
 t `

 D3.3: Second Report on
 Programming Model and APIs

 Revision: 1.0

 Work package WP3

 Task T3.1, T3.2

 Due date 31/10/2024

 Submission date 15/11/2024

 Deliverable lead Alceste Scalas (DTU)

 Version 1.0

 Authors

 João Costa Seco (NOVA), Cláudia Soares (NOVA), Frederico Metelo
 (NOVA), Carla Ferreira (NOVA), João Leitão (NOVA), António Ravara
 (NOVA), Diogo Jesus (NOVA), Nuno Fernandes (NOVA), Nuno Preguiça
 (NOVA)
 Carlos Reis (CMS), Carlos Coutinho (CMS)
 Sebastian Alexander Mödersheim (DTU)
 Ping Hou (OXF)
 Dušan Jakovetić (UNS), Lidija Fodor (UNS), Miroslav Popovic (UNS), Ivan
 Prokić (UNS), Simona Prokić (UNS), Miloš Simić (UNS), Miodrag Djukic
 (UNS)
 Sotirios Spantideas (NKUA)
 Roland Kuhn (ACT)

 Internal Reviewers António Ravara (NOVA)
 Silvia Ghilezan (UNS)

 Abstract

 This document reports the second revision of the programming model and
 APIs which will be offered by the TaRDIS toolbox. It focuses on the
 differences and improvements since the previous iteration (Deliverable D3.1)
 and documents the status of the toolbox APIs (whose components have been
 selected in Deliverable D7.2).

 Keywords decentralised programming toolbox, models, APIs

 www.project-tardis.eu

 Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
 Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

Ref. Ares(2024)8139870 - 16/11/2024

 TaRDIS | D3.3: Second report on programming model and APIs

 D ISCLAIMER

 Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
 however those of the author(s) only and do not necessarily reflect those of the European
 Union. Neither the European Union nor the granting authority can be held responsible for
 them .

 C OPYRIGHT NOTICE

 © 2023 - 2025 TaRDIS Consortium

 Project funded by the European Commission in the Horizon Europe Programme
 Nature of the
 deliverable: R

 Dissemination Level

 PU Public, fully open, e.g. web (Deliverables flagged as public will be
 automatically published in CORDIS project’s page) ✔

 SEN Sensitive, limited under the conditions of the Grant Agreement
 Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
 Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
 Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

 * R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 DATA: Data sets, microdata, etc.

 DMP: Data management plan

 ETHICS: Deliverables related to ethics issues.

 SECURITY: Deliverables related to security issues

 OTHER: Software, technical diagram, algorithms, models, etc.

 Page 2 of 43 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

 TaRDIS | D3.3: Second report on programming model and APIs

 EXECUTIVE SUMMARY

 The TaRDIS project aims at building a distributed programming toolbox to simplify the
 development of decentralized, heterogeneous swarm applications deployed in diverse
 settings.

 The main contribution of this deliverable is the second revision of the TaRDIS programming
 models and TaRDIS toolkit APIs. This deliverable builds upon D3.1 (first version of TaRDIS
 models and APIs) and documents the developments and improvements since the
 submission of D3.1 — which are mostly consequences of the lessons-learned with the
 ongoing work on WP7 (implementation and evaluation of the use cases using the TaRDIS
 toolbox).

 At the time of writing this Deliverable, the documentation of the TaRDIS models and APIs is
 being assembled in a programmer-oriented format under the TaRDIS wiki. Therefore, most
 sections of this document consist of brief summaries outlining the differences and
 improvements w.r.t. the contents of D3.1, with references to the relevant parts of the TaRDIS
 wiki (and other source code repositories, when applicable) for further technical details.

 Page 3 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 T ABLE OF C ONTENTS

 1 INTRODUCTION 7
 2 PROGRAMMING MODEL OVERVIEW AND DESIGN METHODOLOGY 9

 2.1. The TaRDIS Approach: Managed vs. Free-Form Swarm Elements 9
 2.2. State-Oriented Managed Swarm Specifications via Swarm Protocols 11
 2.3. Event-Oriented Managed Swarm Specifications via DCR Graphs 12
 2.4. Free-Form TaRDIS Swarm Elements and Applications 14

 3 TaRDIS APIs STATUS AND PROGRESS 16
 3.1. APIs Outline 16

 3.1.1 Event-Driven APIs for Managed Swarms: Instantiating a TaRDIS Swarm 17
 3.1.2 Event-Based Input-Output APIs for Free-Form Swarm Elements 17
 3.1.3 Machine Learning APIs 17

 3.2. Analysis and Verification Facilities 17
 3.2.1. Specifying and Verifying Communication Behaviour - T4.1 17
 3.2.2. Specifying and Analysing Data Consistency - T4.2 19
 3.2.3. Specifying and Analysing Security Properties - T4.3 20
 3.2.4. Deployment and Orchestration Integration - T4.4 22

 3.3. Artificial Intelligence and Machine Learning APIs 22
 3.3.1. AI/ML Programming Primitives - T5.1 23
 3.3.2. AI-Driven Planning, Deployment, and Orchestration - T5.2 25
 3.3.3. Lightweight and Energy-Efficient ML Techniques - T5.3 26

 3.4. Data Management and Distribution Primitives 31
 3.4.1. Decentralised Membership and Communication APIs - T6.1 32
 3.4.2. Decentralised Data Management and Replication APIs - T6.2 34
 3.4.3. Decentralised Monitoring and Reconfiguration APIs - T6.3 40

 4 CHALLENGES AND PLANNED WORK 41
 4.1. Cross-Language Interoperability 41
 4.2. Supporting Device Capabilities for Swarm Redeployment 41
 4.3. Ensuring the Cohesiveness of the TaRDIS Toolbox 41

 5 CONCLUSION 43

 Page 4 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 ABBREVIATIONS

 API Application Programming Interface

 AGV Automated Guided Vehicle

 BDS-3 BeiDou 3rd Generation navigation satellite system

 CDF Cumulative Distribution Function

 DCR Dynamic Condition Relation

 DER Distributed Energy Resources

 DL Deep Learning

 DNN Deep Neural Network

 DP Differential Privacy

 DRFL Deep Reinforcement Federated Learning

 DSO Distribution System Operator

 ERP Enterprise Resource Planning

 FL Federated Learning

 FLaaS Federated Learning as a Service

 G2G Galileo 2nd Generation of satellites

 HTTP Hypertext Transfer Protocol

 IoT Internet of Things

 ISL Inter-Satellite-Link

 IP Internet Protocol

 IPFS InterPlanetary File System

 JS JavaScript

 LEO Low Earth Orbit

 LSTM Long Short-Term Memory

 MES Manufacturing Execution System

 ML Machine Learning

 MPST Multiparty Session Types

 ODTS Orbit Determination and Time Synchronization

 Page 5 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 P2P Peer-to-Peer

 PNT Position, Navigation and Timing

 SGAM Smart-Grid Architectural Model

 TCP Transmission Control Protocol

 UDP User Datagram Protocol

 Page 6 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 1 INTRODUCTION

 This report documents the ongoing work on the design and development of the TaRDIS
 programming toolkit — specifically, its programming models and APIs.

 The TaRDIS programming model and APIs are central aspects of the project that require a
 clear alignment between the requirements of the use cases, and the outputs of the research
 and development work packages. Consequently, the definition and development of the
 programming model and APIs is a collaborative effort that requires a close collaboration
 among all project partners.

 This document has been developed concurrently with Deliverable D7.2 (“Report on
 preliminary validation of the toolbox”), and the two deliverables complement each other:
 specifically, D7.2 documents how the components of the TaRDIS toolbox will be used for the
 implementation and evaluation of the TaRDIS use cases. Instead, this document provides an
 update on the status of the toolbox components, focusing on how they will offer programming
 models and APIs to software developers that will use TaRDIS. For ease of reference, this
 document uses the tool codes that can be found in Table 3 (page 61) of Deliverable D7.2
 (e.g., “T-WP3-01”).

 At the time of writing this Deliverable, the documentation of the TaRDIS models and APIs is
 being assembled in a programmer-oriented format under the TaRDIS wiki:

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/home

 NOTE: At the time of writing this report, the TaRDIS documentation wiki is under
 heavy development and not yet publicly available. To obtain access for reviewing
 purposes, please contact the TaRDIS project coordinator.

 Therefore, most sections of this document consist of brief summaries outlining the status and
 the differences and improvements of the TaRDIS toolbox components w.r.t. the contents of
 D3.1; further details are made available via references to the relevant parts of the TaRDIS
 wiki (and other repositories, where applicable).

 This document has the following structure:

 ● Section 2 provides an updated outline of the TaRDIS programming model, and the
 methodology and considerations leading to its design.

 ● Section 3 provides an overview of the APIs that will be offered by the TaRDIS toolbox.
 ● Section 4 discusses the limitations and challenges in the development and

 organisation of the TaRDIS models and APIs, and planned work to address them.

 The conclusion (Section 5) summarises the main outcomes and outlines the next steps.

 Notes:
 ● To ease readability, the structure of this document closely follows (where possible) the

 structure of D3.1: i.e., if a section number X.Y appears both here and in D3.1, then
 section X.Y in this document is usually intended as a status update over the
 corresponding section X.Y of D3.1.

 ● Unlike Deliverable D3.1, this document does not include a description of how the
 TaRDIS toolbox components will be used in the TaRDIS use cases: this information
 was outlined in D3.1, but it has been since revised and published in Deliverable D7.2

 Page 7 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/home

 TaRDIS | D3.3: Second report on programming model and APIs

 — and it will be further refined throughout WP7 (and reflected in the next iteration of
 this Deliverable).

 Page 8 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 2 PROGRAMMING MODEL OVERVIEW AND DESIGN
 METHODOLOGY

 The TaRDIS project proposal envisions an event-driven programming model and toolbox
 allowing application programmers to take advantage of various facilities (communication,
 verification, machine learning, monitoring and reconfiguration) helping them develop safe
 and reliable distributed swarm applications. Such facilities are made available through the
 “TaRDIS Runtime” — which provides various higher-level APIs and abstractions over
 lower-level libraries and services; moreover, the proposal envisions dedicated IDE support to
 simplify the programmers’ tasks. This vision is summarised in the figure below (from the
 TaRDIS project proposal); here the “abstract model” is an abstract representation of a
 TaRDIS application, which enables the use of the toolbox facilities for software verification
 and correct-by-construction software development.

 This vision has been refined and made more concrete during the first phases of the TaRDIS
 project. Since Deliverable D3.1, WP3 has collected and organised the feedback of the
 research work packages (WP4, WP5, WP6) and their application to the requirements and
 implementation of the project use cases (stemming from WP2 and WP7). The present
 deliverable is one of the outcomes of this collaborative process.

 The rest of this section provides an overview of the TaRDIS approach based on managed
 and free-form swarm elements (Section 2.1), and then illustrates them in more detail
 (Sections 2.2 , 2.3 , 2.4).

 2.1. T HE T A RDIS A PPROACH : M ANAGED VS . F REE -F ORM S WARM E LEMENTS

 This section summarises the contents of Section 2.1 in Deliverable D3.1, and introduces
 some revised terminology. Given the variety of the use cases and their requirements, the
 TaRDIS toolbox is being designed to support the development of swarm applications
 combining two main kinds of swarm elements: managed swarm elements and perimeter
 swarm elements . 1 The intuition is the following (and is depicted in the figure below):

 1 In D3.1 they were called “internal services” and “perimeter services,” respectively. We have revised
 the terminology for clarity.

