D3.4: Second Report on Integrated
Development Environment

Revision: v.0.1

Work package WP 3

Task Task 3.3

Due date 2025-02-28

Submission date 2025-02-28

Deliverable lead Carlos Coutinho (CMS)

Version 1
Carlos Coutinho (CMS), André Santos (CMS), Carlos Reis (CMS), Afonso
Esteves (CMS), Miroslav Popovic (UNS), Pavle Vasiljevic (UNS), Alceste

Authors Scalas (DTU), Sotiris Spantideas (NKUA), Luis Pisco (EDP), Manuel Pio Silva
(EDP), Jodo Costa Seco (NOVA), Diogo Jesus (NOVA), Claudia Soares
(NOVA), Dimitra Tsigkari (TID), Milos Simi¢ (UNS), lvan Proki¢ (UNS)

Reviewers Ping Hou (UOX), Carla Ferreira (NOVA)
This document is the second iteration of the report which provides a
comprehensive assessment of the TaRDIS IDE platform, highlighting its

Abstract suitability for developing the TaRDIS toolbox. Through detailed analysis, it
evaluates the requirements, customisation andintegration activities to build the
most suitable IDE for supporting the development of swarms using TaRDIS.

Keywords Integrated Development Environment

Document Revision History

Version | Date Description of change List of contributors
V0.1 2024-11-15 Document first draft Carlos Coutinho (CMS), André Santos (CMS)
V0.2 2025-02-20 First version for internal review Carlos Coutinho (CMS)

www.project-tardis.eu

n Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03

Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

V1 2025-02-28 Final report Carlos Coutinho (CMS)

DISCLAIMER

Funded by
the European Union

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflectthose of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the

. . DEM + R
deliverable:
Dissemination Level
PU Public, fully open, e.g. web (Deliverables flagged as public will be v

automatically published in CORDIS project’s page)

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc.
DMP: Data management plan
ETHICS: Deliverables related to ethics issues.
SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

RN Funded by)
the European Union Page 2 of 59 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

EXECUTIVE SUMMARY

The TaRDIS project aims at building a distributed programming toolbox to simplify the
development of decentralised, heterogeneous swarm applications deployed in diverse
settings.

The main contribution of this deliverable is the second revision of the TaRDIS IDE platform,
the core tool of the proposed development environment to foster the creation of applications
that conform to the TaRDIS programming model. The TaRDIS IDE not only provides
developers with a source code editor, build automation tools, and debuggers, but also serves
as a seamless environment that integrates the TaRDIS tools. It offers centralised access to
the TaRDIS toolbox and multiple support features to simplify tool configuration and integration
into projects that share a common development environment.

This deliverable builds upon D3.2 [1] (first version of the TaRDIS IDE) and documents the
developments and improvements since the submission of D3.2.

This document aims to demonstrate the IDE's suitability for developing the TaRDIS toolbox. It
reports on the IDE's development using Visual Studio Code (VS Code) and documents its
integration with the tools being developed in the project's WP3, WP4, WP5, and WP6. In some
cases, it describes completed integration activities, while in others, it focuses on user interface
requirements and integration needs.

The document also intends to perform a first iteration over the concept of “developer stories”,
i.e., describing how a developer intending to create a swarm environment would face the
challenge of using the TaRDIS toolbox. It includes stories regarding the usage of isolated tools
and libraries, and the “use-case” stories of the TaRDIS pilots, describing how the use-cases
are being developed considering the usage of the TaRDIS toolbox. This is an essential
contribution towards helping new adopters of these paradigms to embrace development
strategies, guidelines and other support that may be provided by the project experts on the
field.

This deliverable is constituted by a Demonstrator (source code available openly on CodelLab:
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/vscode/vscode-ide-integration/-
/tree/tardis-development and also available as a standalone package on the Zenodo
repository https://doi.org/10.5281/zenodo.14975047), and by a related report to describe the
activities performed for the development and customisation of the IDE and the integration
activities with the TaRDIS toolbox.

