Studio Code,

Xcode and Atom among their best choices for IDEs. GoodFirms [9] has an interesting approach

TaRDIS | D3.2: Integrated Development Environment

 Page 9 of 59 © 2023-2025 TaRDIS Consortium

to defining common requirements and features that are desired on IDEs, then proceeding with

the comparison of a list of IDEs including NetBeans, Eclipse, Xcode or IntelliJ IDEA among

others. Many other sites such as GeeksforGeeks [10], TatvaSoft [11], Syndell [12],

StudySmarter[13], TechBeamers [14], HackIO [15] or even Sourceforge [16] make similar lists,

which helped a lot to determine a common understanding of which tools should be passed to

a short list for better analysis and understanding.

Among all the open-source IDEs considered best-of-breed in the market, some prominent

choices stand out, such as NetBeans, IntelliJ IDEA, Eclipse, and Visual Studio Code. Each of

these IDEs caters to different needs and preferences, offering a diverse set of features,

plugins, and customization options.

The following subsections present a short list of the most popular and prominent platforms,

and the best candidates to be selected as the TaRDIS IDE. This analysis will comprehensively

compare these IDEs, shedding light on their strengths and weaknesses.

TaRDIS | D3.2: Integrated Development Environment

 Page 10 of 59 © 2023-2025 TaRDIS Consortium

1.2.1 Apache NetBeans

NetBeans is a free and open-source IDE maintained by The Apache Software Foundation [17].

Languages Support

NetBeans supports Java by default, but it can additionally support a wide variety of

programming languages.

Customization

The IDE may be customised by creating NetBeans Modules.

Prerequisites

● Install NetBeans IDE

Pros

● Project management

● Static analysis tools

● GUI-Design Tool

● Stability

● Plugins

● Documentation

● Highly customizable

Cons

● Resource-intensive

● Community

Example: create a custom project type and a menu item

This example will create a new project type, with icons and a wizard.

Over this explanation, there is the need to add dependencies, something that can be done by

selecting ALT+ENTER over the classes that are missing and selecting “Search Module

Dependency” to import them.

Setup

After installing the NetBeans IDE, create a new project and select “Java with Ant” → “NetBeans

Modules” → “Module”.

This creates a new module, which can be used to customize the IDE to support a different type

of project.

TaRDIS | D3.2: Integrated Development Environment

 Page 11 of 59 © 2023-2025 TaRDIS Consortium

Define a project type

Defining a project type requires implementing the class org.NetBeans.api.project.Project.

The example described in Figure 1 creates a class called “MyProject” which implements the

class Project mentioned above:

Figure 1: Customisation of Apache NetBeans

TaRDIS | D3.2: Integrated Development Environment

 Page 12 of 59 © 2023-2025 TaRDIS Consortium

After this definition, the IDE must be instructed to recognize this project type. This is done by

creating a MyProjectFactory class that implements org.NetBeans.spi.project.ProjectFactory,

as described in Figure 2:

Figure 2: Apache NetBeans ProjectFactory

By doing this, every folder that has a “*.tardis” file inside will be recognized as a TaRDIS project

by NetBeans.

Customize the project display on the IDE

Since the IDE recognizes the new project and can open it, the next step is to easily identify

this project type in the projects list. This is done by adding a custom icon instead of the default

folder icon.

In order to do that, it is necessary to create a class called “MyProjectLogicalView” that

implements org.NetBeans.spi.project.ui.LogicalViewProvider, as described in Figure 3:

TaRDIS | D3.2: Integrated Development Environment

 Page 13 of 59 © 2023-2025 TaRDIS Consortium

Figure 3: Customising Project Display on NetBeans

Create a wizard to generate the new project type

To add a custom entry to the new project categories, it is required to define that new category.

To do that, create an XML layer and add the code in Figure 4 inside the filesystem tag:

Figure 4: Generating a new project type in NetBeans

TaRDIS | D3.2: Integrated Development Environment

 Page 14 of 59 © 2023-2025 TaRDIS Consortium

To create the wizard, NetBeans has an easy way of doing it:

1. Create a sample project including the “.tardis” file and other files/folders.

2. Run the defined module.

3. Open the sample project.

4. On the module project, add a new “Project Template”.

5. Select the sample project and indicate the category and the name of the template.

6. Customize the wizard, if needed.

7. Close the running instance of the module.

8. Run it again and create a new project with the sample and wizard just created.

TaRDIS | D3.2: Integrated Development Environment

 Page 15 of 59 © 2023-2025 TaRDIS Consortium

1.2.2 JetBrains IntelliJ IDEA Community Edition

While IntelliJ IDEA is a very complete development environment it requires a paid licence.

However, the project includes a Community Edition which is built on open-source code,

providing essential features for Java and Kotlin enthusiasts [18]. It is also the basis for the

popular IDE Android Studio for the development of mobile applications.

Languages Support

It supports Java, Groovy, and Kotlin out of the box, but also Scala, Python, Rust, and Dart via

plugins. It also supports XML, JSON, YAML, XSLT, XPath, and Markdown.

Customization

We can create custom plugins for this IDE using the Java programming language alongside

IntelliJ Platform SDK.

Prerequisites

● Install IntelliJ Idea Community Edition.

● Create an IDE Plugin Project.

● Update dependencies and install missing ones (Java, Gradle, etc.).

● Create the necessary classes, extend and register them to customize the IDE.

Pros

● Intelligent Code Assistant

● Build Tools

● Refactoring Tools

● Debugging Tools

● Documentation

● It is straightforward to create a plugin

Cons

● Resource-intensive

● Lots of features and support are only available in the paid version

● Not very customizable

Example: create a plug-in

This example creates a plugin to add a new menu entry and a menu item and create a new

project type:

TaRDIS | D3.2: Integrated Development Environment

 Page 16 of 59 © 2023-2025 TaRDIS Consortium

Create a menu entry

To create a menu entry on the main menu of the IDE, it is required to create a class and extend

it like described in Figure 5:

Figure 5: Creating a menu entry in IntelliJ IDEA

After the class is created, it needs to be registered in the plugin.xml file inside the actions tag,

as depicted in Figure 6:

Figure 6: Registering a new class in the plugin.xml file

Create a menu item

This action will create a menu item inside the menu group created previously, creating a class

like described in Figure 7.

Figure 7: Creating a menu item in IntelliJ IDEA

The next action is to register the menu item inside the group previously registered, in the

plugin.xml file, as seen in Figure 8:

Figure 8: Registering a menu item in IntelliJ IDEA

TaRDIS | D3.2: Integrated Development Environment

 Page 17 of 59 © 2023-2025 TaRDIS Consortium

Create a project type

Creating a project type requires creating a module builder and a module type.

The custom module will be displayed on the new project popup, and its creation needs the

definition of a ModuleBuilder class (see Figure 9) and of a ModuleType class (see Figure 10).

Figure 9: Creation of a ModuleBuilder class in IntelliJ IDEA

Figure 10: Creation of a ModuleType class in IntelliJ IDEA

TaRDIS | D3.2: Integrated Development Environment

 Page 18 of 59 © 2023-2025 TaRDIS Consortium

To conclude the process, it is needed to register both these classes inside the extensions on

the plugin.xml file, as described in Figure 11:

Figure 11: Registering the classes in plugin.xml

TaRDIS | D3.2: Integrated Development Environment

 Page 19 of 59 © 2023-2025 TaRDIS Consortium

1.2.3 Eclipse

Eclipse is a free and open-source IDE (Eclipse Licensed) maintained by the Eclipse

Foundation [19]. For years it has been considered one of the most complete IDEs in the market

and it has numerous customisations and plugins developed for various purposes.

Languages Support

Eclipse supports Java by default but can be extended by creating custom plugins to support a

different language or by using already developed plugins.

Customization

We can use Plug-in Development Environment (PDE) which provides the proper tools to

extend the IDE.

The Eclipse 4 developed plugins are incompatible with project Eclipse Che because Che has

a new code base.

Prerequisites

● Install Eclipse IDE with PDE integrated

● Check for updates

● Create a Plugin-Project

● Add the desired dependencies

● Add the desired extensions

● Customize the IDE by adding extension points

Reading and Saving Data

There are several options for saving and reading data. The recommended way is using the

Eclipse runtime preferences, although we can use files and databases.