 Page 9 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 ● a TaRDIS swarm application is an ensemble of concurrent, distributed, and possibly
 heterogeneous swarm elements which interact over a network in an event-driven
 fashion, using the communication facilities provided by the TaRDIS toolbox;

 ● a managed swarm element delegates its main event loop to the TaRDIS execution
 engine , which invokes relevant parts of the program code in an event-driven fashion.
 Managed swarm elements are constrained to a specific programming style, but
 programmers have more complete access to the higher-level APIs and verification
 capabilities of the TaRDIS toolbox;

 ● a free-form swarm element can communicate with other elements of a TaRDIS
 swarm application by directly using the TaRDIS APIs, with more control of its main
 event loop. This gives programmers more freedom in structuring their code, but they
 may not have complete access to the higher-level APIs and verification capabilities of
 the TaRDIS toolbox.

 Besides the updated terminology, the contents of Sections 2.1.1, 2.1.2, and 2.1.3 of
 Deliverable D3.1 are still relevant.

 Since Deliverable D3.1, the further analysis and initial redevelopment of the TaRDIS use
 cases has led us towards refining the specific programming models supported by the TaRDIS
 toolbox. The next sections describe:

 ● Two complementary approaches to the design of managed swarm applications. The
 two approaches offer different takes on the event-driven programming nature of the
 TaRDIS toolbox, and one may be preferred over the other depending on the nature of
 the application and the background of the programmers:

 ○ state-oriented specifications based on swarm protocols (Section 2.2). This
 approach is adopted for the development of the ACT use case;

 Page 10 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 ○ event-oriented specifications based on DCR graphs (Section 2.3). This
 approach is adopted for the development of the EDP use case.

 ● An overview of free-form TaRDIS applications based on Babel (Section 2.4).

 2.2. S TATE -O RIENTED M ANAGED S WARM S PECIFICATIONS VIA S WARM P ROTOCOLS

 This approach to the specification of managed swarm applications was described in Section
 3.1.1 of Deliverable 3.1. What follows is a brief recap. The updated documentation is
 available in the TaRDIS documentation wiki. (For more details, see Section 3.2.1.1 .)

 The TaRDIS toolkit will provide tools allowing for:
 ● the specification of swarm protocols , offering a global bird’s eye view of the intended

 behaviour of all components that might join a swarm application (each one
 implementing a specific role) to produce and consume events ;

 ● the projection (i.e., synthesis) of local workflows out of a swarm protocol ,
 ensuring that the local behaviour of a swarm element is compatible with the rest of
 the swarm.

 The idea is illustrated in the figure below:

 In the figure above:
 ● The swarm protocol describes a “global distributed state machines” where the edges

 correspond to the intended interactions between roles R1, R2, and R3; such roles, in

 Page 11 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 turn, may produce and consume events E1...E7 (the notation “E @ R” means that
 event E is produced by some swarm participant having role R). These events
 advance the overall state of the protocol.

 ● The swarm protocol is projected into workflows for the roles R1, R2, and R3: for
 instance, the workflow for role R2 says that a swarm participant implementing role R2
 is expected to await event E1, and then emit one of the events E2 or E3, and then
 await E6 (looping back to a previous state) or E7 (which terminates the workflow).

 The availability of the global swarm protocol specification has two advantages:

 1. it provides an intuitive overview of the system behaviour that can be easier to
 understand by non-experts, and

 2. enables better analysis of the system behaviour using the analysis methodologies
 and tools developed in WP4 (see the TaRDIS Deliverable D4.1).

 Concretely, the TaRDIS swarm protocol, workflow model, and execution engine are being
 designed and developed upon improved versions of the machine runner 2 and machine
 check 3 tooling created and released (under Open Source license) by the project partner
 Actyx: their approach is described in recent papers 4 5 and is being improved with the ongoing
 work of WP3, WP4, WP6, and WP7.

 2.3. E VENT -O RIENTED M ANAGED S WARM S PECIFICATIONS VIA DCR G RAPHS

 This approach to the specification of managed swarm applications was described in
 Deliverable 3.1 (Section 2.2.1). This section provides a summary and some revised
 terminology, reporting on the progress since Deliverable 3.1. Updated documentation, as well
 as links to additional resources, can be found in the TaRDIS documentation wiki. 6

 ReGraDa / DCR Choreographies (previously, ReGraDa / DCR Graphs) provide a declarative,
 event-driven, and stateful approach to the specification of workflows within a swarm
 application. The language supports both graphical and textual representation, the two being
 interchangeable, providing a high-level abstraction that is both intuitive and human-readable,
 as well as machine-executable.

 The figure below illustrates both representations. The scenario was described in Section
 4.2.5.1 of Deliverable 3.1, modelling an energy-generation forecast workflow within an
 Energy Community. The textual representation was previously detailed throughout Section
 4.2.5 of Deliverable 3.1. The graphical notation, in the style of DCR Choreographies, maps
 the textual representation, abstracting away some details for the sake of presentation.

 6 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model

 5 Roland Kuhn, Alan Darmasaputra: Behaviorally Typed State Machines in TypeScript for
 Heterogeneous Swarms. ISSTA 2023: 1475-1478. https://doi.org/10.1145/3597926.3604917 -
 https://doi.org/10.48550/arXiv.2306.09068

 4 Roland Kuhn, Hernán C. Melgratti, Emilio Tuosto: Behavioural Types for Local-First Software.
 ECOOP 2023: 15:1-15:28. https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

 3 https://www.npmjs.com/package/@actyx/machine-check
 2 https://www.npmjs.com/package/@actyx/machine-runner

 Page 12 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model
https://doi.org/10.1145/3597926.3604917
https://doi.org/10.48550/arXiv.2306.09068
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://www.npmjs.com/package/@actyx/machine-check
https://www.npmjs.com/package/@actyx/machine-runner

 TaRDIS | D3.3: Second report on programming model and APIs

 In summary, the specification reflects the intended global behaviour of the swarm, defining
 messages (and data) exchanged between swarm participants, together with control-flow
 constraints (beyond basic data dependencies) enforcing the system’s business logic. Both
 messages and constraints are associated to (stateful) events. Swarm participants drive the
 workflow by executing events, thereby updating their internal state and triggering
 communication with other participants.

 Control-flow relations shape the workflow, by preventing/allowing the execution of specific
 events, based on the type of constraint and/or the state of events. As detailed in Section
 2.2.1 of Deliverable 3.1, control-flow constraints can impose different semantics, according to
 their type, enabling the specification of complex business processes and workflows, in an
 intuitive and flexible manner.

 By leveraging ReGraDa / DCR Choreographies, the TaRDIS toolkit can support more
 intricate workflows that go beyond simple state machines. Since Deliverable D3.1, the
 language has been extended to incorporate features of DCR choreographies in the style of
 Hildebrandt’s seminal work 7 8 . As a result, the language now enables the projection of local
 behaviour out of a global specification, reflecting local executable workflows for each
 participant role, as depicted below:

 For local specifications, events are additionally annotated with tx (respectively, rx) to convey,
 from the local viewpoint, the transmission (respectively, receiving) of a message. The
 prototype tool currently leverages the Babel framework (Section 2.4 below) to enact each
 participant’s behaviour. Local specifications are translated into Java code running directly on

 8 Thomas T. Hildebrandt, Tijs Slaats, Hugo A. López, Søren Debois, Marco Carbone: Declarative
 Choreographies and Liveness. FORTE 2019: 129-147

 7 Thomas T. Hildebrandt, Hugo A. López, Tijs Slaats: Declarative Choreographies with Time and Data.
 BPM (Forum) 2023: 73-89

 Page 13 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 Babel, enabling decentralized execution of different swarm participants as distributed nodes.
 Both language and prototype tools are under active development and currently being
 extended to support the dynamic creation of data, behaviour and participants. The inclusion
 of additional features from DCR Choreographies, such as time constraints, is also being
 planned.

 The prototype is available on a Codelab repository, along with a detailed presentation of the
 illustrated scenario, and initial documentation is provided on the TarDIS wiki. 9 10

 2.4. F REE -F ORM T A RDIS S WARM E LEMENTS AND A PPLICATIONS

 A free-form TaRDIS swarm element is a program that does not delegate its main execution
 loop to the TaRDIS execution engine, and does not follow the TaRDIS swarm
 specification-based development approach outlined in Sections 2.2 and 2.3 . A free-form
 TaRDIS swarm element might decide to directly control its main execution loop (or delegate it
 to other libraries, e.g. Babel described below, or GUI toolkits like Qt), and may use only
 selected (and typically lower-level) TaRDIS APIs for specific purposes - e.g. producing or
 awaiting some events, accessing communication or AI/ML primitives. Generally speaking, a
 free-form TaRDIS swarm element will use the lower-level APIs provided by the TaRDIS
 toolbox, and may not take advantage of all the TaRDIS verification facilities (especially those
 for managed swarm elements outlined in Sections 2.2 and 2.3).

 In the context of TaRDIS free-form applications are typically developed resorting to
 Babel-Swarm or Babel-Android, two evolutions of the Babel framework that were produced in
 the context of WP6. The Babel framework (T-WP6-04) was designed (outside the scope of
 TaRDIS) to aid in the development, prototyping, and execution of distributed protocols with a
 focus on performance and dependability. Its primary goal is to simplify the creation of
 distributed algorithms by abstracting away complex low-level aspects, such as
 communication handling, timeouts, and concurrency management. This allows researchers,
 practitioners, and educators to develop and experiment with distributed systems and
 protocols without getting bogged down by implementation details. Babel is particularly suited
 for protocols requiring fault-tolerance, enabling more efficient testing and comparison of
 various solutions, and to develop abstractions that can be easily reused in the context of
 different distributed applications, making it an attractive solution to support free-form TaRDIS
 swarm elements.

 Babel promotes an event-driven programming model where protocols can interact through a
 structured set of operations. It provides mechanisms for developing handlers for events like
 timers, network messages, and inter-protocol communication (requests, replies, and
 notifications), all of which are asynchronous. Babel’s design ensures that protocols can be
 independently executed within the same process, with a dedicated thread for each protocol,
 evidently to this be achieved, protocols relinquish the control of their main loop to the Babel
 framework, and handlers for all types of events can never block this main execution thread of
 the protocol. This model not only simplifies the process of translating algorithmic
 specifications into prototypes but also enhances performance by efficiently managing
 concurrency and resource utilization, shielding programmers from - potentially complex -
 concurrency issues.

 Babel’s main properties include flexibility, modularity, and adaptability to different network
 configurations. Its networking abstraction, called "channels," allows for various

 10 https://codelab.fct.unl.pt/di/research/tardis/wp3/TaRDIS-DCR/-/wikis/home
 9 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model

 Page 14 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp3/TaRDIS-DCR/-/wikis/home
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model

 TaRDIS | D3.3: Second report on programming model and APIs

 communication methods (e.g., P2P or client-server) that can be tailored to specific protocol
 needs. Additionally, Babel's architecture supports the independent development and
 execution of protocols, which encourages reuse and scalability. The framework’s flexibility in
 managing protocol interactions and network communications makes it suitable for diverse
 use cases, from peer-to-peer systems to consensus protocols, demonstrating competitive
 performance while maintaining ease of development.

 In the context of TaRDIS we developed two new variants of this framework, respectively
 called Babel-Swarm and Babel-Android, that extend the functionality of Babel with features
 that are relevant for swarm applications, being suitable to run on a wide variety of devices,
 including mobile phones, small computers (e.g., raspberry pi), laptops, desktops, or even
 servers.

 Babel-Swarm enhances the original Babel by introducing features for self-configuration,
 autonomic reconfiguration, and security. This variant supports the automatic discovery of
 network contacts, allowing swarm nodes to join and configure themselves with minimal user
 intervention, avoiding common human errors. It also enables protocols to adapt runtime
 parameters in response to changing network conditions, system workload evolution, or other
 operational conditions, improving performance and resilience. Moreover, Babel-Swarm
 incorporates security mechanisms, such as node authentication via self-signed certificates
 and secure communication channels, essential for applications that require trustworthy
 interactions within swarms. All these features are exposed to programmers in simple ways,
 and entwined with the usual operation of the Babel. This will be further detailed in the
 upcoming Deliverable 6.2.