Funded by

the European Union Page 3 of 59 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/vscode/vscode-ide-integration/-/tree/tardis-development
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/vscode/vscode-ide-integration/-/tree/tardis-development
https://doi.org/10.5281/zenodo.14975047

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

TABLE OF CONTENTS

EXECULIVE SUMIMAIY ...tttk ettt ettt ettt et e e st e e ab e e e nb e e e ennneeennneennneeas 3
1 IDE ANIYSIS. .ttt ettt e e b e e e ne e b e nne e nnnee s 8
2 Integration of VS Code with the TaRDIS TOOIDOX.........cccoiiiiiiiiiiiiie e 10
2.1 How the EXtension Was BUIlL............c.uoiieiiiie e 10
2.1.1 Development ODJECTIVES.........oi ittt 11
2.1.2 TOOIS @nd FrameEWOIKS........ccoiuiiiiiiiiiie et eetee e e e e e s e e e e s nnaee e e e ennaeeeens 11
2.2 IMPIEMENTALION STEPSoeiiiieiiie ettt 12
2.3 Key Features of the EXIENSION...........uiiiiiiiiie et 14
24 Tools Required fOr OPEIratioN............coiuiiiiiiieiiie ettt siee e 16
25 Instruction Manual for the TaRDIS EXIENSIONceiuiieiiiiieiiiieiiie e 17
2.5.1 OVEIVIBW. c..eeeeeeeeeiteiee e ettt e e e e sttt e e e ettt e e e ettt e e e e asteeeaeeensseeeeeanseeeeeanseneeeansnseaeeeansnenenanns 17
PR T 1 151 - [1 1T o PSPPSR 17
2.5.3 GetliNG STAMEoeiiiieiiii ettt aeeas 18
3 TaRDIS TOOIDOX INEGIALIONeeiiiiieiiie ettt 23
3.1 T-WP3-01 WOTrKFIOWEITONeiiiiiiiiie e 23
3.2 T-WP3-02 SCribble EQITOrcc.uiiiiiiiiiie ettt 24
3.3 T-WP3-03 DCR Choreography EdItOrcociiiiiiiiiie e 24
3.4 T-WP4-03 JOINACTOTS.....ceiueieiiiie ettt ee et ettt ettt e b e e san e e e nsneeanneesneeeenes 27
3.5 T-WP4-06 Java Typestate Checker (JATYC)......cooouiaiiiiiniie e 27
3.6 T-WP4-07 Data Centric ConcurrenCy (AOMIS)........coiieieriereriiieeiiiee e 27
3.7 T-WP4-08 Anticipation of Method Execution in Mixed Consistency Systems (Ant)28
3.8 T-WP4-09 Correct Replicated Data Types (VeriFX)......ccoocviieiiniiiiiiee e 28
3.9 T-WPZ4-10 IFCRANNEIviiieeieiee ettt e e e e e e e enrae e 28
310 T-WPA-LL PSPSP.... ittt sttt e et e e sae e e naeesneesnneesneaens 28
311 T-WP4-12 CryptOCRNOI0eeeeiiiiie ittt 28
3.12 T-WP4-13 (Sec)ReGraDa-IFC and DCR Choreographi€s...........ccccceeviieenieeennnen. 29
3.13 T-WP5-01 Flower-based FL model training............cceeeieeeiiieniiieeniee e 29
3.14 T-WP5-02 Data preparation for Flower-based FL model training.............cccccveeennes 29
3.15 T-WP5-03 Flower-based FL model inference and evaluation...............cccccecveennnen. 29
3.16 T-WP5-04 PTB-FLA and MPT-FLA ...t 30
3.17 T-WP5-05 Federated Al network orchestrator (FAUNO).......c.ccceeviieeiiiieenieeeennen. 32
3.18 T-WP5-08 PIUNINGeeeeiiiieiiieeitie ettt ettt et eessbe e e sbe e e sbe e e saneeesnneeennneeas 32
3.19 T-WP5-09 Decentralised Federated Learning Framework (Fedra)ccceeueee.. 33
320 T-WPS-10 FLAASoooiiiiiiieiieeiee ettt ettt e te e b e enbe e beeenneenneee s 33
3.21 T-WP5-11 Simulator for Peer-to-Peer Networks...........ccccoveieiiiieniiee e 34