Regarding the runtime preferences, there are scopes. Scopes enable us developers to indicate

if the data should be stored related to the workspace, project, etc.

We have the Configuration Scope which is used to save data across multiple workspaces,

Instance Scope to save data only for a workspace, Default Scope (not saved on disk) is used

to indicate default values and when the data is not found in other scopes it uses the default

ones and finally the Project Scope that is used to save data in a single project.

Pros

● Language support

● Code editing and code refactoring

● Performance

● Community

● Integrations

TaRDIS | D3.2: Integrated Development Environment

 Page 20 of 59 © 2023-2025 TaRDIS Consortium

● Highly customizable

Cons

● Resource-intensive

● Somewhat steep learning curve

Example: create a plug-in

This example creates a plugin that adds a menu entry for TaRDIS, a view for settings, a new

project type, a project wizard creator, and a new perspective.

Setup

After following the steps on Prerequisites to create a Plugin Project make sure to add the

following dependencies:

1. Packages: javax.annotation, org.eclipse.ui, org.eclipse.ui.actions

2. Plug-ins: org.eclipse.core.runtime, org.eclipse.ui, org.eclipse.ui.resources,
org.eclipse.ui.forms

These packages and plug-ins will enable us to extend the IDE interface and access the SDK

tools to add logic to it.

Create a Project Nature

The project nature indicates the type of project that will be created (e.g., Java, TypeScript). As

the target here is to create a new type, it requires creating a project nature. This action requires

defining two extensions, named org.eclipse.core.resources.natures and

org.eclipse.ui.ide.projectNatureImages.

To add an image for the project nature just right-click on the extension and select New →

image, and apply these configurations (see Figure 12), ensuring that the icon image is stored

inside the plugin project:

Figure 12: Adding an image to the Eclipse project nature

The next step is about creating a new nature, so select the org.eclipse.core.resources.natures

and set the values on Figure 13:

TaRDIS | D3.2: Integrated Development Environment

 Page 21 of 59 © 2023-2025 TaRDIS Consortium

Figure 13: Defining properties for creating a new nature in Eclipse

The following step is to open this extension, making sure to have it setup like the definition in

Figure 14:

Figure 14: Extension setup in Eclipse

Then, click on ‘class*:’ to generate the class file and edit it to become like the one in Figure 15:

Figure 15: Definition of nature class in Eclipse

TaRDIS | D3.2: Integrated Development Environment

 Page 22 of 59 © 2023-2025 TaRDIS Consortium

Create a custom project with the custom nature defined

This example creates a wizard and a page for the wizard to enable the creation of a TaRDIS

nature project.

This starts by creating a wizard page. To do that, create a new class that extends the

org.eclipse.jface.wizard.WizardPage, and then, on the createControl method, just set the

form needed to create the project. With such a page created, the next step is to create the

wizard. This is performed by adding the extension org.eclipse.ui.newWizards, and creating

a wizard with this configuration as described in Figure 16:

Figure 16: Defining the TaRDIS wizard in Eclipse

Then click on the ‘class*:’ link to generate the code that is needed. This class has a function

called performFinish, which is the handler when the finish button is clicked, so it’s the proper

place to create a project and add the code in Figure 17:

Figure 17: Defining the code for the wizard behaviour in Eclipse

TaRDIS | D3.2: Integrated Development Environment

 Page 23 of 59 © 2023-2025 TaRDIS Consortium

Then, it is necessary to add the page that contains the form to create the project, instantiating

the page and adding it in the wizard constructor, as described in Figure 18:

Figure 18: Adding a project Wizard in Eclipse

The next step is to indicate the nature of this project. To do that, on the creation method add

the code defined in Figure 19:

Figure 19: Definition of the nature of the current Eclipse project.

Create a custom perspective

Perspectives are elements that enable developers to customize the IDE layout. To create a

perspective, add the extension org.eclipse.ui.perspectives, and add a new extension with

the configuration in Figure 20:

Figure 20: Define a perspective in Eclipse

Click on the ‘class*:’ link to create the code and configure the layout on the createInitialLayout

method. The final step is to indicate that when a project is created, the IDE should change to

TaRDIS | D3.2: Integrated Development Environment

 Page 24 of 59 © 2023-2025 TaRDIS Consortium

this perspective. To have that behaviour add the following code after the project creation (see

Figure 21):

Figure 21: Code to use the defined perspective in Eclipse

TaRDIS | D3.2: Integrated Development Environment

 Page 25 of 59 © 2023-2025 TaRDIS Consortium

1.2.4 Microsoft Visual Studio Code

Visual Studio Code is a lightweight but powerful source code editor which runs on a desktop

and is available for Windows, MacOS and Linux. It comes with built-in support for JavaScript,

TypeScript and Node.js and has a rich ecosystem of extensions for other languages and

runtimes (such as C++, C#, Java, Python, PHP, Go, .NET) [20]. This application started by

being promoted as a text editor, which rapidly evolved to a full-fledged IDE. Its main feature is

the support of a popular and rich marketplace of extensions and add-ons that confer to this

IDE a very strong and robust functionality. Microsoft’s influence led this IDE to be very popular,

especially among the newest generations of developers [21].

Languages Support

It can support all languages, either by using an already existing extension or by creating your

own.

Customization

You can customize your editor with extensions, snippets, themes, languages support,

keymaps and notebook renderers. All of this is written in TypeScript or JavaScript.

Prerequisites

● Install Visual Studio Code

● Install Node

● Install globally the ‘yo’ and ‘generator-code’ packages via Node Package Management

● Run ‘yo code’ and choose how to extend the editor

● Open the created project with the editor and customize it

Pros

● Easy customization

● Community

● Extensions

● Lightweight and fast

● Cross-platform

● Intelligent code completion

● Debugger support

Cons

Not a full IDE for all languages, i.e., it relies on being a flexible editing platform with a rich
marketplace of extensions, some of which give the platform the ability to become an IDE for
certain specific languages.

TaRDIS | D3.2: Integrated Development Environment

 Page 26 of 59 © 2023-2025 TaRDIS Consortium

Example: create a plug-in

This example creates a plug-in to add a view with the TaRDIS icon, and 3 buttons to create,

open or clone a project.

Create a TaRDIS separator

To add a separator for TaRDIS we need to add the following structure to the package.json

file inside the ‘contributes’ tag, as seen in Figure 22:

Figure 22: Creating a separator for TaRDIS in VSCode

Create a view for the separator

The separator needs to render a view. Therefore, in this case, the strategy is to use the

welcome views, adding the following configuration (see Figure 23):

Figure 23: Add commands to the VSCode welcome views

Then, indicate that this view will be rendered inside the separator (see Figure 24):

Figure 24: VSCode configuration

TaRDIS | D3.2: Integrated Development Environment

 Page 27 of 59 © 2023-2025 TaRDIS Consortium

Define and register a command

It is simple to configure a create button to define and register a command.

It is just a matter of configuring it in the VSCode configuration (see Figure 25):

Figure 25: Adding an action to the create button in VSCode

The final step is to register these changes in the extension.ts file, as depicted in Figure 26:

Figure 26: Registering configuration options in VSCode

TaRDIS | D3.2: Integrated Development Environment

 Page 28 of 59 © 2023-2025 TaRDIS Consortium

1.3 DISCUSSION OF RESULTS

After thoroughly evaluating the four major IDEs, IntelliJ Idea Community Edition was excluded

from consideration due to limitations in supported languages and essential features behind a

paywall. The focus then shifted to NetBeans, Eclipse and Visual Studio Code, which are

compared in Table 1 regarding their most relevant features.

Table 1: Comparison between selected IDEs

Feature Eclipse NetBeans Visual Studio Code

Community

Support

Strong, established

community with a wealth of

plugins and community-

driven resources

Solid community but

not as extensive as

Eclipse's

Active community, but

Eclipse has a more

robust and long-

standing presence

Customization Excels in customization,

with a plugin architecture

that supports extensive

tailoring of the IDE

Decent customization

options but may not be

as feature rich as

Eclipse

Good customization

through extensions but

may not match

Eclipse's level of

features

Documentation Offers extensive and

detailed documentation,

facilitating issue

troubleshooting

Comprehensive

documentation but

may not be as

extensive as Eclipse's

Well-documented with

a vast array of tutorials

and guides.