 Babel-Android ports the Babel-Swarm framework’s functionalities to mobile environments,
 allowing developers to build distributed protocols optimized for Android devices. This
 adaptation enables Babel’s event-driven model to run on mobile devices, thereby supporting
 peer-to-peer and edge-computing applications that require direct device-to-device
 communication in a decentralized manner.

 Page 15 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 3 T A RDIS API S STATUS AND PROGRESS

 This section outlines the ongoing work on the design and development of the TaRDIS toolkit
 APIs. Here we use the term “API” in a broad sense, covering all facilities that will be made
 available to programmers that use the TaRDIS toolkit to develop swarm applications; this
 includes both APIs in the “classic” sense (i.e. the specification of functions, procedures, and
 methods callable by user’s code), and facilities and tooling supporting the programmer (e.g.
 the verification facilities developed in WP4).

 This section is structured as a status update with respect to Section 3 of Deliverable D3.1: it
 focuses on the improvements and changes occurred since then, and refers to the relevant
 sections of the TaRDIS wiki for further technical details and documentation. For easier
 readability, the section numbers match the section numbers of D3.1. The contents will be
 further refined and improved in the next (and final) iteration of this Deliverable, i.e., D3.5.

 The titles of each subsection highlight which WP is working on the related APIs and features
 of the TaRDIS toolbox.

 ● Section 3.1 outlines the TaRDIS APIs.
 ● Section 3.2 outlines the analysis and verification facilities.
 ● Section 3.3 outlines the APIs for AI and machine learning-related functionality.
 ● Section 3.4 outlines the data management and distribution primitives.

 3.1. API S O UTLINE

 This section provides an overview of the TaRDIS swarm APIs.

 These APIs, sketched below, are divided between those conceived for managed swarm
 elements (Section 3.1.1), those conceived for free-form swarm elements (Section 3.1.2), and
 those giving access to machine learning functionality (Section 3.1.3). The APIs deal with
 aspects such as the creation and validation of a swarm protocol, the creation of a role in a
 swarm protocol, creation of a workflow to handle that role, finding individuals running specific
 workflows or that are part of a specific role, creating communication overlays and channels,
 and handling events and messages.

 The evolution of API documentation has risen significantly, with several modern practices
 and tools emerging to enhance usability, maintainability and accessibility. The current key
 trends and best practices in API documentation embrace the use of the OpenAPI 11

 specification (OAS) for documenting RESTful APIs using YAML or JSON formats. TaRDIS
 shall use the Swagger 12 tool to produce interactive documentation. This will foster not only
 generating documentation from annotations in the tools code, but also allow the users to
 interact with the APIs directly from the documentation, helping the developers to understand
 how to use the endpoints effectively.

 12 https://swagger.io
 11 https://www.openapis.org/what-is-openapi

 Page 16 of 43 © 2023-2025 TaRDIS Consortium

https://swagger.io/
https://www.openapis.org/what-is-openapi

 TaRDIS | D3.3: Second report on programming model and APIs

 As the APIs are not static and may evolve with time, the TaRDIS team will encompass
 managing multiple versions of the APIs. By using these tools, the team believes it will be able
 to create comprehensive and user-friendly API documentation that facilitates easier
 integration and a better developer experience.

 3.1.1 Event-Driven APIs for Managed Swarms: Instantiating a TaRDIS
 Swarm

 The managed swarm element APIs, as part of the core TaRDIS APIs were defined early in
 the project and are documented in the TaRDIS Wiki. 13

 3.1.2 Event-Based Input-Output APIs for Free-Form Swarm Elements
 The free-form swarm elements I/O APIs, as part of the core TaRDIS APIs were defined early
 in the project and are documented in the TaRDIS Wiki. 13

 3.1.3 Machine Learning APIs
 The machine learning APIs, as part of the core TaRDIS APIs were defined early in the project
 and are documented in the TaRDIS Wiki. 13

 3.2. A NALYSIS AND V ERIFICATION F ACILITIES

 This section summarises the status of the APIs related to program analysis and verification.
 The structure of the following subsections is based on the TaRDIS WP4 project tasks
 (matching the structure of Section 3.2 of Deliverable 3.1):

 ● Task 4.1 - Specifying and Verifying Communication Behaviour (Section 3.2.1)
 ● Task 4.2 - Specifying and Analysing Data Consistency (Section 3.2.2)
 ● Task 4.3 - Specifying and Analysing Security Properties (Section 3.2.3)
 ● Task 4.4 - Specifying and Analysing Security Properties (Section 3.2.4)

 3.2.1. Specifying and Verifying Communication Behaviour - T4.1

 3.2.1.1. Correctness-By-Construction Guarantees for Managed TaRDIS
 Applications

 Since the submission of Deliverable D3.1, the support for the development of managed
 TaRDIS applications has been improved by offering tooling for two kinds of specifications:

 ● State-oriented specification of managed TaRDIS applications via swarm protocols
 (outlined in Section 2.2). The corresponding tooling is documented on the Actyx
 developers website, and on the TaRDIS wiki. The tooling includes a graphical editor
 for swarms protocols called WorkflowEditor (T-WP3-01) and the machine-runner
 (T-WP4-01) and machine-check (T-WP4-02) libraries. The underlying swarm
 communication is handled by the Actyx middleware (T-WP6-03) . 14 15

 15 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model/Actyx-tools

 14 https://developer.actyx.com/
 13 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Core-TaRDIS-APIs

 Page 17 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model/Actyx-tools
https://developer.actyx.com/
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Core-TaRDIS-APIs

 TaRDIS | D3.3: Second report on programming model and APIs

 ● Event-oriented specification of managed TaRDIS applications via DCR graphs
 (outlined in Section 2.3), supported by the tool DCR Editor (T-WP3-03) . 16 17

 3.2.1.2. Communication Behavioural Properties

 To specify and verify communication properties such as communication safety, deadlock
 freedom, and liveness, an extensible toolchain based on Multiparty Session Type (MPST)
 theory known as Scribble (NuScr, T-WP3-02 and T-WP4-05) is utilised. This toolchain
 provides a language for defining global communication structures, also known as global
 protocols. It allows manipulation of these protocol specifications to generate APIs that can be
 directly implemented in distributed systems, ensuring critical safety guarantees.

 The Scribble toolchain is employed specifically within Task T4.4, which addresses the
 verification of membership protocols and communication primitives designed under WP6.
 These distributed protocols are crucial for constructing and maintaining overlay networks,
 which typically have numerous liveness properties and limited safety properties due to their
 probabilistic nature. Scribble's mechanisation ensures these liveness properties are verified,
 contributing to the robustness of the distributed systems.

 Scribble is available as open-source software on GitHub 18 and can be used both as a
 standalone command-line application and as a library for integrating multiparty protocol
 handling into other projects. Additionally, it offers a web-based interface for direct protocol
 prototyping without requiring local installation. 19 Initial documentation for Scribble is available
 on the TaRDIS wiki. 20

 3.2.1.3. Join Patterns API with “Fair Matching” Guarantees

 The JoinActors library (T-WP3-03) implements join patterns in Scala 3. Join patterns are a
 coordination mechanism for concurrent message-passing programs allowing to declaratively
 specify how to react to combinations of incoming messages, and synchronize distributed
 computations. The library will be used in the implementation of the Actyx use case.

 Since Deliverable D3.1, the JoinActors library has been extended and improved to a more
 complete prototypal stage, and benchmarked with various different workloads highlighting its
 strengths and weaknesses. The results have been published in a paper at the ECOOP 2024
 conference. 21

 The JoinActors library is available as Open Source software on GitHub, 22 and has some
 preliminary documentation available on the TaRDIS wiki. 23

 3.2.1.4. P4R-Type: Verified Control Plane API for Software-Defined Networking

 As reported in Deliverable D7.2 (Section 4.4), the P4R-Type library (T-WP4-04) for verified
 software-defined networking in Scala 3 will not be included in the TaRDIS toolbox.

 23 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/JoinActors
 22 https://github.com/a-y-man/join-actors

 21 Philipp Haller, Ayman Hussein, Hernán C. Melgratti, Alceste Scalas, Emilio Tuosto: Fair Join Pattern
 Matching for Actors. ECOOP 2024: 17:1-17:28. https://doi.org/10.4230/LIPIcs.ECOOP.2024.17

 20 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/Scribble
 19 https://nuscr.dev/nuscr
 18 https://github.com/nuscr/nuscr
 17 https://codelab.fct.unl.pt/di/research/tardis/wp3/TaRDIS-DCR/-/wikis/home
 16 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model

 Page 18 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/JoinActors
https://github.com/a-y-man/join-actors
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/Scribble
https://nuscr.dev/nuscr
https://github.com/nuscr/nuscr
https://codelab.fct.unl.pt/di/research/tardis/wp3/TaRDIS-DCR/-/wikis/home
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/The-TaRDIS-programming-model

 TaRDIS | D3.3: Second report on programming model and APIs

 3.2.1.5. Typestate Checking

 In software systems, resources are stateful and operations performed on them may depend
 on properties of the state. For instance, one cannot pop from an empty buffer or withdraw
 from an account without sufficient balance. These properties about state, when declared in
 the code implementing the system, are called typestates . A simple way of representing them
 is like finite automata, where transitions from a certain state correspond to operations that
 can be performed safely (i.e., without eventually crashing the application or leading it to an
 incoherent state).

 The key idea of JaTyC 24 (T-WP4-06) is to associate a typestate annotation with every stateful
 class, declaring the object's states, the methods that can be safely called in each state, and
 the states resulting from the calls. The tool statically verifies that when a Java program runs:
 sequences of method calls obey to object's protocols; objects' protocols are completed;
 null-pointer exceptions are not raised; subclasses' instances respect the protocol of their
 superclasses. Moreover, it supports protocols to be associated with classes from the
 standard Java library or from third-party libraries and supports "droppable" states, which
 allow one to specify states in which an object may be "dropped" (i.e., stop being used)
 without having to reach the final state.

 Since Deliverable D3.1, JaTyC has added support for subtyping: you may have a class with a
 protocol that extends another class with another protocol and the tool will ensure that the first
 protocol is a subtype of the second protocol. One can also create a class with protocol that
 extends a class without protocol. In the class without protocol, all methods are available to be
 called and remain so in the subclass. Then in the subclass, one can add new methods and
 restrict their use by only allowing them in certain states. More information can be found in an
 article recently published. 25

 3.2.2. Specifying and Analysing Data Consistency - T4.2

 3.2.2.1. AtomiS - Data Centric Concurrency (an extended Java Compiler)

 Data-Centric synchronisation (DCS) shifts the reasoning about concurrency restrictions from
 control structures to data declaration. It is a high-level declarative approach that abstracts
 away from the actual concurrency control mechanism(s) in use. AtomiS 26 (T-WP4-07)
 requires only qualifying types of parameters and return values in interface definitions, and of
 fields in class definitions. The latter may also be abstracted away in type parameters,
 rendering class implementations virtually annotation-free. From this high level specification, a
 static analysis infers the atomicity constraints that are local to each method, considering only
 the method variants that are consistent with the specification, and performs code generation
 for all valid variants of each method. The generated code is then the target for automatic
 injection of concurrency control primitives that are responsible for ensuring the absence of
 data-races, atomicity-violations and deadlocks. In short, AtomiS is used to mark resources
 which need to be accessed in mutual exclusion; a type-checking and inference system
 ensures race freedom.