Funded by

the European Union Page 4 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

4

6

3.22 T-WP6-01 A Generic API for Decentralised Overlay and Communication Protocols

34

3.23 T-WP6-02 An Epidemic and Scalable Global Membership Service............cccc...... 34
3.24 T-WP6-03 Actyx: Reliable event broadcast with configurable durability.................. 35
3.25 T-WPB-04 BADEL........eeieiiiieiiee ettt 35
3.26 T-WP6-05 Arboreal: Extending Data management from Cloud to Edge leveraging
DyNamiC REPHCALION..........c..iiieiiii e e e e e e e e e e st re e e e e e e e e e e s ennenaees 38
3.27 T-WP6-06 PotionDB: Strong Eventual Consistency under Partial Replication....... 39
3.28 T-WP6-07 Integration of Storage Solutions into the TaRDIS Ecosystem............... 39
3.29 T-WP6-08 Distributed Management of Configuration based on Namespaces....... 39
3.30 T-WP6-09/10 Telemetry Acquisition for Decentralised Systems...........cccccceveeeenn. 39

TaRDIS DEVEIOPET STOMESuuvvieiiieeee i iccceiie et e e e e s e er e e e e e e s e e snnrreeeeeaeeenans 41
4.1 Develop a Babel SWarm ProJECT.........ceiiiiiiiiieiee et e e e 41
o I R 1 011 F= 11 74= Ui [0 o USRS RP P 42
4.1.2 ProtoCOl SPECITICALION.uuieiiiiiieeeiiiiee et e e e e e e e s e e e s snbeeee s snreeeeans 42
4.1.3 PractiCal EXAmMIPIES........coo ottt a e 43
o |] = [1 (=T | = o] o RSO RR 43
4.2 DeVvelop @ PTB-FLA PIrOJECT.......uuiiiieeee ettt e e e e e e e 43
4.3 Develop a PTB-FLA with integration with Babel.............ccccccceiiiiiiiiiiiiee e, 45
4.4 Develop a DCR Choreographyccooiiiiiieeiee et 45
4.5 Complex Swarm: Common workspace for Multiple projects...........ccccvvveeeeeeeiiinnns 46

TaRDIS Pilot (Use Case) Developer STOMES.........ccccuvvieeiie e a e 48
5.1 EDP NEW Energy: Multi-Level Grid BalanCingcccccvviiiiineiiiieiie e 48
5.1.1 UsiNg the FEAra to0l....... ..ot e e e 48
5.1.2 Pruning tO0]ccooiiiiiiiiiii ettt e e e e rne e e e ann 51
5.1.3 Membership Service for Energy Marketsccccoeeeeieeiiiiciiiiiiies e 52
5.1.4 Community Energy Balancing AppliCation............cccceeieeiiiiciiiiiiiiee e 52
5.2 GMV: Distributed navigation concepts for LEO satellites constellations 53
5.2.1 Maching Learning PrOCESScciieeiiii ittt ee e e e e e e e eettree e e e e e e s e st r e e e e e e e e e e s sntrrareeaaeeeas 53
5.2.2 Decentralized Storage and Communication Between Satellites...........c.ccccceeeeen. 53
5.3 ACT: Highly resilient factory shop floor digitalisationcccccceeeeeiiiiiciiiieeeeenn. 54
5.4 TID: Privacy-Preserving Learning Through Decentralized Training in Smart Homes

55
(0] 0 Tox 11557 [0 1 PRSPPI 57
Funded by

the European Union Page 5 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

LIST OF FIGURES

Figure 1: File package.json defining Commands.............cccoiiiiieeiiiiie e 13
Figure 2: Create WeDhVIEW PANELooiiiiiie e 13
Figure 3: TARDIS ProjeCt CreatiOnocueeeeiiiiieeeaitiieeeesiieeesssiseeeessneeee s e ssssneeessnsseesessnnes 14
Figure 4: TaRDIS IDE documentation VIEWETcccueieeiiiiieeeiniieeeesieeeeesieeeeeennneeaeeesnnees 15
Figure 5: The TaRDIS VS COde EXIENSIONcc..eiiiiiiiiiie it 18
Figure 6: Babel feature for Create CIassS ... e 20
Figure 7: Babel importing of a protocol — before the importingccccccoovvciiieieee e, 21
Figure 8: Babel importing of a protocol — after the importingcccceeeeeeiiciiieieee e, 21