Flexibility Highly flexible and

extensible, excelling in

allowing developers to

adapt the IDE to their

workflow

Flexible but not as

versatile as Eclipse in

terms of deep

customization

Flexible and

lightweight but may

lack some advanced

features

Language

Support

Strong language support,

covering a broad spectrum

of programming languages

Good language

support but may not

cover as many

languages as Eclipse

Excellent language

support with a wide

range of extensions.

Ecosystem and

Integration

Well-established

ecosystem with support for

numerous plugins and

integrations

Good integration

capabilities but might

not have the extensive

ecosystem found in

other IDEs

Part of the Microsoft

ecosystem, providing

seamless integration

with other Microsoft

tools

TaRDIS | D3.2: Integrated Development Environment

 Page 29 of 59 © 2023-2025 TaRDIS Consortium

Considering all the above factors, with special reference to the community support, extensive

customization, thorough documentation, flexibility, and broad language support are essential

criteria, Eclipse emerges as a strong choice for implementing development projects like the

TaRDIS toolbox. Its long-standing reputation and feature-rich environment make it a reliable

and robust IDE for a wide range of development tasks. Additionally, it has been the choice for

developers since a long time ago, becoming well-established in the development communities.

Nevertheless, in most recent years, VSCode is becoming increasingly more popular among

the newest generations due to its very interesting capabilities of customisation and rapidly

growing rich marketplaces of extensions that allow it to be able to work in multiple and

heterogeneous environments.

The initial stage of providing an IDE for developers to integrate the TaRDIS toolbox will

therefore be based on the Eclipse platform, which will be described in the following sections of

the document. In a follow-up deliverable, the team intends to include a version of the toolbox

customisation for the VSCode platform, and, as best as possible, try to cope with both

platforms on the development and integration of the TaRDIS toolbox modules.

TaRDIS | D3.2: Integrated Development Environment

 Page 30 of 59 © 2023-2025 TaRDIS Consortium

2 INTRODUCTION TO THE ECLIPSE IDE

In the ever-evolving landscape of software development, choosing the right IDE can

significantly impact a developer's productivity, code quality, and overall development

experience.

Among the array of open-source IDEs available, Eclipse emerges as a standout choice. With

its robust features, extensive plug-in ecosystem, and active community support, Eclipse has

solidified its position as a preferred tool for developers across various domains.

In this dynamic environment, the TaRDIS project adds a compelling dimension to Eclipse's

capabilities. Leveraging the IDE's versatile plug-in ecosystem, the TaRDIS project aims to

extend Eclipse and tailor it to the specific needs of the project's toolbox.

2.1 WORKSPACES

Eclipse workspaces play a pivotal role in facilitating efficient project management and

development workflows. A workspace in Eclipse is essentially a directory on the file system

where all projects, configurations, and metadata are stored. This concept is particularly well-

suited for aggregating several projects seamlessly [22].

The following subsections present a breakdown of how Eclipse workspaces are advantageous

for aggregating multiple projects.

Organizational Structure

Eclipse workspaces provide a structured and organized environment for managing multiple

projects. Each project resides within the workspace, allowing developers to compartmentalize

and maintain a clear hierarchy.

Unified Development Environment

By utilizing a single workspace, developers can create a unified development environment

where all related projects coexist. This ensures consistency in settings, configurations, and

project dependencies.

Shared Resources

Workspaces allow projects to share resources efficiently. Common libraries, configuration files,

and other shared assets can be managed centrally within the workspace, streamlining

maintenance and updates across multiple projects.

Cross-Project Navigation

Eclipse offers features for seamless navigation between projects within the same workspace.

Developers can easily switch between projects, view source code, and manage dependencies

without having to open separate instances of the IDE.

TaRDIS | D3.2: Integrated Development Environment

 Page 31 of 59 © 2023-2025 TaRDIS Consortium

Build and Deployment Coordination

Eclipse workspaces facilitate coordinated build and deployment processes across multiple

projects. Developers can define build paths, manage dependencies, and ensure that changes

in one project are reflected appropriately in others within the same workspace.

Search and Refactoring

Eclipse provides powerful search and refactoring tools that operate at the workspace level.

This allows developers to perform comprehensive searches across all projects, making it

easier to identify and modify code elements consistently.

Preferences

Eclipse workspaces allow developers to set preferences at the workspace level. This is

beneficial when there is a need for uniform settings or configurations across multiple projects,

ensuring consistency in development practices.

Collaboration and Version Control

Workspaces seamlessly integrate with version control systems, enabling collaborative

development on projects stored in repositories. Developers can share workspaces, making it

easier to collaborate on multiple projects concurrently.

2.2 PLUG-IN DEVELOPMENT ENVIRONMENT

The Plug-in Development Environment provides tools to create, develop, test, debug, build

and deploy Eclipse plug-ins, fragments, features, update sites and RCP products.

PDE also provides comprehensive OSGi tooling, which makes it an ideal environment for

component programming, not just Eclipse plug-in development. [23]

Components

The PDE offers a comprehensive suite of tools to empower developers in crafting their own

plug-ins. These tools encompass UI components, APIs, Build utilities, and an Incubator.

UI Components

Models, builders, editors and more to facilitate plug-in development in the Eclipse IDE. [23]

APIs

Eclipse IDE and build process integrated tooling to maintain API. [23]

Build Utilities

Ant based tools and scripts to automate build processes. [23]

Incubator

Development of new tools that are not ready to be added to the Eclipse SDK. [23]

TaRDIS | D3.2: Integrated Development Environment

 Page 32 of 59 © 2023-2025 TaRDIS Consortium

3 ECLIPSE PLUG-IN INTEGRATION FOR TARDIS

3.1 INSTALLATION

Eclipse offers users multiple avenues for installing the TaRDIS plug-in. The developer can

choose to install it through the Eclipse Marketplace or manually add the plug-in file to the

“dropins” folder within the IDE installation directory. It's essential to restart the IDE to apply

the changes after the installation.

Note: Make sure you have a compatible IDE version.

Marketplace

● Open Eclipse IDE and navigate to the "Help" menu.

● Select "b" from the dropdown.

● In the Marketplace dialog, search for "TaRDIS" in the search bar.

● Locate the TaRDIS plug-in in the search results and click the "Install" button.

● Follow the on-screen instructions to complete the installation process.

● Restart the IDE when prompted to apply the changes.

Manual

● Obtain the TaRDIS plug-in file in a suitable format, such as a JAR file.

● Navigate to the Eclipse IDE installation directory.

● Create a folder named "dropins" in the root of the installation directory if it doesn't already
exist.

● Copy the TaRDIS plug-in file (JAR) into the "dropins" folder.

● Restart the Eclipse IDE to allow the plug-in to be recognized and loaded.

3.2 EXTENDING THE TARDIS PLUG-IN

The TaRDIS plug-in for Eclipse IDE is an open-source project, enabling users to customize

and enhance its functionality.

Customize

● Clone the Repository1

● Open Eclipse IDE

● Import the Cloned Project

● Modify the Code

● Build and Test

● Document

1 https://zenodo.org/doi/10.5281/zenodo.10871115

https://zenodo.org/doi/10.5281/zenodo.10871115

TaRDIS | D3.2: Integrated Development Environment

 Page 33 of 59 © 2023-2025 TaRDIS Consortium

Contribute

● Fork the Repository2

● Clone Your Fork

● Create a Branch

● Make Changes

● Test

● Document

● Commit Your Changes

● Create a Pull Request

● Stay engaged

3.3 HOW TO USE THE TARDIS PLUG-IN

Once the plug-in is successfully installed, you can immediately leverage its diverse range of

features to enhance your development experience.

Features

Explore and take advantage of the available functionalities to optimize your workflow and make

the most out of the plug-in's capabilities.

Create a TaRDIS Project

To create a TaRDIS project, you can either use the shortcut "Create a TaRDIS Project" located

on the left side of your IDE or navigate to the "File" menu and select "New" (Figure 27).

Figure 27: Clean installation of Eclipse IDE with the TaRDIS plug-in

2 https://zenodo.org/doi/10.5281/zenodo.10871115

https://zenodo.org/doi/10.5281/zenodo.10871115

TaRDIS | D3.2: Integrated Development Environment

 Page 34 of 59 © 2023-2025 TaRDIS Consortium

A wizard will appear (see Figure 28), allowing you to choose between creating a Java project

or a TypeScript project.