 This tool has no dependencies with other TaRDIS tools, but can be used in subsequent
 releases of some of them. When developing concurrent applications that share resources, or
 in particular in the case of orchestrated TaRDIS tools like FAUNO (WP5-05), Babel
 (WP6-04), or Distributed Management of Configuration based on Namespaces (WP6-08), a

 26 Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João Matos, and António Ravara: AtomiS:
 Data-Centric Synchronization Made Practical . OOPSLA 2023: 116-145. https://dl.acm.org/doi/10.1145/3622801

 25 Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara: Behavioural Up/down
 Casting For Statically Typed Languages. ECOOP 2024. 5:1-5:28. https://doi.org/10.4230/LIPIcs.ECOOP.2024.5

 24 https://github.com/jdmota/java-typestate-checker

 Page 19 of 43 © 2023-2025 TaRDIS Consortium

https://dl.acm.org/doi/10.1145/3622801
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://github.com/jdmota/java-typestate-checker

 TaRDIS | D3.3: Second report on programming model and APIs

 critical aspect is the identification of the right concurrency control features and where to place
 them. AtomiS can thus be used to optimise and produce by-construction thread-safe
 versions of these tools. An evaluation of the readiness and effectiveness of AtomiS is under
 way and a first release of a public version of the tool is planned until next summer.

 3.2.2.2. Ant - Anticipation of Method Execution in Mixed Consistency Systems

 Distributed applications (widely common these days) need to replicate data to make it
 available. Eventually, possible conflicts must be solved. A typical example is a shared set:
 inserts can always happen, as sets do not have repeated elements (although the local view
 of the set may be outdated), but removals require causal and/or eventual "coordination" (if
 one cannot remove a non-existing value, as in some contexts, this can block or crash the
 device).

 Ant (T-WP4-08) is an approach to determine statically operations that can safely commute
 with other operations in replicas of a distributed system. The information is used to allow a
 run-time system to anticipate calls to commutable operations. The theory behind is described
 in papers published recently 27 28 .

 The aim is to reduce the programmer’s effort by only requiring simple and intuitive
 annotations at data declaration. The goal is to use the annotations to automatically identify all
 accesses to replicated data; operations accessing such data are either conflict-free with
 other operations or may require coordination.

 The Ant approach as been implemented in a tool - REPL 29 that performs compile-time
 commutativity analysis for the Java language, computing the commutativity of pairwise
 method calls from the input given at data declaration, parameters’ values and fields’ states.

 This tool has no dependencies with other TaRDIS tools. The approach and/or the tool can be
 particularly useful to control at runtime the execution of operations in the swarm replicas,
 ensuring eventual data-consistency. A version of the tool expressive enough to cover a
 significant subset of Java is currently under development.

 3.2.2.3. VeriFx

 The tool VeriFx (T-WP4-09) has been developed as a framework for the design and
 verification of replicated data types (RDTs), with a focus on providing strong formal
 guarantees. It features a specialized domain-specific language (DSL) that enables
 developers to define RDTs with automated proof capabilities, ensuring their correctness.
 Verified RDTs can be transpiled into mainstream programming languages, such as Scala and
 JavaScript, to facilitate their integration into real-world systems. The tool also includes libraries for
 implementing and verifying Conflict-free Replicated Data Types (CRDTs) and Operational
 Transformation (OT) functions, which are critical for ensuring consistency in distributed and
 collaborative environments. Currently, we have been exploring the adaptation of the tool for
 analyzing the EDP and GMV use cases using VeriFx specifications, with a focus on defining
 useful RDTs tailored to these applications.

 The tool is still under development but an initial version is available in Zenodo, 30 and some
 preliminary documentation is available on the TaRDIS wiki. 31

 31 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/VeriFx
 30 https://zenodo.org/records/7982416
 29 http://hdl.handle.net/10362/164248
 28 https://arxiv.org/abs/2212.14651
 27 https://doi.org/10.1145/3555776.3577725

 Page 20 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/VeriFx
https://zenodo.org/records/7982416
http://hdl.handle.net/10362/164248
https://arxiv.org/abs/2212.14651
https://doi.org/10.1145/3555776.3577725

 TaRDIS | D3.3: Second report on programming model and APIs

 3.2.3. Specifying and Analysing Security Properties - T4.3
 The tool (Sec)ReGraDa (T-WP4-11) and its module IFChannel (T-WP4-08) provide security
 verification in TaRDIS applications that are defined as a DCR graph. This is a form of
 information flow analysis, roughly checking that data of a given security label cannot flow (by
 programmer mistake) into a location of a lower security label. This includes both explicit flows
 (writing data into a location of lower security) and implicit flows (conditional writing operations
 where the condition depends on higher-level data than the writing data). This is meant as a
 static analysis, i.e., the analysis is performed before the execution is deployed, not as a
 dynamic/monitoring analysis, as it is impossible to prevent implicit flows in the dynamic
 setting. Both tools are work in progress, the foundational work has to a large extent been
 achieved, and we are working on an implementation of the analysis.

 To describe the foundational work for these tools, we need a bit more detail. The IFChannel
 module extends standard information flow results to using secure channels that are
 implemented cryptographically. The idea is that we can transmit confidential information also
 over public/insecure channels that may be controlled by an intruder, as long as the data is
 suitably encrypted. We currently assume that these encryption operations are with suitable
 long-term keys (public-key encryption or symmetric-key encryption), but even under this
 restriction it is far from trivial to prove that this is secure. In fact, we follow here the standard
 concept of non-interference: given two states of the system that only differ in data that is
 above the security level l of an intruder, then executing any verified TaRDIS program
 produces two states that only differ in data above security level l, so the intruder is unable to
 distinguish them and thus unable to learn anything about the data above security level l. We
 have to make however a major adaptation to the standard notion of non-interference, since it
 trivially is broken if the intruder can break cryptography; we have thus made a Dolev-Yao
 style intruder model where the intruder cannot break cryptography, but can of course make
 observations like the transmission of messages. This actually also means that the verification
 needs to check that transmissions do not depend on a non-public security level. We do not
 consider any obfuscation techniques like onion routing to hide the fact that messages are
 transmitted, as this does not seem feasible in typical swarm protocols. This restriction was
 already envisioned in D3.1, but we now have at least sufficient conditions that we can check.

 A point that we have not completely solved so far is integrity, which can be done by a
 complementary information flow analysis. Indeed the information flow analysis itself is simple,
 but the non-interference result for integrity does not follow in general if we have to assume
 that an intruder can block and replay messages on the network. There are some
 mechanisms to ensure consistency, but they are often not directly compatible with swarm
 protocols we want to deploy, and in fact not even needed when we only require eventual
 consistency. For example in the EDP use case, the intruder may block a request or offer of
 energy, but cannot manipulate the requested amount or offered price. We plan to define
 suitable requirements for programs so that we can guarantee the integrity goals.

 The verification of the DCR graphs requires that channels are implemented by cryptographic
 protocols; these protocols typically have a setup part (like TLS handshake) and a
 transmission part (like TLS transport). Moreover, there may be administrative protocols for
 distributing and updating keys, e.g., when swarm nodes join or leave a given group. These
 protocols should not be for the TaRDIS users to specify and implement, but available through
 the TaRDIS library in the Babel framework. To verify these protocols, we will use the tool
 PSPSP (T-WP4-09) , an existing tool for protocol verification that we want to adapt for the
 internal use of the TaRDIS project. The planned adaptations are 1. the integration with the
 model of security labels from T-WP4-8/11 ; 2. the support for an abstract payload type
 according to vertical compositionality results, i.e., verifying that a channel provides secure

 Page 21 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 transmission for arbitrary payload messages, even if these are known or chosen by the
 intruder; 3. improvements of the user interface; 4. possibly support for algebraic properties.

 Finally, we also want to explore another synergy between the research groups at DTU and
 NOVA, namely the use of cryptographic choreographies (via the tools IFChannel, T-WP4-10,
 and CryptoChoreo, T-WP4-12, and (Sec)ReGraDa DCR, T-WP4-13). This allows to equip
 choreographies (similar to DCR graphs) with cryptographic operations and derive from them
 the program that implements this locally for the different roles of the choreography. This is a
 correct-by-construction approach: we check that the choreography is actually executable
 (e.g., preventing mistakes where under certain circumstances one party sends a message
 that cannot be received by another) and that all agents perform all checks that they can
 make (e.g., preventing mistakes where a programmer forgets to make some possible checks
 on a received message). We plan to deploy this to describe the protocols that we want to
 verify with PSPSP (T-WP4-09) but are also considering directly integrating it into the DCR
 graphs and the generation of implementation used there. The implementation of this tool will
 commence soon.

 Documentation about IFChannel, PSPSP, CryptoChoreo, (Sec)Regrada, and DCR
 Choreographies may be found in the TaRDIS wiki. 32 33 34 35 36

 3.2.4. Deployment and Orchestration Integration - T4.4

 The work conducted in T4.4 is directly related to the tools developed in WP5 and WP6:

 ● WP5 develops the tool PTB-FLA (T-WP5-04 , Section 3.3.1.1) that relies on the
 correct orchestration of federated learning algorithms. These are formalised in
 communicating sequential processes (CSP) and verified in the Process Analysis
 Toolkit (PAT) 37 . After D3.1, we developed an approach to systematically construct
 CSP models using Python code that follows a restricted actor-based programming
 model. This approach should serve as a basis for developing a tool for the automatic
 translation of certain classes of Python code to CSP models - a work in progress.

 ● After D3.1, we started work to support a WP6 tool for distributed management of
 configurations. This tool relies on a model based on namespaces. In T4.4 we worked
 on this model in two directions: (i) applying the graph transformation theory to achieve
 accurate resource redistribution throughout namespaces, and (ii) modeling and
 verifying communication protocols, by applying multiparty session types and the
 Scribble tool (T-WP3-02 and T-WP4-05) .

 37 Ivan Prokic, Silvia Ghilezan, Simona Kasterovic , Miroslav Popovic , Marko Popovic , Ivan Kastelan : Correct
 Orchestration of Federated Learning Generic Algorithms: Formalisation and Verification in CSP. ECBS 2023 :
 274-288.

 36 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/DCR-Choreographies
 35 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/(Sec)Regrada
 34 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/CryptoChoreo
 33 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/PSPSP
 32 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/IFChannel

 Page 22 of 43 © 2023-2025 TaRDIS Consortium

https://dblp.uni-trier.de/pid/211/4648.html
https://dblp.uni-trier.de/pid/65/1157.html
https://dblp.uni-trier.de/pid/86/4467.html
https://dblp.uni-trier.de/pid/67/8012.html
https://dblp.uni-trier.de/db/conf/ecbseerc/ecbs2023.html#ProkicGKPPK23
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/DCR-Choreographies
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/(Sec)Regrada
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/CryptoChoreo
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/PSPSP
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/IFChannel

 TaRDIS | D3.3: Second report on programming model and APIs

 3.3. A RTIFICIAL I NTELLIGENCE AND M ACHINE L EARNING API S

 This section summarises the status of the APIs related to AI and machine learning. The
 structure of the following subsections is based on the TaRDIS WP5 project tasks (matching
 the structure of Section 3.3 of Deliverable 3.1):

 ● Task 5.1 - AI/ML Programming Primitives (Section 3.3.1)
 ● Task 5.2 - AI-Driven Planning, Deployment, and Orchestration (Section 3.3.2)
 ● Task 5.3 - Lightweight and Energy-Efficient ML Techniques (Section 3.3.3)

 3.3.1. AI/ML Programming Primitives - T5.1

 3.3.1.1. Python and MicroPython Test Beds for Federated Learning Algorithms
 (PTB-FLA and MPT-FLA) APIs

 Python and MicroPython Test Beds for Federated Learning Algorithms (PTB-FLA and
 MPT-FLA, T-WP5-04) APIs implementation is publicly available in the ptbfla GitHub
 repository. 38

 The Python Test Bed for Federated Learning Algorithms (PTB-FLA) API is provided by the
 PtbFla class in the ptbfla module, whereas the MicroPython Test Bed for Federated Learning
 Algorithms (MPT-FLA) API is provided by the PtbFla class in the mp_async_ptbfla module.
 (Note: both classes have the same name to lighten porting legacy applications from PTB-FLA
 to MPT-FLA.) Both APIs include a constructor, two generic Federated Learning Algorithms
 (FLAs), the TDM (Time Division Multiplexing) peer data exchange algorithm, and a
 destructor. The MPT-FLA API also includes the start method. (Note: all the MPT-FLA API
 methods, except the constructor and the destructor, are Python asynco coroutines, so they
 should not be called as functions but must be awaited using the await keyword.)