Figure 9: Screenshot by Caroline Bjgrch Fallesen - from the MSc thesis “A Visual Studio Code
Extension for Editng Swarm Protocols” (DTU, 2025). Available at:

https://findit.dtu.dk/en/catalog/679d746fabd7f915d2a6809dccceeevveeeeeiiiieee e 24
Figure 10: DCR Choreography integrated in the TaRDIS IDE..........cccccocieiiieniiiiiiiee e 25
Figure 11: IDE buttons for compiling a DCR Choreography project..........cccccvveeeeiiveeeeeeennee. 25
Figure 12: Run a DCR Choreography fOrM ... 26
Figure 13: Building the environment for a DCR Choreographycccccccveveiviiene e 26
Figure 14: Configuration of @ PTB-FLA ProjECT.........ccoiiiiiiiiiiiie e 31
Figure 15: PTB-FLA project considering less experienced developers’ support.................... 31
Figure 16: TaRDIS PTB-FLA form for selecting Federated Learning algorithms................... 32
Figure 17: TaRDIS IDE integration with Babelccco oo, 36
Figure 18: Babel selection of communication ProtOCOIS...........cceuriiieieiiiiiee e 37
Figure 19: Babel form for confirmation of inserting a protocolccccccceveieiiiee i, 37
Figure 20: Babel form for creation Of @ Class...........ccooiiiiiiiiiiiieec e 38
Figure 21: Developer Story over the development of an application using Babel.................. 41
Figure 22: Example of Babel definitions for a swarm node...........c.ccccovveviiiininiiee e 42
Figure 23: Representation of a smart home for the EDP NEW pilot...........cccoovveeeeeiiiiinnnnen. 48
Figure 24: Configuration of the Fedra tool for the EDP NEW pilotcccooieveeeiiiiiiiine, 49
Figure 25: Fedra training process initialisation for the EDP NEW pilot............ccccccovviveenneee. 49
Figure 26: Initiation of the first FL round for the EDP NEW pilot...........ccccooiiiiniiiiniiiiiieee 50
Figure 27: Fedra metrics for the EDP NEW PilOt..........cccooiiiiiiiiiiie e 50
Figure 28: The Pruning tool configuration for the EDP NEW pilOtccceeeeviiiieeiiiieeee e, 51
Figure 29: The TaRDIS Pruning tool MEtICS.........cccuiiiiiiiee e 51
Figure 30: Accuracy of the Pruning aCtiVILycc.ceeeruieieeiiiiiee e sieee e 51
Figure 31: EDP NEW Community energy balancing applicationccccccviiiniiniiiieenne 53
Figure 32: The TaRDIS Nimbus storage model on the GMV pilot...........ccoceeeiiiiiniieiniieene 54
Figure 33: Administrator Interface for FLaaS in the TID pilot............ccooiiiiiiieiicieceeee 56

Funded by

the European Union Page 6 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

ABBREVIATIONS

ACT

Al

API
DCR
DNN
FAUNO
FL

FLA
FLaaS
IDE

IFC
JAR
LEO
LSTM
MARL
ML
MPST
MPT-FLA
MSE
OoDTS
P2P
PTB-FLA
RL

SL

TID

ul

Actyx

Artificial Intelligence

Application Programming Interfaces
Dynamic Condition Response

Deep Neural Network

Federated Al Network Orchestrator
Federated Learning

FL Algorithm

FL as a Service

Integrated Development Environment
Information Flow Control

Java Archive

Low Earth Orbit
Long-Short-Term-Memory
Multi-Agent Reinforcement Learning
Machine Learning

MultiParty Session Type

MicroPython Testbed for Federated Learning Algorithms

Mean-Squared Error

Orbit Determination and Time Synchronisation

Peer-to-Peer

Python TestBed for Federated Learning Algorithms

Reinforcement Learning
Split Learning
Telefonica

User Interface

Funded by
the European Union

Page 7 of 59

© 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

1 IDE ANALYSIS

Integrated Development Environments (IDES) are critical tools for software development,
offering a variety of features that enhance productivity, streamline workflows, and improve the
quality of code.