To create a Java project, you will need to have Java version 17 and Maven installed. This

project includes a library called Babel [24], which is used for implementing communication

between nodes.

Figure 28: Wizard for creating a TaRDIS project

Once the project is created, you can effortlessly run, debug, build, and use the IDE in its usual

manner.

The code for this example is open source and freely available on the link:

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin

https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin

TaRDIS | D3.2: Integrated Development Environment

 Page 35 of 59 © 2023-2025 TaRDIS Consortium

3.4 EXAMPLES

Two examples have been developed in Eclipse, using the TaRDIS plug-in:

• a Java implementation3 featuring a communication system based on HyParView [24].

• and a TypeScript counterpart4 that focuses solely on simulating calls to the TaRDIS

API.

Eclipse Java communication system

In the Java example, the communication system is intricately built upon the HyParView

protocol [24]. Delving into the code reveals details about how nodes interact, information is

disseminated, and the system effectively handles failures and maintains resilience. It is crucial

to explore the specifics of the HyParView implementation, including node discovery

mechanisms, gossip protocols, and the handling of membership changes within the distributed

system. Additionally, understanding any unique features or optimizations achieved through the

collaboration of the TaRDIS plug-in and HyParView can provide valuable insights into building

robust and scalable distributed systems.

The code for this example is open source and freely available on the link:

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/examples/java-babel-hyparview

Babel Classes

The integration of Babel in the Java project has added additional functionality, allowing the

generation of specific Babel classes. These classes can be easily accessed through the

TaRDIS menu (see Figure 29).

Figure 29: Menu for creating specific Babel Java classes

When selecting a class, a wizard interface will appear, allowing users to customize the class

name. Subsequently, the generated code will create a class that either implements or extends

the Babel base classes. It's important to note that all the essential logic must be manually

implemented within this class. This ensures that the generated code serves as a foundational

3 https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/examples/java-babel-hyparview
4https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin/-/tree/main/assets/ts

https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/examples/java-babel-hyparview
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/examples/java-babel-hyparview
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin/-/tree/main/assets/ts

TaRDIS | D3.2: Integrated Development Environment

 Page 36 of 59 © 2023-2025 TaRDIS Consortium

structure, with users responsible for defining and refining the specific behaviours and

functionality of their customized class.

Protocols

Protocols encode all the behaviour of the distributed system being designed. Each protocol is

modelled as a state machine whose state evolved by the reception and processing of (external)

events [24].

Messages

Messages are the data exchanged in the communication channels [24].

Timers

Timers are essential to capture common behaviours of distributed protocols. They allow the

execution of periodic actions (e.g., periodically exchange information with a peer), or to conduct

some action a single time in the future (e.g., define a timeout) [24].

Notifications, Replies and Requests

These enable inter-protocol communication by dispatching notifications to subscribed

protocols, accommodating protocol-specific replies and requests [24].

Eclipse Typescript calls to the TaRDIS API

The TypeScript example concentrates on simulating calls to the TaRDIS API. The objective of

this simulation should be thoroughly examined to understand how it contributes to the overall

functionality of the system. Analysing the TypeScript code that interacts with the TaRDIS API

reveals patterns or abstractions used in the simulation. This may involve mock data, simulated

responses, or controlled behaviour designed for testing purposes.

A wizard will appear (see Figure 28), allowing you to choose between creating a Java project

or a TypeScript project.

In order to set up a TypeScript project, you will first need to install Node. This project is

designed to simulate calls to the TaRDIS API.

This plug-in is built with the Wild Web Developer plug-in to provide support for TypeScript

development.

The code for this example is open source and freely available on the link:

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin/-
/tree/main/assets/ts

https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin/-/tree/main/assets/ts
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/eclipse/tardis-eclipse-plugin/-/tree/main/assets/ts

TaRDIS | D3.2: Integrated Development Environment

 Page 37 of 59 © 2023-2025 TaRDIS Consortium

4 TARDIS CANDIDATE APPLICATIONS

The TaRDIS project encompasses the development of different applications. Here is a first list

of the tools that are being proposed to be part of the TaRDIS toolbox, namely:

● WorkflowEditor

● Ant

● Data preparation for Flower-based Federated Learning (FL) model training

● Flower-based FL model inference and evaluation

● Flower-based FL model training

● Early-Exit (Lightweight Functionality)

● Federated AI Network Orchestrator

● IFChannel

● Java Typestate Checker (JaTyC)

● Knowledge Distillation (Lightweight Functionality)

● P4R-Type

● Pruning (Lightweight Functionality)

● PSPSP

● PTB-FLA-based FL model training

● ReGraDaIFC

4.1 WORKFLOWEDITOR (WP4)

Purpose

The premise of the workflow-based communication model offered by TaRDIS is that the shape

of the interaction between swarm participants is designed, evolved, and maintained by domain

experts who are typically not peer-to-peer network programmers. It is therefore necessary and

beneficial to offer a graphical representation of workflows which facilitates the collaboration of

programmers and domain experts. The WorkflowEditor tool is integrated with the TaRDIS

development environment for this purpose, diagrammatically visualizing the workflow as

implemented in the program code and allowing modifications to that code by interacting with

the diagram.

Inputs & Outputs

Since the editor is a bidirectional tool, it transports information and edits both ways:

● The program code is shown in graphical form, also reflecting updates to the code by
updating the diagram.

● User interaction that changes the diagram is propagated to the underlying program code,
changing it accordingly.

TaRDIS | D3.2: Integrated Development Environment

 Page 38 of 59 © 2023-2025 TaRDIS Consortium

The second function of the editor is to apply behavioural analysis (as per WP4) to the workflow

and highlighting any problems found. This should be done both in the program code — as is

customary for e.g., type checking errors — and in the diagram. While the former can build on

well-established user interface features (like coloured underlines), the latter needs original UX

innovation.

Dependencies on other tools

This integration relies on identifying workflow definitions in source code and reliably extracting

the shape of the workflow as well as the source code locations where changes originating in

the editor need to be applied. In practice, this feature might only be available if the application-

under-development is an internal TaRDIS application (see Deliverable D3.1, section 2.1.1).

Most practical would be using the IDE’s state of the art plugin for the language in use and

leveraging type inference information to find this needle in the haystack.

The editor will need to use the analysis tools from WP4 to check the workflow for well-

formedness and find possible errors and their locations so that they can be highlighted.

Flow Functionality

Initially, the definition of a workflow is started by writing down a definition without states and

transitions — this should be aided by an IDE function that instantiates an empty workflow

template in the source code editor. Then, all edits of the definition should occur via the

graphical editor that can be opened (e.g., from a context menu) when the cursor is positioned

within the definition in the source code.

It is important to note that the source code representation of a workflow is equally important

for the development process even though it is rarely edited directly, because reading code on

GitLab is an important part of the development lifecycle — and GitLab won’t display the

workflow as a diagram.

HMI

While the workflow definition language has not yet been defined for any of the targeted host

languages (like Typescript and Kotlin), the overall visual appearance might be something like

the UML editor used in place of the more capable WorkflowEditor so far (see Figure 30):

TaRDIS | D3.2: Integrated Development Environment

 Page 39 of 59 © 2023-2025 TaRDIS Consortium

Figure 30: TaRDIS WorkFlowEditor

The code on the left will use a syntax tailored to swarm protocols and be embedded inside the

host language instead of using separate files. This allows static type information to be reused

between both parts — e.g., ensuring that the structure of a transmitted event as declared in the

workflow matches the runtime data structure declared in the programming language.

The diagram on the right will no longer be passive, it will be editable to allow non-programmers

to work with the workflow, to design, evolve, and maintain it.

4.2 ANT (WP4)

Ant is a language-based call anticipation static analysis tool.

Purpose

Rather than providing a generic semantic model, agnostic to the language in which the code

is written (and sometimes even abstract on the way the model is built), this tool defines its

analysis directly on the code, with a language-based algorithm relying instead on formal

definitions of program semantics. This analysis is able to produce a conflict table that, for each

pair of method calls, defines a system of inequalities that must be satisfied at runtime in order

to anticipate a call. A full description of the tool can be found in [25].

Inputs

The inputs of this tool are the code to be analysed. This can be source code or even, in the

example presented in [25], Java bytecode.