 Both generic FLAs (i.e., fl_centralized and fl_decentralized methods) have been formalized
 using CSP (Communicating Sequential Process) calculus and verified using the model
 checker PAT (Process Analysis Toolkit). Two key properties were checked:

 ● Deadlock Freedom (Safety): Ensures that the system will not reach a state where
 no progress is possible.

 ● Termination (Liveness): Ensures that the system will eventually complete its tasks.

 More details on the PTB-FLA and MPT-FLA APIs are available in the TaRDIS wiki. 39

 3.3.1.2. Flower-based Federated Learning (FFL) APIs

 The Flower-based federated learning APIs within the TaRDIS toolkit are:

 ● the Flower-based Federated Learning training models API (T-WP5-01 , FFL
 training models API);

 ● the Flower-based Federated Learning input data preprocessing API (T-WP5-02 ,
 FFL input data preprocessing API);

 ● the Flower-based Federated Learning Machine Learning inference and
 evaluation API (T-WP5-03 , FFL ML interface and evaluation API).

 These APIs rely on the facilities that the open-source Flower framework offers for building
 custom FL solutions.

 39 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 38 https://github.com/miroslav-popovic/ptbfla

 Page 23 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs
https://github.com/miroslav-popovic/ptbfla

 TaRDIS | D3.3: Second report on programming model and APIs

 The FFL training models API is meant to enable FL ML model training, by supporting a list of
 provided AI/ML decentralized solutions. It contains implementations for the following
 algorithms: FedAvg (federated averaging), pFedMe (Personalized Federated Learning with
 Moreau Envelopes), pFedMeNew (New Personalized Federated Learning with Moreau
 Envelopes), Anomaly Detection with noisy labels (in progress, it is relevant for the ACT use
 case) and Distributionally Robust FL (in progress). The FFL input data preprocessing API is
 enabling the transformation of raw data into a format that is suitable for the FL ML model
 training process. It provides an easier and most efficient way to deal with different
 irregularities in the target data set. The FFL ML inference and evaluation API enables gaining
 valuable output regarding the relevant data and the trained model.

 A Flower-based FL model training tool was recently developed, in order to make the FL
 techniques more accessible to end users. It is aligned with the mentioned APIs and provides
 a user-friendly (command-line and GUI-based) interface for eased utilization of FL
 approaches. More details on the FFL APIs are available in the TaRDIS wiki. 40

 3.3.1.3. Fedra (T-WP5-09): A decentralized federated learning framework
 enabling secure P2P model training on edge devices

 This is a new TaRDIS toolbox component w.r.t. Deliverable D3.1. Fedra (T-WP5-09) provides
 a decentralised federated learning framework integrated with p2p communications between
 the participating nodes, specifically designed for swarm systems. Fedra is model-agnostic, in
 the sense that different ML algorithms can be seamlessly integrated and utilized to train ML
 federated models, including models for forecasting, resource allocation, anomaly detection.

 Fedra's architecture involves the orchestration of several components, each playing a crucial
 role in the decentralized learning process:

 ● P2P Communication Layer (P2PHandler): (i) Acts as the nervous system of the Fedra
 network; (ii) Manages all inter-node communications, from initial peer discovery to
 ongoing model update exchanges; (iii) Utilizes libp2p to ensure secure, efficient, and
 anonymous peer-to-peer interactions.

 ● Data Management and Preprocessing (DataLoaderHandler): (i) Serves as the
 sensory input system, preparing and feeding data to the learning models; (ii) Handles
 diverse data types and structures, ensuring compatibility across different learning
 tasks; (iii) Implements advanced preprocessing techniques to optimize learning
 efficiency.

 ● Core Operations Module (Operations): (i) Functions as the brain of each node,
 performing critical computations; (ii) Manages serialization and deserialization of
 model updates, crucial for efficient network transmission; (iii) Implements the
 federated averaging algorithm, the key to collaborative learning in a decentralized
 setting.

 ● Network State Management (NetworkState): (i) Acts as the collective memory of the
 network; (ii) Keeps track of the status and contributions of all participating nodes; (iii)
 Enables informed decision-making for adaptive learning strategies.

 ● Orchestration Engine (Main Script - fedra.py): (i) Serves as the conductor,
 coordinating all components to work in harmony; (ii) Manages the lifecycle of the
 learning process, from initialization to convergence; (iii) Implements high-level
 learning strategies and protocols.

 40 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 Page 24 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 TaRDIS | D3.3: Second report on programming model and APIs

 This architectural design ensures that Fedra is not just a tool for federated learning, but a
 comprehensive ecosystem for decentralized, collaborative AI development. More information
 related to the operation of Fedra can be found in the TaRDIS wiki 41 and on GitHub 42 .

 3.3.1.4. FLaaS (T-WP5-10): Federated Learning as a Service

 FLaaS (FL-as-a-Service), developed by Telefónica, is a practical federated learning
 framework for mobile environments that allows app developers to perform cross-device and
 cross-app FL. As mentioned in Deliverable D7.2 (section 2.3.8), the initial version of FLaaS
 was built outside of the TaRDIS project, and the development and subsequent integration of
 the TaRDIS tools into FLaaS (as part of the Telefónica use case) will result in an improved or
 more modular version of FLaaS.

 After this integration, components of FLaaS that are standalone might be included in the
 TaRDIS toolbox, depending on their level of reusability and maturity. This is ongoing work,
 and therefore, we do not yet have documentation nor finalized APIs for the FLaaS-related
 components that might be included in the TaRDIS toolbox. Depending on how this effort will
 evolve, the potential FLaaS-related TaRDIS components will be documented in future
 relevant deliverables, including D3.5 (3rd iteration of the TaRDIS models and APIs).

 3.3.2. AI-Driven Planning, Deployment, and Orchestration - T5.2

 3.3.2.1 - PeersimGym: An environment for Task Offloading in Edge Systems

 PeersimGym (T-WP5-11) received multiple upgrades since D3.1. The tool is an environment
 for task offloading in edge systems. There are two components, a simulation built with the
 Peersim P2P simulator tool that simulates an Edge Systems with three types of nodes:
 clients, workers and the cloud. Tasks are generated and must be processed by the different
 nodes in the network or the cloud. This simulation is wrapped in a python class that
 implements the PettingZoo environment class in Python providing a Markov Game
 abstraction to the agents interacting with the environment. The PettingZoo environment
 manages the simulation using a Spring Boot Server wrapping the simulation and REST
 requests. To see instructions on how to setup and configure and use the environment see the
 TaRDIS wiki 43 and the PersimGym repository on GitHub. 44

 3.3.2.1.1 - Updates to the environment
 While developing the FAuNO framework (T-WP5-05) the team further improved the
 environment to better replicate the scenarios normally considered when doing Task
 Offloading in Edge Systems. The WP5 team has updated the simulation and extended the
 PettingZoo API to support the exchange of federated model updates through the network.
 Concretely, we have:

 ● Added a mechanism to permit the regular timestep to be subdivided into multiple
 sub-timesteps. This allows for events to be more spaced in time and having a finer
 control over the simulation.

 ● Added a mechanism to track energy consumption of each node’s processing and
 communicating.

 ● Added an alternative mechanism to compute the channel delay using a channel
 bit-rate directly instead of using the Shannon-Hartley theorem.

 44 https://github.com/FredericoMetelo/peersim-environment
 43 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 42 https://github.com/anaskalt/fedra
 41 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 Page 25 of 43 © 2023-2025 TaRDIS Consortium

https://github.com/FredericoMetelo/peersim-environment
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs
https://github.com/anaskalt/fedra
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 TaRDIS | D3.3: Second report on programming model and APIs

 ● Added a mechanism to exchange FL updates between agents through the simulated
 network. We utilize the A* algorithm to optimally route communications between all
 nodes in a static network.

 3.3.2.2 - FAuNO: Federated AI Network Orchestrator

 The WP5 team has implemented a prototype version of the FAuNO framework (T-WP5-05) ,
 a Semi-asynchronous Federated Reinforcement Learning method that is capable of solving
 the Task Offloading problem in Edge Systems. We have the local agents using a Proximal
 Policy Optimization (PPO) Actor-Critic algorithm 45 , to locally learn how to best interact with
 the environment. And we federate the critic networks of all participants using a client/server
 Federated Buffering (FedBuff) 46 technique to obtain a global critic model that the participating
 agents cooperate to build. The details about FAuNO can be found on the TaRDIS wiki. 47

 3.3.3. Lightweight and Energy-Efficient ML Techniques - T5.3
 Three techniques are included in the Tardis toolkit for making the inference of an ML model
 more lightweight in terms of energy-efficiency and inference latency. These techniques
 (which were only briefly outlined in Deliverable D3.1, and have been further developed since
 then) involve the transformation of Deep Neural Networks (DNNs) ML models, as the DNNs
 are one of the key contributors to the energy consumption at swarm systems. The three
 methods of interest are: Early-Exit (EE) of inference (Sections 3.3.3.1 and 3.3.3.2),
 Knowledge Distillation (KD) (Section 3.3.3.3), and Pruning (Section 3.3.3.4).

 Detailed description of the functionality of these tools can be found on the TaRDIS wiki. 48

 3.3.3.1. Early-Exit tool (T-WP5-06)

 This method can be implemented in a DNN that includes multiple hidden layers. Compared
 to the initial version of the EE tool that was described in D3.1, we have performed several
 modifications that are described below and also in the Early-Exit GitHub repository. 49

 The function to be exposed is import as follows:

 from early_exit.get_early_exit import create_networks

 as used as such How to Use:

 1. Define your model (optional train it on your dataset)
 2. Define a class that splits your model into nn.Sequentail Sublocks that, in turn all

 belong to an nn.Sequential Container, named "self.net" (see demo.ipynb, SplitModel
 class)

 3. Call the function with the following parameters:

 Parameter Type Description

 model Split Model The split model as defined in
 step 2.

 input_shape Tuple Shape of the input data (e.g.,
 (1, 3, 32, 32)).

 49 https://github.com/Ilias-Paralikas/early_exit
 48 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 47 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 46 Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat, M., Malek, M., & Huba, D. (2022, May).
 Federated learning with buffered asynchronous aggregation. In International Conference on Artificial
 Intelligence and Statistics (pp. 3581-3607). PMLR.

 45 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
 algorithms. arXiv preprint arXiv:1707.06347 .