Using an Integrated Development Environment (IDE) for software development offers
numerous advantages beyond simply providing a code editor. It includes features such as
intelligent code completion, which helps developers write code faster and with fewer errors by
suggesting possible completions as they type. IDEs also support project and file management,
helping developers organize files, manage dependencies, and streamline the build process.
Many IDEs integrate seamlessly with version control systems like Git, making it easier to track
changes, collaborate, and maintain project history. Additional features often include syntax
highlighting, which improves code readability by visually distinguishing keywords, variables,
and other elements, as well as refactoring tools that facilitate restructuring operations such as
renaming variables or extracting methods, enhancing code quality and maintainability .

Modern IDEs also feature advanced integration topics such as the possibility to have their
functionalities extended by plugins and extensions tailored to the developer’s specific needs,
such as support for different programming languages or frameworks, or supporting integrated
testing frameworks, and often include built-in documentation and help resources, making it
easier to learn new APIs and libraries.

The definition of an IDE that fosters and promotes the development of distributed and
decentralised SWARM applications needs to be carefully planned. It must take into account
the needs of the businesses being served by swarm applications, expressed on the
requirements of the existing project pilots, but additionally the foreseen developer experience,
and finally the initial vision of the tools being developed in the other WPs of the TaRDIS project
that are foreseen to be integrated in the TaRDIS toolbox.

The initial development of the TaRDIS Integrated Development Environment (IDE) was based
on the best-of-breed commercialtool Eclipse, due to the large base experience that the project
team had with this platform. Over the development of the project, it became more evident that
although the Eclipse environment is still highly configurable and suitable for the development
purposes, there are other platforms that are becoming more notorious. Namely, the Microsoft
Visual Studio Code (VS Code) IDE currently dominates the IDE market with its lightweight
design, versatility, and extensive library of extensions. Backed by Microsoft, VS Code became
very popular and known for supporting almost every programming language, making it a
favourite among full-stack developers. This led the development team already on D3.2 [1] to
make a parallel development effort to start working in the VS Code platform for supporting
TaRDIS. As the experience became more consistent, the team moved the integration efforts
from Eclipse to VS Code, confident that this change will increase the success of the adoption
of this IDE with the development community.

Funded by

the European Union Page 8 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

Microsoft Visual Studio Code

Visual Studio Code (VS Code) is a powerful and highly customizable code editor developed
by Microsoft, quickly becoming one of the most popular tools in the developer community.
Known for its speed, flexibility, and user-friendly interface, VS Code is an excellent choice for
developers of all skill levels, whether the developers are working on small projects or large-
scale software development [2].

One of VS Code’s key features is its extensive support for programming languages. It natively
supports JavaScript, TypeScript, Python, C++, Java, and many others. Additionally, the editor
allows developers to easily install extensions to add language support for virtually any
framework or tool in the market. The robust extension marketplace enables developers to
enhance their workflows with features like syntax highlighting, code snippets, linting, and
formatting, making it a go-to choice for multi-language development [3].

VS Code is built for productivity, offering features that significantly improve the coding
experience. The built-in IntelliSense feature provides smart code completion based on variable
types, function definitions, and imported modules. This feature speeds up development and
helps reduce errors by suggesting code as it's being typed, ensuring developers are always
on the right track. For those who prefer a minimalist approach, VS Code can also be heavily
customized with themes, icon sets, and editor settings, allowing a full personalization of the
interface.

Another standout feature is its integrated version control, which makes it easier to manage
code repositories directly within the editor. VS Code supports Git [4] out of the box, enabling
developers to stage, commit, and push changes to repositories without leaving the editor.
Developers can also view diffs, resolve merge conflicts, and track the status of files in a highly
intuitive way, all without opening a separate Git client.

Debugging in VS Code is intuitive and efficient. With built-in support for debugging various
languages, developers can set breakpoints, inspect variables, step through code, and analyse
the call stack directly within the editor. This saves time by allowing you to debug and test your
code in one place, reducing the need to switch between different tools.

VS Code’s terminal is another powerful feature, offering an integrated command-line interface
that allows developers to run scripts, execute commands, and manage their development
environment without leaving the editor. This makes it easy to compile code, run tests, or
interact with cloud services, all within the same window.