Outputs

The outputs of this tool are the static analysis of the code, stating e.g., non-Locally Permissible

methods, non-commutative methods, and anticipatable methods.

TaRDIS | D3.2: Integrated Development Environment

 Page 40 of 59 © 2023-2025 TaRDIS Consortium

Dependencies on other tools

None

Flow Functionality

Static analysis over executables or source code. For more information, please refer to [25].

HMI

Command-line.

4.3 DATA PREPARATION FOR FLOWER-BASED FL MODEL TRAINING (WP5)

Purpose

Enables data preprocessing and preparation for ML training. The process of preparing and

preprocessing a data set for applying an ML algorithm represents an inevitable practice, as a

raw data set may contain a variety of irregularities, e.g., duplicates, outliers, missing values,

etc. Additionally, the need for additional features, such as pseudo-labelling may also emerge.

The goal of this tool is to bridge the gap between raw data and FL ML applications, by

transforming the data into a format that is suitable for FL ML algorithms.

Inputs

Input parameters for preparation (as command-line arguments) including the chosen

preprocessing approach/es. The user may choose the data set that needs to be pre-processed

and prepared, as well as the desired preprocessing task (e.g., profiling, cleansing,

transformation…) with possible adjustment of the performed steps (e.g., remove the duplicates

and the outliers).

Outputs

The process results in a transformed data set that is stored in a predefined location, while the

output is the status of the performed activities (e.g., whether the process was completed

successfully, including additional information where possible such as number of removed

duplicates, etc.).

Dependencies on other tools

This tool requires (and depends on) some well-known Python libraries: Flower, PyTorch (torch

and torchvision), Tensorflow, Numpy, Scipy, Scikit-learn, and Pandas.

Flow Functionality

The process could be described by the following steps:

● Step 1: Initiate the process by specifying the input parameters by the user. Here, the user
selects the data set, the task to be performed and possibly adjusts the steps of the task

● Step 2: Perform the preprocessing. The user initiates this after specifying the inputs

TaRDIS | D3.2: Integrated Development Environment

 Page 41 of 59 © 2023-2025 TaRDIS Consortium

● Step 3: Return the status of the performed preprocessing. When the process is finished, a
transformed data set is saved and the status of the preprocessing and preparing is
available to the user

HMI

Command-line by default, but with possible GUI support as well.

The command-line approach could have the following form:

Figure 31: Data Preparation for Flower-Based FL Model Training

TaRDIS | D3.2: Integrated Development Environment

 Page 42 of 59 © 2023-2025 TaRDIS Consortium

The possible GUI support could have a form similar to the following mock-up (Figure 32):

Figure 32: Data Preparation for Flower-Based FL Model Training Mock-up

4.4 FLOWER-BASED FL MODEL TRAINING (WP5)

Purpose

Provides FL solutions and enables model training. This tool supports a list of FL ML algorithms,

implemented in the Flower framework, and enables the process of training of the desired

model. The user of the tool does not need to have expertise in the field and can perform the

training by simply selecting the task that should be solved.

Inputs

The most important input is the target FL algorithm: the user specifies the task to be solved,

e.g., supervised classification, and the system offers a list of suitable ML models and

algorithms from the list of available models and algorithms. Also, the user needs to specify the

input parameters for the algorithm (as command-line arguments) including the target data set

specification, hyperparameters (optional, with predefined values offered), advanced setup

parameters (optional, e.g., number of desired clients).

Outputs

The produced ML model (saved at a predefined location) and the training status (whether it

was successfully finished).

Dependencies on other tools

This tool requires (and depends on) some well-known Python libraries: Flower, PyTorch (torch

and torchvision), Tensorflow, Numpy, Scipy, Scikit-learn, and Pandas.

TaRDIS | D3.2: Integrated Development Environment

 Page 43 of 59 © 2023-2025 TaRDIS Consortium

Flow Functionality

The process could be described by the following steps:

● Step 1: Initiate the process by specifying the task to be solved, e.g., supervised
classification

● Step 2: Pick a model and an algorithm from the offered list (with default values offered)

● Step 3: Specify the input parameters: select the data set, possibly adjust the algorithm
parameters (or choose the predefined values), optionally adjust the advanced parameters
(as the desired number of clients for instance)

● Step 4: Perform the FL algorithm training: when everything is selected and set up, the user
initiates the training process

● Step 5: Once the training is completed, the output is the model, the tool provides a status
information to the user

HMI

Command-line by default, but with possible GUI support as well.

The command-line approach could have the following form (Figure 33):

Figure 33: Flower-Based FL Model Training

TaRDIS | D3.2: Integrated Development Environment

 Page 44 of 59 © 2023-2025 TaRDIS Consortium

The possible GUI support could have a form similar to the following mock-up (Figure 34):

Figure 34: Flower-based FL model training Mock-ups

4.5 FLOWER-BASED FL MODEL INFERENCE AND EVALUATION (WP5)

Purpose

Enables gaining output for the relevant data on a trained model, by means of inference and

evaluation. Inference is an important aspect regarding FL. It provides some valuable output for

the data set of interest on the trained model. Additionally, this tool also provides evaluations,

by offering different metrics for the obtained results where possible.

Inputs

The inputs to the tool are the model (previously trained), the input parameters (as command-

line arguments) including the target data specification, and the type of inference/evaluation to

be performed.

Outputs

The process results in the output, prediction, metric… The form of the output is highly

dependent on the chosen inference/evaluation approach. It may be a set of predictions,

accuracy values, etc.

Dependencies on other tools

This tool requires (and depends on) some well-known Python libraries: Flower, PyTorch (torch

and torchvision), Tensorflow, Numpy, Scipy, Scikit-learn, Pandas, and Mathplotlib.

Flow Functionality

The process could be described by the following steps:

● Step 1: Initiate the process by providing the model and specifying the input parameters by
the user (select the data set and adjust parameters, if applicable).

● Step 2: Perform the inference/evaluation: the user initiates this process after setting up the
necessary input.

TaRDIS | D3.2: Integrated Development Environment

 Page 45 of 59 © 2023-2025 TaRDIS Consortium

● Step 3: Return the output to the user in a corresponding form, that depends on the chosen
approach.

HMI

Command-line by default, but with possible GUI support as well.

The command-line approach could have the following form (Figure 35):

Figure 35: Flower-Based FL Model Inference and Evaluation

The possible GUI support could have a form similar to the following mock-up (Figure 36):

Figure 36: Flower-Based FL Model Inference and Evaluation Mock-ups

4.6 EARLY-EXIT (LIGHTWEIGHT FUNCTIONALITY) (WP5)

Purpose

The purpose of this tool is to take as input a trained Deep Neural Network (DNN) model that

consists of several hidden layers and to provide an alternative version of the model that

includes multiple exits. Once the new model is trained, its inference latency is reduced

compared to the original model; however, the trade-off is the decrease in model accuracy.

TaRDIS | D3.2: Integrated Development Environment

 Page 46 of 59 © 2023-2025 TaRDIS Consortium

Inputs

The inputs to the early-exit tool are:

● the base ML model (for example .pt) that the developer wants to transform to its early-exit
version.

● the type of the ML task that the base original model was trained for (classification or
regression).

● the number of desired exits/outputs that shall be included in the new DNN architecture.

● the accuracy threshold that the early-exit version of the DNN model shall achieve in order
to be reliable.

● the training dataset that the original model was trained upon is required for training also
the early-exit version (labels are required at all the model exits).

Outputs

The new early-exit version of the DNN, according to the specified input parameters. The output

can also include a metadata file with information related to the model accuracy, the training

dataset, or the new architecture of the DNN (for instance where in the architecture the model

exits are located).

Dependencies on other tools

Tensorflow, Keras and Pytorch libraries are required for performing the training of the DNN

model. No dependencies on other TaRDIS tools are foreseen at the moment.

Flow Functionality

The flow of the functionality that is included in the early-exit tool can be summarized as follows:

● Step 1: The process is initiated by the developer, by providing a DNN model to the tool,
along with the input parameters and the training dataset. The goal is to transform this DNN
to an early-exit version of the model.

● Step 2: The training process using the new dimensions (hidden layers and locations of exit
in the architecture) of the early-exit DNN is initiated, based on the provided training dataset
until the required accuracy threshold is reached.