 Page 26 of 43 © 2023-2025 TaRDIS Consortium

https://github.com/Ilias-Paralikas/early_exit
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Artificial-Intelligence-and-Machine-Learning-APIs

 TaRDIS | D3.3: Second report on programming model and APIs

 thresholds List of floats Threshold values for early exits,
 it exceeded the exit is taken.

 neurons_in_exit_lay
 ers

 List of lists of
 integers

 Number of neurons in each exit
 layer.

 epochs Integer Number of epochs to train the
 model.

 train_dataloader torch.utils.data.DataLoa
 der

 DataLoader for training data.

 test_dataloader torch.utils.data.DataLoa
 der

 DataLoader for test data.

 optimizer torch.optim Optimization algorithm for
 training (e.g., torch.optim.SGD).

 optimizer_parameter
 s

 dict Parameters to configure the
 optimizer (e.g., {'lr': 0.001}).

 criterion torch.nn Loss function to train the model
 .(e.g., torch.nn.CrossEntropyLo
 ss()).

 training_method String or Integer Method of training
 ('whole_network' , 'all_exits' ,
 or int).

 NOTE on training method.
 ● The whole_network option will train the whole network as well as the exits
 ● The all_exits option will train ONLY the added exits (works well for pretrained

 networks that we don't want to hurt the performance of the body)
 ● If an integer is provided as a parameter, it will train the exit specified. Obviously, the

 number must not exceed the number of exits.

 Returns:

 Parameter Type Description

 networks List of EarlyExitNetworkSegmentor
 instances

 A list of the separate
 parts of the network.

 train_losses List List of the training
 loss.

 Page 27 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 test_accuracies List of strings the accuracy after
 training.

 3.3.3.2. D-Exit tool (part of T-WP5-06)

 The Dexit tool (its operation is also described in its GitHub repository 50) is a distributed
 inference system that implements EE strategies across multiple nodes. It allows for efficient
 inference by potentially terminating the process early at different stages of the network,
 distributed across edge and cloud devices. The Dexit architecture is designed to be flexible,
 scalable, and efficient. It comprises several key components that work in concert to enable
 distributed early exit inference.

 The core components of the D-exit tool are the following:

 1. Edge Device: The Edge Device serves as the entry point for inference requests. It is
 typically a resource-constrained device (e.g., smartphone, IoT sensor) that initiates
 the inference process. The key responsibilities of the device are: (i) Initial processing
 of input data; (ii) Making early exit decisions based on confidence thresholds; (iii)
 Forwarding complex cases to Cloud1 Node.

 2. Cloud1 Node: The Cloud1 Node acts as an intermediate processing unit with more
 computational power than the Edge Device. The key responsibilities of the Cloud1
 Node are: (i) Processing more complex inference tasks; (ii) Implementing its own
 early exit strategy; (iii) Forwarding the most challenging cases to Cloud2 Node.

 3. Cloud2 Node: The Cloud2 Node represents the final and most powerful computational
 resource in the DEXIT network, while its responsibilities include: (i) Handling the most
 complex inference tasks; (ii) Providing high-accuracy results for challenging inputs;
 (iii) Supporting the overall network by processing overflow from other nodes.

 4. P2P Network Layer (libp2p): The P2P Network Layer, implemented using libp2p,
 forms the communication backbone of DEXIT, offering: (i) Decentralized peer
 discovery; (ii) Efficient message routing between nodes; (iii) Support for various
 transport protocols; (iv) NAT traversal capabilities.

 5. Network State Management: The Network State Management component keeps track
 of the overall system state, including peer statuses, inference requests, and results.
 Its key responsibilities include: (i) Maintaining a real-time view of the network
 topology; (ii) Tracking the status of ongoing inference tasks; (iii) Managing the
 distribution of workload across nodes.

 Moreover, the key software component of the D-exit tool are:

 50 https://github.com/anaskalt/dexit?tab=readme-ov-file

 Page 28 of 43 © 2023-2025 TaRDIS Consortium

https://github.com/anaskalt/dexit?tab=readme-ov-file

 TaRDIS | D3.3: Second report on programming model and APIs

 1. P2PHandler (network/handler.py): The P2PHandler is responsible for managing all
 P2P network operations within DEXIT. Its key functionalities include: (i) Network
 initialization and peer discovery; (ii) Message publishing and subscription; (iii) Direct
 messaging between peers; (iv) Handling of inference requests and results.

 2. NetworkState (utils/state.py): The NetworkState class manages the overall state of
 the DEXIT network, while enabling: (i) Tracking peer statuses; (ii) Managing inference
 requests and results; (iii) Providing network state summaries.

 3. CIFARDataLoader (data/dataloaders.py): The CIFARDataLoader handles data
 loading and preprocessing for the CIFAR10 dataset, which is used for testing and
 demonstration purposes in DEXIT. Its functionalities include: (i) Loading and
 preprocessing CIFAR10 dataset; (ii) Creating DataLoaders for efficient batch
 processing; (iii) Supporting customizable sample sizes for testing.

 4. Early Exit Models (early_exit/): The early exit models are custom neural network
 architectures that support multiple exit points for inference. Its key features include: (i)
 Multiple intermediate classifiers (exit points); (ii) Confidence thresholds for early
 termination; (ii) Adaptive computation based on input complexity.

 3.3.3.3. Knowledge Distillation (T-WP5-07)

 The KD method targets to transform a large DNN model (with multiple hidden layers) to a
 smaller one that is more compact, more energy and computationally-efficient, without losing
 significant accuracy in the DNN output/prediction. Compared to the initial version of the EE
 tool that was described in D3.1, we have modified the KD functionality that is described in its
 GitHub repository. 51

 The function to be exposed is import as follows

 from knowledge_distilation import knowledge_distillation_train

 and the input parameters are described in the following table.

 Parameter Type Description

 teacher_model torch.nn.Module The pre-trained teacher
 model used for knowledge
 distillation.

 student_model torch.nn.Module The student model that
 will learn from the teacher
 model.

 n_epochs int The number of epochs to
 train the student model.

 trainloader torch.utils.data.DataLoader The DataLoader providing
 the training data.

 51 https://github.com/Ilias-Paralikas/Knowldedge_Distillation

 Page 29 of 43 © 2023-2025 TaRDIS Consortium

https://github.com/Ilias-Paralikas/Knowldedge_Distillation

 TaRDIS | D3.3: Second report on programming model and APIs

 criterion torch.nn The loss function used to
 compute the loss.

 optimizer torch.optim The optimizer class used
 to update the model
 parameters (e.g.,
 torch.optim.Adam).

 optimizer_params dict A dictionary of
 hyperparameters for the
 optimizer (e.g., {'lr':
 0.001}).

 teacher_percentage float The percentage of teacher
 model's output to be used
 in the loss calculation.
 Default is 0.5.

 temperature float The temperature
 parameter for softening
 the logits. Default is 2.

 The Returns of the KD tool are:

 Parameter Type Description

 student_model torch.nn.Module The trained student model.

 training_losses List A list with the training losses per epoch.

 3.3.3.4. Pruning (T-WP5-08)

 The pruning tool transforms a DNN in a more lightweight version by nullifying the neuron
 connections that have a negligible impact on the DNN performance. To this end, the pruning
 functionality streamlines the inference process, in terms of latency and conservation of
 energy and computational resources. The updated description can be found in the tool’s
 GitHub repository. 52

 The function to be exposed is import as follows:

 from pruning import prune_model

 and the following parameters are used as input:

 52 https://github.com/Ilias-Paralikas/Pruning

 Page 30 of 43 © 2023-2025 TaRDIS Consortium

https://github.com/Ilias-Paralikas/Pruning

 TaRDIS | D3.3: Second report on programming model and APIs

 Parameter Type Description

 model torch.nn.Module The PyTorch model to be pruned.

 sparse_ratio float The ratio of sparsity to be applied to
 the model.

 input_shape tuple The shape of the input tensor that
 the model expects.

 pruned_layer_types list A list of layer types to be considered
 for pruning (default: ['Linear',
 'Conv2d', 'Conv3d',
 'BatchNorm2d']).

 exclude_layer_names list or None A list of layer names to be excluded
 from pruning (default: None , will
 automatically detect it, could
 possibly cause an error).

 prunner_choice str or None The choice of pruner to be used
 (default: None , will select
 L1NormPruner).

 The return from the Pruning tool is a wrapper function for the nni pruning method,
 including the updated ML model.

 Parameter Type Description

 model torch.nn.Module The pruned PyTorch model.

 Note that when loading the model, the relative path to the model definition has to be
 the same as when the model was first created.

 3.4. D ATA M ANAGEMENT AND D ISTRIBUTION P RIMITIVES

 This section summarises the status of the APIs related to AI and machine learning. The
 structure of the following subsections is based on the TaRDIS WP6 project tasks (matching
 the structure of Section 3.4 of Deliverable 3.1):

 ● Task 6.1 - Decentralised Membership and Communication APIs (Section 3.4.1)
 ● Task 6.2 - Decentralised Data Management and Replication APIs (Section 3.4.2)
 ● Task 6.3 - Decentralised Monitoring and Reconfiguration APIs (Section 3.4.3)

 Page 31 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 3.4.1. Decentralised Membership and Communication APIs - T6.1
 The TaRDIS toolbox will provide several types of distributed (and decentralised) protocols
 that provide different abstractions (potentially with different guarantees) for TaRDIS
 applications. The distributed abstractions that we consider in TaRDIS are the following:

 a) Overlay Networks (Section 3.4.1.1) - superseded by Membership Abstraction APIs
 (Section 3.4.1.2) which define and maintain a logical network interconnecting the
 different components of a TaRDIS application, and that self-manages in case of
 changes on the system affiliation (components joining, leaving, or failing) and
 potentially to other dynamic aspects of the environment (e.g., reliability of a network
 link) or system (e.g., variations in the workload).

 b) Communication Primitives (Section 3.4.1.3) , which operate on top of overlay
 networks, provide the fundamental mechanisms that allow different components of a
 TaRDIS application to interact, exchange information, and coordinate.

 c) Communication APIs for managed swarm elements (Section 3.4.1.4) , which are
 dedicated to applications designed and developed using swarm protocol
 specifications (Section 2.2) or DCR Graphs (Section 2.3) .

 Concrete implementations of these abstractions will be provided as part of the TaRDIS
 toolbox. In the following, we discuss the properties and specific APIs that are currently under
 development and implemented by the TaRDIS team.

 3.4.1.1. Overlay Network Specifications and APIs (T-WP6-01)

 This tool aimed at providing a general purpose API for selecting different overlay networks to
 support the operation of swarm applications based on the functionalities required by the
 application, avoiding the programmer to be required to know the details about the
 implementation and operation of the individual overlay networks. However, preliminary
 testing in the development of the example TaRDIS messaging application (to be detailed in
 Deliverable 6.2 as an example of the use of TaRDIS technology) have shown that this
 functionality was confusing for developers, and that effectively, the selection of one, or more,
 overlay networks to support the operation of swarm applications was misleading when using
 the proposed approach. Due to this, we have abandoned this tool and instead focused our
 efforts in building different membership abstractions (materialized by overlay networks) that
 share a common API, that is enriched when that overlay provides additional functionality to
 the programmer (e.g., a distributed hash table allows the programmer to use decentralized
 application-level routing). Membership APIs are outlined in Section 3.4.1.2 .

 3.4.1.2. Membership Abstractions and APIs (T-WP6-02)

 TaRDIS has developed several different decentralized membership abstractions that can
 support a wide range of swarm application functionalities and scenarios. This includes
 several variants of the HyParView protocol 53 that differentiate between them according to the
 functionality that they provide. We have evolved the original protocol to support the
 self-discovery mechanisms of Babel-Swarm, that allows a process relying on this version of
 HyParView to leverage on the self-discovery mechanisms of Babel to locate a contact node
 already in the network to introduce the new node to the swarm with no need of human

 53 J. Leitao, J. Pereira and L. Rodrigues, "HyParView: A Membership Protocol for Reliable
 Gossip-Based Broadcast," 37th Annual IEEE/IFIP International Conference on Dependable Systems
 and Networks (DSN'07), Edinburgh, UK, 2007, pp. 419-429, doi: 10.1109/DSN.2007.56.