The editor’s workspace functionality allows managing multiple projects in a single instance,
keeping the workspace organised, and enabling seamless switching between different files or
projects. Developers can also split the editor into multiple panes, to view and edit multiple files
side by side.

For developers working in teams, VS Code's Live Share feature is a game-changer. It enables
real-time collaboration, allowing multiple developers to share their coding session with others,
collaborate on code, debug together, and even run applications remotely—all without leaving
the editor.

Funded by

the European Union Page 9 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

2 INTEGRATION OF VS CoODE WITH THE TARDIS TooLBOX

VS Code started by being promoted as a text editor, which rapidly evolved to a full-fledged
IDE. Its main feature is the support of a popular and rich marketplace of extensions and add-
ons that confer to this IDE a very strong and robust functionality. Microsoft’s influence led this
IDE to be very popular, especially among the newest generations of developers [3].

VS Code is cross-platform, working seamlessly on Windows, macOS, and Linux. This makes
it an ideal choice forteams working in diverse environments or for developers who work across
different operating systems. Plus, it's free and open-source, which means anyone can
contribute to its development or modify it to sulit their specific needs.

Languages Support

It can support all languages, either by using an existing extension or by creating new ones.

Customization

Developers can customize the editor with extensions, snippets, themes, language support,
keymaps, and notebook renderers, all of which are written in TypeScript or JavaScript.

Prerequisites

e Install Visual Studio Code.

e Install Node.

e Install globally the ‘yo’ and ‘generator-code’ packages via Node Package Management.
e Run ‘yo code’ and choose how to extend the editor.

e Open the created project with the editor and customize it.

Nevertheless, in most recent years, VS Code is becoming increasingly more popular among
the newest generations due to its very interesting capabilities of customisation and rapidly
growing rich marketplaces of extensions that allow it to be able to work in multiple and
heterogeneous environments.

2.1 How THE EXTENSION WAS BUILT

The TaRDIS Extension for Visual Studio Code was developed to streamline the workflow
for creating and managing swarms, whether the purpose is to define a full TaRDIS swarm
application, as described in the TaRDIS deliverable D3.3 [5], or to define the behaviour of
individual managed or free-form swarm elements. This action is performed by the
development of one or multiple projects which span the technologies used in the TaRDIS
project. The design process focused on integrating seamlessly with the Visual Studio Code
ecosystem, automating complex configurations and offering an intuitive user experience. This
section outlines the tools, processes and methodologies employed in this development.

Funded by

the European Union Page 10 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

2.1.1 DEVELOPMENT OBJECTIVES

The primary objective behind the development of the TaRDIS extension was to simplify how
the developers interact with distributed systems by automating intricate configurations and
providing user-friendly workflows. The extension was designed to be versatile and adapt its
features to suit their specific project requirements.

To achieve this, the extension supports multiple project types, besides the traditional language
development-based (e.g., Java, C++, Python or TypeScript), extended to specific project types
related to the TaRDIS project, e.g., Babel-based Java projects, FAUNO and PTB-FLA projects
for federated learning, or DCR choreographies for distributed execution. It ensures seamless
integration with essential tools such as Maven for Java projects, Python virtual environments
for PTB-FLA, and Docker for running DCR-based prosumers. This focus on usability, flexibility
and cross-platform compatibility was key to creating an extension that enhances productivity
while maintaining robust functionality.

2.1.2 TOOLS AND FRAMEWORKS

Node.js

Node.js was used as the runtime environment to build the extension and execute its
operations. It facilitated seamless integration with the Visual Studio Code API while providing
an extensive ecosystem for dependency management through npm and helped build the
structure of the extension with existing npm packages like ‘yo’ and ‘generator code’.

TypeScript

TypeScript was chosen as the primary development language for its static typing, modern
JavaScript features, and strong compatibility with the Visual Studio Code API. This choice
ensured the extension’s reliability, maintainability and ease of debugging as the tools provided
by the yo Node Package Manager facilitated the integration using this language.

Visual Studio Code API

The VS Code API enabled the extension to interact directly with the IDE, allowing for the
registration of commands, dynamic file manipulation, and the rendering of interactive
webviews. This API served as the backbone for the extension’s core functionality. The API
documentation is found in the link https://code.visualstudio.com/api/references/VS Code-api.