● Step 3: Once the early-exit version of the DNN is trained, it can be used for fast inference.
Therefore, the tool outputs the early-exit version of the ML model while the accuracy level
is within limits.

HMI

Command-line by default. GUI support TBD - will not be of much use for this tool (maybe

showing the training process/training loss of the early-exit model).

TaRDIS | D3.2: Integrated Development Environment

 Page 47 of 59 © 2023-2025 TaRDIS Consortium

4.7 FEDERATED AI NETWORK ORCHESTRATOR (WP5)

Purpose

Learn to orchestrate the network in a federated way.

Inputs

Metrics of the network, or methods to access the metrics, network topology, data load

localizations, config file for the AI models, deployment tools to deploy the model to the network

nodes.

Outputs

AI model (set of weights and architecture), training status.

Dependencies on other tools

pytorch, Tensorflow 2.x, keras, numpy, scipy

Flow Functionality

● Step 1: The process is initiated by the developer by inputting the computing network
topology with the required specifications/dimensions.

● Step 2: The training starts until the required levels of accuracy/speedup are achieved.

● Step 3: The resulting pruned ML model is the output of this tool.

HMI

Command line.

4.8 IFCHANNEL (WP4)

Purpose

Verify that the use of channels (generating and reacting to events) respects the secure

information flow policy. This tool will be backed by a number of theoretical results showing that

a successful analysis of the tool implies specific security guarantees.

Inputs

Currently: simple imperative style programs that communicate via events, where all variables

and sending/receiving events are decorated with security labels from a security lattice. This

should be extended to include support for more constructs that are commonly used by TaRDIS

users. Also, it assumes that the program is using the TaRDIS library where the library functions

have similar security labelling, and in particular a fixed set of channels, see PSPSP tool.

TaRDIS | D3.2: Integrated Development Environment

 Page 48 of 59 © 2023-2025 TaRDIS Consortium

Outputs

Either a security proof certificate, or elements that violate the security policy (which could

indicate an attack but might be a false positive).

Dependencies on other tools

Possibly requires a tool that performs an extraction from real code into a restrictive model.

Flow Functionality

The potential problems that are found are e.g., typing errors, so the programmer can then try

to modify the code and experiment with different designs until the IFChannel tool is happy.

HMI

Our development would be a command-line tool, but it can be integrated into IDEs like a

compiler, highlighting the lines in the code where problems have been found.

4.9 JAVA TYPESTATE CHECKER (JATYC) (WP4)

The Java Typestate Checker (JaTyC5) is a tool that verifies Java source code with respect to
typestates. A typestate is associated with a Java class with the @Typestate annotation and

defines: the object's states, the methods that can be safely called in each state, and the states
resulting from the calls.

Purpose

The tool statically verifies that when a Java program runs:

• sequences of method calls obey to object's protocols.

• null-pointer exceptions are not raised.

• subclasses' instances respect the protocol of their superclasses.

• methods are called in the correct order specified by the protocol.

• protocols of objects are completed.

• support for protocols to be associated with classes from the standard Java library or
from third-party libraries.

• support for "droppable" states, which allow one to specify states in which an object may
be "dropped" (i.e., stop being used) without having to reach the final state.

• support for transitions of state to depend on boolean values or enumeration values
returned by methods.

• invalid sequences of method calls are ignored when analysing the use of objects stored
inside other objects by taking into account that the methods of the outer object will only
be called in the order specified by the corresponding protocol, thus avoiding false
positives.

Inputs

The tool has as input Java source code.

5 https://github.com/jdmota/java-typestate-checker

https://github.com/jdmota/java-typestate-checker

TaRDIS | D3.2: Integrated Development Environment

 Page 49 of 59 © 2023-2025 TaRDIS Consortium

Outputs

The outputs of this tool are the analysis reports on the analysed code.

Dependencies on other tools

Dependent on JDK 11.

Flow Functionality

Static analysis tool over Java source code files.

HMI

Command-line.

4.10 KNOWLEDGE DISTILLATION (LIGHTWEIGHT FUNCTIONALITY) (WP5)

Purpose

The purpose of the tool is to provide a more lightweight version of a DNN in terms of NN

complexity, hidden layers and number of neurons. To this end, this tool trains a “student”

version of a “teacher” DNN model. The goal of the student DNN is to achieve comparable

accuracy to the teacher mode, while being more lightweight (less hidden layers in the network

architecture). In this way, computational resources at the edge nodes required for inference

purposes are reduced, without degrading the model performance.

Inputs

The inputs required for the KD tool are:

● the base teacher ML model (e.g., in a .pt format) that the ML developer wants to transform
to more lightweight version.

● the type of the ML task that the model was originally trained for (classification or regression
task).

● the ML developer can select a loss function for the training process of the student network
(amongst several options).

● the ML developer shall provide as input the number of hidden layers required for the
student model, or alternatively the lightweight rate that he wants to achieve (for instance,
what percentage of hidden layers must the student model include compared to the teacher
model).

● the accuracy threshold is required, since the knowledge gained from the teacher will be
distilled in the student network until the accuracy threshold is reached.

● the training dataset that the original teacher model was trained upon is required for similar
training of the student network.

TaRDIS | D3.2: Integrated Development Environment

 Page 50 of 59 © 2023-2025 TaRDIS Consortium

Outputs

The output of the KD tool is the more lightweight version of the DNN model (student model).

The output can also include a metadata file with information related to the achieved accuracy,

the training dataset, and the lightweight percentage of the new model.

Dependencies on other tools

Tensorflow, Keras and Pytorch libraries are required for performing the training of the DNN

model. No dependencies on other TaRDIS tools are foreseen at the moment.

Flow Functionality

The flow functionality of the KD tool can be summarized in the following steps:

● Step 1: the KD training process is initiated by the developer/user, by specifying the
dimensionality of the student network and providing the required input parameters,
including the base teacher model and the training dataset.

● Step 2: the training process is initiated based on the provided training dataset and the
knowledge distillation between the teacher and the student model is conducted until the
required level of accuracy is reached.

● Step 3: once the training is completed and the required accuracy is achieved, the KD tool
outputs the lightweight version of the input model, i.e., the student model.

HMI

Command-line by default. GUI support TBD - will not be of much use for this tool (maybe
showing the training process/training loss of the student model)

4.11 P4R-TYPE (WP4)

Purpose

This tool P4R-Type [26] generates verified APIs (in the Scala 3 programming language) to

programmatically control and reconfigure a software-defined network (SDN) that follows the

P46 and P4Runtime7 standards. The tool takes as input a specification of the network packet

processing tables (in the standard P4Info format) and generates a strongly typed API which

ensures that, if a program attempts to reconfigure the network packet processing rules, then

such reconfigurations are valid with respect to the network specification. In the TaRDIS project,

the P4R-Type tool could be used to support applications that dynamically control and

reconfigure of the overlay network of a running swarm (e.g., to regulate swarm membership);

this idea has been discussed between the project partners, but the precise use cases have not

been finalised yet. The TaRDIS IDE could support developers by providing shortcuts that

invoke the P4R-Type tool and automatically (re)generate the required SDN APIs.

6 https://p4.org/
7 https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

https://p4.org/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

TaRDIS | D3.2: Integrated Development Environment

 Page 51 of 59 © 2023-2025 TaRDIS Consortium

Inputs

A P4Info metadata file (generated when deploying P4 programs, as part of the P4 standard).

Outputs

One or more autogenerated Scala files containing the SDN control API, as a series of type

definitions.

Dependencies on other tools

Scala 3 and SBT build system. The tool has further dependencies that are automatically

downloaded by its build scripts.

Flow Functionality

The developer obtains one or more P4Info files corresponding to the deployed P4 configuration

in a network. Then, the developer autogenerates a corresponding verified APIs by invoking the

P4R-Type tool from the command line. Under an IDE, the tool invocation could be performed

e.g., by pressing a button or menu item.

HMI

Command-line interface + IDE shortcut via e.g., a button or menu item. When the generated API is

in use, incorrect network configuration updates would be directly reported by the IDE in the code-

under-development, as type errors, using a pre-existing IDE plugin for the Scala 3 programming

language (e.g., Metals8). For instance, in Figure 37, a program is using an API generated by P4R-

Type, and the type error reported on line 19 signals that the packet processing action NoAction

cannot be used in the packet processing table called Process.ipv4_lpm (although that action

exists and can be used in other tables in the same network configuration).