 Page 32 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 intervention. Two other versions of this protocol were developed that respectively support
 security mechanisms introduced in Babel-Swarm (authentication and secure communication
 channels) and autonomic management (allowing runtime parameters to be switched at
 runtime to better cope with operational conditions of the swarm).

 We also have an implementation of the X-BOT protocol 54 55 that was also evolved to take
 advantage of the self-discovery mechanisms of Babel-Swarm. This protocol allows to
 improve the random membership of the service over time taking into account an optimization
 function (in our implementation latency between swarm elements).

 Finally, we have implemented a Global Membership service, that allows elements in the
 swarm to obtain a best-effort global view of the system membership, which while not being
 useful to support the operation of critical components in swarm systems, can be useful for
 operators interacting and managing the system.

 We also plan to enrich this set of abstractions with additional implementations of overlay
 networks that take full advantage of the new functionalities of Babel-Swarm to support a wide
 range of swarm applications. Details about these additional membership abstractions will be
 provided in the future Deliverable 6.2.

 All of the membership abstractions discussed above currently rely on a common API defined
 in the context of Babel, named Babel Protocol Commons , 56 that fundamentally rely on the
 following events:

 Request: GetNeighborsSampleRequest Request to get a sample of neighbors (Host
 format) from the Active view up to a number
 (provided in the event).

 Reply: GetNeighborsSampleReply Generated in response to the previous
 request.

 Notification: NeighborUp Indicates the Host of a local neighbor that
 became available.

 Notification: NeighborDown Indicates the Host of a local neighbor that is
 no longer available.

 3.4.1.3. Communication Abstractions and APIs

 TaRDIS provides multiple communication abstractions in the context of Babel-Swarm (and
 also Babel-Android) that provide a point-to-multipoint communication model, and operate on
 top of membership abstractions discussed above. In particular we provide several broadcast
 primitives with different semantics, including a flood broadcast primitive, several alternatives

 56 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 55 J. C. A. Leitao, J. P. d. S. F. M. Marques, J. O. R. N. Pereira and L. E. T. Rodrigues, "X-BOT: A
 Protocol for Resilient Optimization of Unstructured Overlays," 2009 28th IEEE International
 Symposium on Reliable Distributed Systems, Niagara Falls, NY, USA, 2009, pp. 236-245, doi:
 10.1109/SRDS.2009.20.

 54 J. Leitão, J. P. Marques, J. Pereira and L. Rodrigues, "X-BOT: A Protocol for Resilient Optimization
 of Unstructured Overlay Networks," in IEEE Transactions on Parallel and Distributed Systems, vol. 23,
 no. 11, pp. 2175-2188, Nov. 2012, doi: 10.1109/TPDS.2012.29.

 Page 33 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 TaRDIS | D3.3: Second report on programming model and APIs

 of an eager gossip broadcast primitive (that provide different guarantees provided to the
 programmer in terms of self-configuration, self-management, and security — similarly to the
 different variants of the the HyParView protocol discussed above), a one-hop broadcast
 primitive, and complementary to these, two variants of an Anti-Entropy mechanism.

 We plan to extend this set of communication primitives with other alternatives, taking
 advantage of the functionalities in Babel-Swarm, including publish-subscribe primitives.

 The primitives discussed above rely on a common API also defined in Babel Protocol
 Commons that include the following events:

 Request: BroadcastRequest Requests the broadcast of some
 information for a particular application or
 protocol.

 Notification: BroadcastDelivery Notifies of the reception of data to a given
 application or protocol from a broadcast
 communication primitive.

 Notification: OneHopBroadcastDelivery Similar to the previous one but reserved to
 be used by one hop broadcast solutions
 (the motivation for this event in the API is to
 simplify the co-existence of a regular
 broadcast protocol and a one-hop
 broadcast in the same application).

 Notification: IdentifiableMessageNotification This is an event used by a broadcast
 protocol to notify an anti-entropy protocol of
 a new message received that should be
 synchronized over time with other (and
 potential new) neighbors in the swarm.

 Request:
 MissingIdentifiableMessageRequest

 This event is used by an anti-entropy
 protocol to request a broadcast protocol to
 transmit a message that has been identified
 as missing by some swarm neighbor.

 3.4.1.4. Communication APIs for Managed Swarm Elements

 If a software developer chooses to adopt one of the managed approaches to the
 development of TaRDIS swarm applications, then they are given access to higher-level
 communication APIs that mostly hide the details of the underlying message exchanges.
 Therefore, the communication APIs are “embedded” in the correct-by-construction
 programming facilities illustrated in Section 3.2.1.1 .

 3.4.2. Decentralised Data Management and Replication APIs - T6.2
 TaRDIS has developed several storage solutions that can support different aspects of the
 operation of swarm systems. In general all these solutions expose similar APIs, based on the
 ones reported in Deliverable 3.1 (and materialized in Babel Protocol Commons 57 under the
 storage package), although to support some of their functionality we have allowed these

 57 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 Page 34 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 TaRDIS | D3.3: Second report on programming model and APIs

 APIs to evolve as required, and will enrich the adaptors (discussed below in Section 2.4.2.4)
 to simplify the integration of these solutions into the programming ecosystem of TaRDIS.

 3.4.2.1 PotionDB (T-WP6-06)

 PotionDB was designed with partial geo-replication in mind. Thus, we assume PotionDB
 instances to be spread at different locations across the globe. Each location only replicates a
 subset of the whole data. The system administrator has control over where each object is
 replicated. This allows accountings for data locality to ensure fast access to data, while
 keeping replication and storage costs controlled. Objects without locality on their access
 pattern can be replicated everywhere if desired.

 Clients communicate with the nearest PotionDB replica to ensure low latency. A client’s
 transactions are locally executed in that PotionDB’s replica. Updates are propagated
 asynchronously to other locations. Although we assume it to be uncommon, if a client’s
 transaction accesses objects not locally available, locations where those objects are
 replicated are contacted and involved in the transaction execution.

 The API exposed natively by PotionDB has the following operations:

 begin(clk) -> txid Begins a transaction - clk, if provided, is
 used to set causal dependencies; returns
 the transaction identifier.

 commit(txid) -> clk Commit transaction with identifier txid;
 returns clk to be passed in begin for setting
 up causal dependencies - if null, transaction
 was rolled back.

 rollback(txid) Rolls back transaction with identified txid.

 get(txid, id) -> value Gets the value of object id in the context of
 transaction txid.

 read(txid, id, op) -> value Executes read-only operation op in object id
 in the context of transaction txid, returning
 the result value.

 upsert(txid, id, op) -> ok Executes update operation op in object id in
 the context of transaction txid; return ok if
 the operation succeeded.

 3.4.2.2 Arboreal (T-WP6-05)

 The Arboreal 58 data management system is a key-value store replicated storage solution
 designed to operate across cloud and edge infrastructures, primarily targeting large-scale
 stateful swarm applications with elements scattered throughout large geographical areas. Its
 unique design overcomes the limitations of traditional data replication for edge computing,

 58 P. Fouto, N. Preguiça and J. Leitão, "Large-Scale Causal Data Replication for Stateful Edge
 Applications," 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS) ,
 Jersey City, NJ, USA, 2024, pp. 209-220, doi: 10.1109/ICDCS60910.2024.00028.

 Page 35 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 where data typically resides in centralized data centers, leaving edge nodes as mere caches.
 Instead, Arboreal allows full read and write access at edge nodes, supporting low-latency
 interactions directly at the edge. By doing so, it enables applications requiring real-time data
 manipulation, such as augmented reality, autonomous vehicles, and live analytics, to perform
 efficiently without the latency of communicating back to a central data repository.

 Arboreal achieves this by implementing a dynamic data replication protocol that ensures
 global causal+ consistency — a robust consistency model that maintains a coherent order of
 data operations across nodes without requiring direct cloud involvement. It organizes nodes
 into a hierarchical, tree-like structure, where each edge node can directly synchronize with
 nearby nodes, which optimizes data propagation, recovery from failures, and minimizes the
 metadata overhead. Furthermore, the system adapts dynamically to changing access
 patterns and supports mobile clients seamlessly, adjusting data replication to follow users as
 they move between locations. These properties make Arboreal particularly effective in
 large-scale, latency-sensitive edge scenarios where data availability, consistency, and
 resilience are critical.

 Arboreal exposed the following operations for clients (with respective replies):

 Request: ReadOperation A read operation is emitted to a server
 (edge or cloud) identifying the object to be
 read using a unique key by a swarm
 application.

 Reply: ReadOperationReply This constitutes the reply to the previous
 operation, that both exposes the value read
 and provides to the client a logical time
 stamp (using an Hybrid clock).

 Request: WriteOperation A write operation is emitted to a server
 (edge or cloud) providing the key that
 identifies the object to be written, and also
 an (optional) parameter that states how
 many replicas in Arboreal should execute
 the operation before the operation
 completes.

 Reply: WriteOperationReply This constitutes the reply to the previous
 operation, indicating that the write operation
 completed (given the optional durability
 parameter) and provides to the client a
 logical time stamp (using an Hybrid clock)
 identifying the logical time that was
 associated to this operation.

 Request: ClientMigration This operation is issued by a swarm
 application when it switches the server
 (edge or cloud) that it was using previously
 to interact with this system. This operation
 blocks until the client is free to interact with
 this replica with guarantees that causal+
 consistency will not be violated.

 Reply: ClientMigrationReply This operation constitutes the indication that

 Page 36 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 the previous operation has completed.

 3.4.2.3 Nimbus (T-WP6-07)

 Nimbus, briefly mentioned in D7.2 as “T-WP6-07 Integrated storage,” was not fully detailed
 as essential features were still being finalized; it is now stable, though development is
 ongoing. Designed as a fully decentralized storage system, Nimbus provides scalable and
 efficient data storage without relying on a central authority. To achieve this, Nimbus doesn’t
 require any kind of dedicated infrastructure (i.e., cloud or edge nodes) such that each node in
 the system acts as an independent replica and acts as part of the replicated storage system.
 This aims to target decentralized applications (such as swarms) where replicas may leave or
 enter the network at any moment and execute operations in any order, without disrupting the
 correct functioning of the system as a whole. This way, different applications, such as
 satellite swarms, telemetry swarm systems in harsh environments, to name a few, can
 interact directly with each other without relying on an external infrastructure to store and
 synchronize their data.

 Nimbus provides strong eventual consistency, a consistency model that guarantees that all
 nodes reach the same state after receiving all updates, regardless of the order in which
 updates were applied. This is accomplished by using CRDTs, Conflict-Free Replicated Data
 Types, to synchronize the node’s state with the use of epidemic dissemination .

 Nimbus offers a key-value store interface, by having a data model constituted as keySpaces
 and dividing each keySpace into separate collections . A collection is represented as a
 dictionary of key-value pairs, where a key acts as an identifier of an object, and the value is
 represented as a CRDT (e.g., a counter, set). This offers a rich interface to the developer, by
 allowing him to choose the data type in which he wishes to encode its data, as well as
 offering composite types, such as maps, to allow recursive and composite data structures by
 each application needs (i.e., a tree-like structure of attributes) as depicted below:

 Nimbus client API follows Babel Protocol Commons, 59 a set of common APIs developed in
 TaRDIS for interacting with distributed systems and their protocols:

 59 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 Page 37 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 TaRDIS | D3.3: Second report on programming model and APIs

 Request: CreateKeySpaceRequest
 Reply: CreateKeySpaceReply

 A create keySpace request is emitted to a
 node with the given keySpace identifier as
 well a set of properties for that keySpace.
 (i.e., permissions). The corresponding reply
 is sent back with the status of the operation
 and an optional message.