Webview API

The Webview API played a crucial role in creating visually rich and interactive panels that
allowed users to make choices. These panels were used for user inputs, project configuration,
protocol documentation and DCR choreography management. This ensured the extension
maintained a consistent design while delivering clarity to users.

Maven

For Java-based projects, Maven was employed to manage project dependencies and build
configurations. The extension has the ability to automatically update the pom.xmlfile to include
the required Babel libraries and repositories at the press of a button, eliminating any manual
configuration steps.

Funded by

the European Union Page 11 of 59 © 2023-2025 TaRDIS Consortium

https://code.visualstudio.com/api/references/vscode-api

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Python Virtual Environment

For PTB-FLA projects, the extension created a dedicated virtual environment (venv_ptbfla)
with pre-installed dependencies. This environment ensured compatibility with machine learning
libraries, providing a ready-to-use workspace for federated learning development.

Docker

Docker was integrated into the extension for running DCR choreographies. The extension
automated the creation of Docker containers, networks, and images, ensuring each prosumer
instance operated in an isolated yet interconnected environment.

Markdown Renderer:

A custom markdown renderer was implemented to display documentation within webview
panels. This allowed users to view formatted protocol specifications, configuration parameters,
and API documentation directly within VS Code.

Yeoman:
The initial project structure was scaffolded using Yeoman’s generator for VS Code extensions,
providing a modular foundation for the codebase and ensuring a consistent development
workflow.

2.2 IMPLEMENTATION STEPS

The development of the TaRDIS extension followed a structured approach:

1. Initializing the Extension:

The project began with the initialization of the extension using Yeoman's yo code generator.
This tool provided a TypeScript-based scaffold, complete with the necessary configuration files
and boilerplate code. This foundation enabled the rapid development of core functionalities
while maintaining clean code organization.

2. Registering Commands:

User commands were defined in the package.json file, corresponding to each key feature,
such as creating a project, importing protocols, compiling DCR choreographies, and visualizing
swarm protocols, as depicted on Figure 1. These commands acted as entry points, allowing
users to trigger specific actions through the command palette or the TaRDIS sidebar.

Funded by

the European Union Page 12 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

“contributes”: {
“commands”: [

{

“"command”: "tardis.commands.create-project”,
"title™: "TaRDIS: Create Project”

}

{

“command": "tardis.commands.create-generic-class”,
"title": "TaRDIS: Create Generic Class”

b
{

“command”: "tardis.commands.import”,
"title”: "TaRDIS: Import existing project”

“command”: “"tardis.commands.visualize-swarm”,
“title”: "TaRDIS: Visualize Swarm Protocol”

“"command”: “"tardis.commands.compileDcr”,
“title™: "TaRDIS: Compile tardis DCR"

1

Figure 1: File package.json defining commands

3. Creating Webview Panels:

The Webview API was used to build interactive panels for project creation, protocol
management, and DCR choreography execution. These panels displayed user inputs, protocol
documentation, and real-time status updates, providing an intuitive interface for complex
workflows, as seen on Figure 2.

const panel = vscode.window.createllebviewPanel(
"dcrChoreography™,
"Run DCR Choreography”,
vscode.ViewColumn.Beside,
{ enableScripts: true }

)

Figure 2: Create webview panel

4. Automating Project Setup:

To simplify project initialization, the extension automated the creation of folder structures,
configuration files, and dependency management. For Babel projects, the pom.xml file was

Funded b)
tI:Je Europ};an Union Page 13 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

dynamically updated. PTB-FLA projects were equipped with a virtual environment, while DCR
projects included Docker setup scripts.

5. Dynamic Protocol Handling:

The extension implemented dynamic handling for protocol-specific operations, such as
fetching dependencies, displaying configuration parameters, and managing API events. This
ensured compatibility with a wide range of Babel-based protocols and DCR choreographies.

6. Integrating Docker for DCR Choreographies:

For DCR projects, the extension automated Docker-based execution. It created isolated
prosumer instances, each running within its own container, while connecting them via a
dedicated Docker network. This approach ensured realistic simulation environments for
distributed workflows.