8 https://scalameta.org/metals/

https://scalameta.org/metals/

TaRDIS | D3.2: Integrated Development Environment

 Page 52 of 59 © 2023-2025 TaRDIS Consortium

Figure 37: Example of a program using an API generated by P4R-Type

4.12 PRUNING (LIGHTWEIGHT FUNCTIONALITY) (WP5)

Purpose

The purpose of the Pruning tool is to provide a more lightweight version of an input DNN mode

by using the pruning method, without significantly degrading its accuracy. To this end, the tool

prunes (or eliminates) specific neurons or complete hidden layers of the network architecture

that have a negligible impact on the output (and accuracy) of the DNN model. The pruned

version is more lightweight, requiring less memory and CPU compared to the original model.

Inputs

The inputs required by the Pruning tool are the following:

● The base original DNN model (e.g., in a .pt format) that the ML developer wants to
transform to more lightweight version by using the pruning technique.

● The compression rate (%) of the new version of the DDN, and the accuracy threshold (%)
or optionally the speedup factor (e.g., make the inference 2 times faster) that the pruned
version of the DNN model shall achieve.

TaRDIS | D3.2: Integrated Development Environment

 Page 53 of 59 © 2023-2025 TaRDIS Consortium

● The method that will be utilized for pruning, by selecting amongst several available options
(for instance, structured pruning may remove specific neurons or complete hidden layers,
while unstructured pruning may remove insignificant neurons connections).

● The training dataset, since the updated version of the DNN model needs to be trained
against the same dataset as the original model.

Outputs

The output of the pruning tool is the newer, more lightweight, pruned version of the original

DNN model. The output can also include a metadata file with information related to the

compression rate, the speedup factor, and the lightweight percentage of the new model.

Dependencies on other tools

Tensorflow, Keras and Pytorch libraries are required for performing the training of the DNN

model. No dependencies on other TaRDIS tools are foreseen at the moment.

Flow Functionality

The flow functionality of the pruning tool can be summarized in the following steps:

● Step 1: The process is initiated by the developer by providing the original DNN model (to
be pruned) to the tool, along with the required specifications (e.g., compression rate,
speedup factor, pruning method) and the training dataset that the pruned model will be
trained upon.

● Step 2: The training of the pruned model (compression rate of the model is specified by
the used) is initiated until the required levels of either accuracy/speedup factor are
achieved.

● Step 3: Once the pruned version of the original model has been successfully trained, it is
provided back to the user as output of the tool.

HMI

Command-line by default. GUI support TBD - will not be of much use for this tool (maybe
showing the training process/training loss of the pruned model)

4.13 PSPSP (WP4)

This is partially an interactive game, one could say: the user trying to convince the tool that

everything is fine. This might need specialist work by DTU for the channels we want to offer in

TaRDIS, but the general view should be that this becomes more widely applicable and anybody

who implements a new kind of channel can use it to verify that channel.

Purpose

Verify channels that the TaRDIS library provides and check that they are sufficiently strong to

transport the information they promise to securely transport. We envision this for the project

members to evaluate the channels implemented for the TaRDIS project in the library, not by

TaRDIS | D3.2: Integrated Development Environment

 Page 54 of 59 © 2023-2025 TaRDIS Consortium

the end users of TaRDIS, assuming we have a fixed number of "TaRDIS channel types".

However, in general there is no reason why the end users of TaRDIS should not be able to

develop new channels protocols and verify them with PSPSP. Note that PSPSP is an existing

tool that should be expanded and adapted to TaRDIS.

Inputs

Relatively abstract protocol description (not directly the implementation) - could be as a

choreography (Alice and Bob notation), currently supported is the PSPSP trac transaction

format. Moreover, a specification of the channel they are supposed to implement (as an

abstract protocol).

Outputs

Either a security proof certificate or failure to prove the security/verification of the channel may

indicate how the implementation is vulnerable to an attack, but since abstract interpretation is

involved, it may be a false positive.

Dependencies on other tools

Relies on the Isabelle proof assistant, possibly a translator from choreography notation to trac.

Flow Functionality

One has to first design an abstract model of the protocol that the channel implements as well

as the security goals for it (this is determined by what security guarantees the channel should

provide to its users). Then we have automated methods for checking this model that may just

fail to prove it, and that gives a hint either towards an actual security problem of the channel

protocol, or that the model/abstraction is too coarse or otherwise inappropriate so that it leads

to false attacks. Either way, one may either change the protocol or the model of it and try again.

HMI

Currently we have it as part of the Isabelle proof assistant and this is what makes it most

powerful, as one can basically employ any mathematical reasoning to obtain a security proof.

However, we may for users try to offer an interface that helps them both formalize the protocol

and goals, as well as understand the problem that prevents the tool from accepting.

4.14 PTB-FLA-BASED FL OR ODTS MODEL TRAINING (WP5)

Purpose

Provides the framework (i.e., execution environment) for FL and ODTS (orbit determination

and time synchronization) algorithms by providing SPMD (single program multiple data)

applications’ launching facilities and the simple API (amenable both to AI & ML developers

who do not need to be professionals and generative AI tools), which offers the generic

centralized/decentralized federated learning algorithms that may be specialized by specifying

client and server callback functions, as well as the function get1Meas for the TDM (time division

multiplexing) communication like the communication between pairs of satellites in the ODTS

algorithms. Algorithm developers are advised to use the PTB-FLA development paradigms

TaRDIS | D3.2: Integrated Development Environment

 Page 55 of 59 © 2023-2025 TaRDIS Consortium

(the four-phases or the two-phases) to transform their referent sequential algorithm (manually

or by the help of a generative AI tools) into the target PTB-FLA code (the main function plus

the client and server callback functions). Developed PTB-FLA based applications can then be

executed on the PTB-FLA for the purpose of AI & ML or ODTS model training.

Inputs

The target FL or ODTS algorithm, input parameters for the algorithm (as command-line

arguments) including the target data specification.

Outputs

ML or ODTS model, training status, etc.

Dependencies on other tools

None.

Flow Functionality

● Step 1: Launch the PTB-FLA application by specifying its input parameters (by the user).

● Step 2: Perform the FL or ODTS algorithm training.

● Step 3: Once the training is completed, the output is the model.

HMI

Command-line.

Example

Figure 38 shows the elemental ODTS algorithm execution that comprises three windows. The

window in the background shows the Python code. The top-right window shows commands to

start the algorithm i.e., the application (in this case, instantiated into 170 instances/processes).

The bottom-right window shows the instance with the node identification 0.

TaRDIS | D3.2: Integrated Development Environment

 Page 56 of 59 © 2023-2025 TaRDIS Consortium

Figure 38: ODTS algorithm execution

4.15 REGRADAIFC (WP4)

Purpose

A compiler and type checker with Dependent Information Flow Control for ReGraDa graphs,

mapped onto a centralised graph database, currently being extended to a decentralised

version using Actyx as backend runtime support.

Inputs

Editor with syntax highlighting, possible HTML view and editor, and command line tool.

Outputs

Currently, connects directly to Neo4J and manages the database, provides a web view for

execution and inspection. In the future code for the Actyx platform (not sure yet how to manage

deployment)

Dependencies on other tools

NodeJS and OCaml compiler + Actyx framework

Flow Functionality

Edit processes/graphs in the editor, and use web view to execute, deploy the distributed

process as any Actyx application.

HMI

Command line and web based.

TaRDIS | D3.2: Integrated Development Environment

 Page 57 of 59 © 2023-2025 TaRDIS Consortium

5 CONCLUSIONS

This document presents the first approach towards the definition of an Integrated Development

Environment tool suited for the TaRDIS toolbox integration efforts. It performed an alternatives

analysis on the best-of-breed free and open-source tools in the market that are suitable for

satisfying the requirements of the Human-Machine Interfaces (HMI), tool dependencies,

visualisation and other needs from the TaRDIS toolbox modules.

From that analysis, a short list of tools was selected for advanced prototyping, which already

included the customisation for TaRDIS, the definition of technological stacks and other features

related with the project. After a thorough analysis, the tools that were considered best

candidates for proceeding, not only due to the analysis of the prototypes, but also from the

experts opinion from the consortium, were the Eclipse IDE, a platform that is a reference for

many years and has numerous add-ons and features that make it a very stable baseline, with

proven results for many years and the choice of many experienced developers.