 Request: CreateCollectionRequest
 Reply: CreateCollectionReply

 A create collection request is emitted to a
 node with the given collection identifier as
 well a set of properties for that collection.
 (i.e., permissions). The corresponding reply
 is sent back with the status of the operation
 and an optional message.

 Request: DeleteKeySpaceRequest
 Reply: DeleteKeySpaceReply

 This operation is issued by a node when it
 wishes to delete a keySpace from the
 system. The reply returns the status of the
 operation and an optional message.

 Request: DeleteCollectionRequest
 Reply: DeleteCollectionReply

 This operation is issued by a node when it
 wishes to delete a collection from the
 system. The reply returns the status of the
 operation and an optional message.

 Request: ExecuteRequest
 Reply: ExecuteReply

 An execute request is issued by a node
 when it pretends to interact with one of the
 objects of the data store. This request
 encompasses the type of operation (e.g.,
 READ, WRITE, DELETE etc.), the identifier
 of the object and the corresponding
 keySpace and collection, as well as the
 value in the case of being a write operation.
 The reply contains the status of the
 operation, as well as an optional value in
 case of being a read operation.

 Notification: JSONDataNotification In order to notify the client of new updates
 brought up to the node by the background
 synchronization mechanism of Nimbus, the
 system issues a notification (as a JSON
 object) of the new updates on the objects
 that the node replicates.

 More details of the API offered by Nimbus can be found in Babel Protocol Commons 60 , under
 the storage package, as well as on the TaRDIS wiki. 61

 An under-development implementation can be found on the Nimbus Git repository. 62

 62 https://codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus

 61

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Manageme
 nt-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20AP
 Is

 60 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 Page 38 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons

 TaRDIS | D3.3: Second report on programming model and APIs

 3.4.2.4 Integrated Storage Solutions

 Integrating third-party storage solutions into a system presents numerous challenges,
 particularly when it comes to aligning external tools with specific project requirements, while
 providing compatibility and interoperability.

 In order to mitigate some of these challenges, as well as offering TaRDIS developers the
 flexibility of integrating different storage solutions into their projects, the TaRDIS toolbox
 offers a set of adapters that integrate external storage solutions within the Babel framework.
 The adapters are built on top of Babel Protocol Commons, a set of common support classes
 for distributed protocols, that propose common APIs for handling, managing and interacting
 with these types of protocols and the systems that use them.

 Developers can use these storage solutions by placing the desired adapters in their protocol
 stack and manage their state by leveraging the common APIs offered by the TaRDIS toolbox.

 At the time of writing this document, the following third party storage solutions are offered by
 the TaRDIS toolbox.

 ● Hyperledger Fabric (Blockchain)
 This adapter implements Hyperledger Fabric client-gateway, the component in charge
 of invoking transactions on smart contracts deployed in the fabric blockchain network.
 Hyperledger Fabric 63 is a platform for distributed ledger solutions underpinned by a
 modular architecture delivering high degrees of confidentiality, resiliency, flexibility,
 and scalability.

 ● C3
 C3 is designed to extend existing storage systems by integrating the designed
 replication schema in order to enforce causal+ consistency. At the moment this
 adapter implements C3 integration with Cassandra (see below).

 ● Cassandra
 This adapter implements the client-side of Cassandra, 64 a highly performant
 distributed database, providing high availability and proven fault-tolerance.

 ● Engage
 This adapter implements the client-side of Engage, 65 a storage system that offers
 efficient support for session guarantees in a partially replicated edge setting.

 Some of these tools are still under testing and further functionalities will be added to support
 the reconfiguration of the storage solutions at runtime. Further details are given in the draft
 implementation, 66 as well as the TaRDIS wiki. 67

 67

 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Manageme
 nt-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20AP
 Is

 66 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters
 65 https://codelab.fct.unl.pt/di/research/tardis/wp6/external-tools/engage
 64 https://codelab.fct.unl.pt/di/research/tardis/wp6/external-tools/cassandra
 63 https://github.com/hyperledger/fabric-gateway/tree/main

 Page 39 of 43 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-Management-and-Distribution-Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters
https://codelab.fct.unl.pt/di/research/tardis/wp6/external-tools/engage
https://codelab.fct.unl.pt/di/research/tardis/wp6/external-tools/cassandra
https://github.com/hyperledger/fabric-gateway/tree/main

 TaRDIS | D3.3: Second report on programming model and APIs

 3.4.3. Decentralised Monitoring and Reconfiguration APIs - T6.3
 The TaRDIS toolbox will provide primitives to support reconfiguration of the applications
 components in the runtime, as well as acquisition of the decentralised telemetry information
 from the deployed system, including information about the load and health conditions of
 different components. Such primitives are part of the tools T-WP6-08 (Namespaces
 management) and T-WP6-09/10 (Telemetry). Our approach for Distributed Management of
 Configuration based on Namespaces is designed with scalability and fault tolerance in mind.

 The TaRDIS toolbox will provide primitives to export fine-grained stored metrics to other parts
 of the toolbox, such as machine learning components that require time series of the stored
 metrics over some period of time. Provided primitives export fine-grained stored metrics
 using the standard OpenMetrics format. 68 This part of the toolbox leverages the cloud-edge
 continuum, but it relies on open-source solutions such as Prometheus, Docker,
 NodeExporter, Grafana as part of its core. As part of metrics collection, the system collects
 metrics from few places: (i) nodes, (ii) applications running in containers, and (iii) other parts
 of the toolbox, where TaRDIS will provide APIs to integrate their specifics such as distributed
 protocols and probing metrics.

 These monitoring and reconfiguration APIs are still under development and are not yet
 documented. Some of the already-completed APIs include:

 ● Decentralised monitoring:
 getMetrics(id) → timeseries
 getNodeMetrics(id) → timeseries
 getApplicationMetrics(nodeId, namespaceId, appId) → timeseries
 exposeMetrics(timestamp) → timeseries
 exposeMetrics(start, end) → timeseries
 customMetrics(data) → status
 retentionPeriod(time, metric) → status
 healthcheck(topic) → channel

 ● Reconfiguration management:
 createNS(cId, labels, resList) → nsaid
 deleteNS(id) → status
 readNS(id) → nsDetails
 createChildNS(nsId, labels, resList) → nsId
 createConfigSchema(labels, version, schema) → sId
 deleteConfigSchema(sId) → sId
 getConfigSchema(sId) → schema
 getConfigSchemaTimeline(sId) → timeline
 createConfig(labels, configList) → status
 dissiminateConfig(labels, configList, percentage) → status
 getConfigTimeline(config) → timeline

 68 https://openmetrics.io/

 Page 40 of 43 © 2023-2025 TaRDIS Consortium

https://openmetrics.io/

 TaRDIS | D3.3: Second report on programming model and APIs

 4 CHALLENGES AND PLANNED WORK

 This section discusses two challenges in the ongoing specification and development of the
 TaRDIS toolbox programming models and APIs: cross-language interoperability (Section 4.1)
 support for device capabilities (Section 4.2), and toolbox cohesiveness (Section 4.3).

 4.1. C ROSS -L ANGUAGE I NTEROPERABILITY

 The TaRDIS toolkit aims at being language-independent and offering APIs that can be
 leveraged by multiple programming languages — but at this stage, the APIs and facilities
 provided by WP4, WP5, and WP6 are being prototyped and developed using the most
 suitable (given their applications) programming languages.

 The plan (already outlined in Deliverable D3.1) is to make such APIs available to other
 languages, too; however, achieving general cross-language interoperability involves a
 considerable effort — and for this reason, we will give a higher priority to the programming
 languages used by the TaRDIS use case applications. To achieve this, we will proceed in two
 phases:

 ● First, we plan to leverage industry-standard cross-language translation layers to make
 an API developed with programming language A available to programs written in
 programming language B ≠ A. To this end, we may e.g. expose the APIs via gRPC,
 OpenAPI, or WebSockets/JSON schema. The aim is to achieve quick-to-develop
 (albeit inefficient) cross-language translation layers when needed. This part of the
 plan has not been followed yet, because the need for such cross-language
 interoperability layers has not yet concretely emerged for the implementation of the
 TaRDIS use cases.

 ● Then, we will assess the possibility of developing more dedicated and optimised
 cross-language interoperability layers, for specific pairs of source and target
 language. This second part of the plan is also on hold, because this need has not yet
 concretely emerged for the implementation of the TaRDIS use cases.

 4.2. S UPPORTING D EVICE C APABILITIES FOR S WARM R EDEPLOYMENT

 The TaRDIS project proposal aims at offering a toolbox with programming models where
 “peers and code can be (re-)deployed based on device capabilities [...] (WP4, WP5).” Such a
 requirement appeared prominent in our initial assessment of the project use cases — but
 after further study and refinement, all use case specifications leverage swarms were the
 device capabilities are known in advance, and/or are not significantly constrained w.r.t. the
 minimum computational requirements. For this reason, the need for supporting a detailed
 specification of device capabilities (and thus, the capability-based redeployment of the
 swarm roles and functionality) has decreased, and has not yet been addressed in the
 TaRDIS programming models and APIs.

 We plan to study and evaluate how to improve the support for device capabilities during the
 rest of the TaRDIS project. This will happen in cooperation with WP7, based on the detailed
 technical requirements that will emerge as the industry partners’ use cases are redeveloped
 with the TaRDIS toolbox.

 Page 41 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 4.3. E NSURING THE C OHESIVENESS OF THE T A RDIS T OOLBOX

 Until now, the TaRDIS toolbox has been experiencing an organic growth, chiefly driven by the
 use case requirements, and the varying expertise and technical background of the project
 partners. This creates the challenge of ensuring that the toolbox models and APIs will be
 perceived as cohesive by its prospective users.

 The work on ensuring the TaRDIS toolbox cohesiveness is beginning now, as the toolbox
 architecture has been stabilised in Deliverable D7.2, and the documentation is being
 collected on the TaRDIS wiki.

 We plan to ensure toolbox cohesiveness as part of the WP3 work towards defining the
 TaRDIS development approach . We plan to write TaRDIS usage tutorials based on the
 experience gained in developing the TaRDIS use cases, and then organise surveys where
 programmers are asked to follow the tutorials, and provide their feedback; then, we will use
 this feedback to improve the TaRDIS toolbox and its documentation (including the tutorials
 themselves). To prepare these surveys, we will leverage the expertise of the software
 engineering researchers at NOVA. Since toolbox cohesiveness is also an integration issue,
 WP3 also plans to work on this topic in collaboration with Task 7.4 (integration).

 Page 42 of 43 © 2023-2025 TaRDIS Consortium

 TaRDIS | D3.3: Second report on programming model and APIs

 5 CONCLUSION

 This report has documented the current status in the development of the TaRDIS toolbox,
 with a focus on its models and APIs, documenting the progress since the previous iteration of
 this Deliverable (i.e., D3.1) and complementing D7.2 (preliminary evaluation of the TaRDIS
 toolbox components and use cases architectural specification).

 The outcomes of this deliverable have been made possible by the close collaboration
 between the project partners, who are assembling the documentation of their respective
 contributions on the TaRDIS wiki (which is often referenced in this document). As the
 TaRDIS project activity progresses, the TaRDIS programming models and APIs will undergo
 further consolidation and alignment with the use cases, towards the final iteration of this
 deliverable (i.e., D3.5). The TaRDIS project tasks T3.1 (models) and T3.2 (APIs) will keep
 coordinating the improvement of the documentation of the models and APIs.

 Page 43 of 43 © 2023-2025 TaRDIS Consortium