The team, for this initial IDE definition, and as the TaRDIS toolbox tools are still in their infancy,

was limited to the customisation of the base platform, look & feel, and integration of the

communication and API technological stack using Babel. A comprehensive tutorial of the

installation of the base platform and subsequent customisation adding plug-ins was also

depicted in this document.

As future work for the subsequent deliverables of this work-package, the team will include the

prototypes and customisation of another IDE platform, Visual Studio Code, as this IDE has

been identified as being the choice of the newer generations of programmers. It is becoming

a very popular choice, therefore the team decided to also include a similar customisation and

integration set of plugins for this IDE in the future deliverables of this TaRDIS work-package.

While it is still not clear whether the team will be able to maintain the development of both IDEs

for the whole project, or if all integrations with the TaRDIS toolbox will be possible to be made

with both IDEs, it will be a matter of study and development in the project future for the next

months.

TaRDIS | D3.2: Integrated Development Environment

 Page 58 of 59 © 2023-2025 TaRDIS Consortium

REFERENCES

[1] Shukla, A. (2024). Cloud-Based Lightweight Modern Integrated Development
Environments (IDEs) and their Future. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-236. DOI: doi. org/10.47363/JAICC/2024 (3), 218, 2-3.

[2] Birillo, A., Tigina, M., Kurbatova, Z., Potriasaeva, A., Vlasov, I., Ovchinnikov, V., &
Gerasimov, I. (2024). Bridging Education and Development: IDEs as Interactive Learning
Platforms. arXiv preprint arXiv:2401.14284.

[3] Lyu, M., Zhang, Y., Liu, S., & Chen, L. (2023). Adapting Jupyter for C++ Programming
Education: An Empirical Study on Lab Instruction Strategies and Student Perspectives.
Contemporary Education and Teaching Research, 4(11), 556–561.
https://doi.org/10.61360/BoniCETR232015151101

[4] KeyCDN, “Best IDE Software - A List of the Top 10”, https://www.keycdn.com/blog/best-
ide, retrieved January 10, 2024

[5] https://www.g2.com/categories/integrated-development-environments-ide, retrieved on
January 14, 2024

[6] Stackify, “Top IDEs: 51 Powerful Dev Environments for Streamlined Development”,
https://stackify.com/top-integrated-developer-environments-ides/, retrieved on March 10,
2024

[7] “20 Best IDE Software [2023 Guide]”, https://thectoclub.com/tools/best-ide-software/,
retrieved on January 11, 2024

[8] Medium, “The Top 10 IDEs for Programmers: A Comprehensive Guide to Choosing the
Best IDE For Your Needs”, https://medium.com/codex/the-top-10-ides-for-programmers-a-
comprehensive-guide-to-choosing-the-best-ide-for-your-needs-c72e97c34591, retrieved
on January 11, 2024

[9] GoodFirms, “10 Free and Open Source IDEs”, https://www.goodfirms.co/integrated-
development-environment-software/blog/best-free-and-open-source-integrated-
development-environment-software, retrieved on January 11, 2024

[10] GeeksforGeeks, “Best IDEs for C++ developers”, https://www.geeksforgeeks.org/best-
ides-for-c-c-plus-plus-developers/, retrieved on January 11, 2024

[11] TatvaSoft, “Top Java IDEs for Java development”,
https://www.tatvasoft.com/outsourcing/2024/03/java-ides.html, retrieved on January 11,
2024

[12] Syndell, “Software Development Tools”, https://syndelltech.com/software-
development-tools-to-improve-productivity/, retrieved on January 11, 2024

[13] StudySmarter, “Integrated Development Environments (IDEs)”,
https://www.studysmarter.co.uk/explanations/computer-science/computer-
programming/integrated-development-environments/, retrieved on January 11, 2024

[14] TechBeamers, “Best IDE for Java development”, https://techbeamers.com/best-java-
ide-web-development/, retrieved on January 11, 2024

https://doi.org/10.61360/BoniCETR232015151101
https://www.keycdn.com/blog/best-ide
https://www.keycdn.com/blog/best-ide
https://www.g2.com/categories/integrated-development-environments-ide
https://stackify.com/top-integrated-developer-environments-ides/
https://thectoclub.com/tools/best-ide-software/
https://medium.com/codex/the-top-10-ides-for-programmers-a-comprehensive-guide-to-choosing-the-best-ide-for-your-needs-c72e97c34591
https://medium.com/codex/the-top-10-ides-for-programmers-a-comprehensive-guide-to-choosing-the-best-ide-for-your-needs-c72e97c34591
https://www.goodfirms.co/integrated-development-environment-software/blog/best-free-and-open-source-integrated-development-environment-software
https://www.goodfirms.co/integrated-development-environment-software/blog/best-free-and-open-source-integrated-development-environment-software
https://www.goodfirms.co/integrated-development-environment-software/blog/best-free-and-open-source-integrated-development-environment-software
https://www.geeksforgeeks.org/best-ides-for-c-c-plus-plus-developers/
https://www.geeksforgeeks.org/best-ides-for-c-c-plus-plus-developers/
https://www.tatvasoft.com/outsourcing/2024/03/java-ides.html
https://syndelltech.com/software-development-tools-to-improve-productivity/
https://syndelltech.com/software-development-tools-to-improve-productivity/
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/integrated-development-environments/
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/integrated-development-environments/
https://techbeamers.com/best-java-ide-web-development/
https://techbeamers.com/best-java-ide-web-development/

TaRDIS | D3.2: Integrated Development Environment

 Page 59 of 59 © 2023-2025 TaRDIS Consortium

[15] HackrIO, “Best Java IDEs”, https://hackr.io/blog/best-java-ides, retrieved on January
11, 2024

[16] Sourceforge, “Best Open Source Integrated Development Environments (IDEs)”
https://sourceforge.net/directory/integrated-development-environments-ide/windows/,
retrieved on January 11, 2024

[17] Apache, Apache NetBeans, https://NetBeans.apache.org/, retrieved on January 17,
2024

[18] JetBrains, IntelliJ IDEA, https://www.jetbrains.com/idea, retrieved on February 5, 2024

[19] Eclipse Foundation. (n.d.). PDE | The Eclipse Foundation. Eclipse. Retrieved January
18, 2024, from https://eclipse.dev/pde/

[20] Microsoft (n.d.). Code editing. Redefined. Visual Studio Code. Retrieved February 14,
2024, from https://code.visualstudio.com/

[21] Microsoft (2024, January 2). Extension API. Visual Studio Code. Retrieved February
21, 2024, from https://code.visualstudio.com/api

[22] AMIQ EDA. (2023, December 21). 3.1 What is a Workspace. DVT Eclipse IDE.
Retrieved January 18, 2024, from
https://dvteclipse.com/documentation/e/What_is_a_Workspace.html

[23] Vogel, L. (2024, January 8). Using the Eclipse IDE for Java programming - Tutorial.
vogella.com. Retrieved January 18, 2024, from
https://www.vogella.com/tutorials/Eclipse/article.html

[24] Fouto, P., Costa, Á., Preguiça, N., and Leitão, J. (2022, May 5). Babel: A Framework
for Developing Performant and Dependable Distributed Protocols.
DOI:10.1109/SRDS55811.2022.00022

[25] Giunti, M, Paulino, H, and Ravara, A. (2023, June 7). Anticipation of Method Execution
in Mixed Consistency Systems, in SAC '23: Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, March 2023, Pages 1394–1401,
DOI:10.1145/3555776.3577725

[26] Larsen, J. K., Guanciale, R., Haller, P., and Scalas, A. (2023 October). P4R-Type: A
Verified API for P4 Control Plane Programs. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 290, 29 pages. DOI:10.1145/3622866

https://hackr.io/blog/best-java-ides
https://sourceforge.net/directory/integrated-development-environments-ide/windows/
https://netbeans.apache.org/
https://www.jetbrains.com/idea
https://eclipse.dev/pde/
https://code.visualstudio.com/
https://code.visualstudio.com/api
https://dvteclipse.com/documentation/e/What_is_a_Workspace.html
https://www.vogella.com/tutorials/Eclipse/article.html