7. Styling and Theming:

Custom HTML and CSS were used to style webview panels, ensuring alignment with Visual
Studio Code’s dark and light themes. Syntax highlighting for code blocks and a clean layout
further contributed to a user-friendly and professional interface.

2.3 KEY FEATURES OF THE EXTENSION

The TaRDIS extension offers a comprehensive set of features designed to enhance the
development experience for distributed systems projects.

1. Multi-Project Creation:

With the current integration of tools in the IDE, developers are able to create (for the moment)
three types of projects, as depicted in Figure 3:

e Java Babel Projects: Fully configured Maven-based projects with Babel dependencies,
ideal for developing swarm applications.

e PTB-FLA Projects: Python-based projects for federated learning algorithms, complete
with a virtual environment and predefined templates.

e DCR Choreography Projects: Projects designed for distributed execution, allowing
users to compile and run dynamic condition-response choreographies.

Java
PTE-FLA
DCR-Choreographies

Figure 3: TaRDIS Project Creation

With the evolution of the integration of TaRDIS tools in the IDE, more types of projects are
foreseen.

Funded by

the European Union Page 14 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

2. Documentation Viewer:

The extension includes a markdown-based documentation viewer, displaying detailed
information for each protocol, including usage instructions, configuration parameters, and API
events. This ensures users have all necessary resources to import different protocols, as
documentation is always present to inform the programmer of the protocol's functionalities.

B Preview READMEMG X -

Table of Content

e Table of Content
o Requrements
o' Usage
* Running DCR-Babel Choreographies
© How to compele
© How to run
s Setup
. '\'1;'.
® Run

8 Our Use Case

Requirements

In oeder 1o run this tool you need some 1ools 1o execute with the following tested versons:

* Maven
* Jaa 1
* Ocaml
* Dune

This project refes on OCami and a few packages.
This propct & being deveioped with the version of the ocaml-base-cospiler : 5.1.1 .

The suggested method to setup the required packages & 1o areate a new Opam switch and lock the
following versions (which have been tested to workk

® 15 of ocaml (v5.7.1)

* 1z of ocambppx (VRT.1)
s odoc(v2AY)

o ount? (v22.7)

Running the Translation Tool

Figure 4: TaRDIS IDE documentation viewer

IR Funded b)
tr:je Europizan Union Page 15 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

3. Dependency Management:

Managing dependencies is streamlined through automated functionality. For Javaprojects, the
pom.xml file is updated to include both Maven dependencies and those associated with
imported protocols. PTB-FLA projects are initialized with all necessary Python packages when
a new project is created, while DCR projects ensure Docker and OCaml are properly
configured by checking if they are installed before running any commands required for
initializing the prosumers.

4. Dynamic Project Setup:

The extension offers guided workflows for project setup, providing pre-configured
environments for Java, Python, and DCR projects. Users can easily switch between project
types without manual setup by selecting the type of project to be added to the workspace. All
projects created are added to one common workspace in order to be managed and viewed all
in the same place for better development interaction.

5. Extensibility:

Built with a modular design, the extension allows for easy expansion. Developers can add new
protocols, classes, and features as project requirements evolve. The buttons create class,
import and visualize swarm and provide the ability to add new predefined classes and protocols
to facilitate the process for the programmer, as well as add the ability to visualize the swarm
in a workflow editor.

6. Integrated Docker Execution:

For DCR projects, the extension automates Docker-based execution. It creates isolated
containers for each prosumer, connects them to a shared network managed by docker, and
executes the choreography, providing real-time logs in the terminal.

2.4 TooLS REQUIRED FOR OPERATION
To ensure seamless operation, the following tools are required:
e Java Development Kit (JDK): Java 21 is essential for Babel-based projects, providing

the runtime environment for Java applications.

e Node.js: Serves as the runtime environment for the extension itself, managing
dependencies and executing commands.

e Maven: Used for dependency management and build automation in Java projects.

e Python: Required for PTB-FLA projects, with virtual environments ensuring package
isolation.

e Docker: Facilitates containerized execution of DCR choreographies.
e Visual Studio Code: Serves as the primary development environment.

e Git: Enables version control, code sharing, and collaborative development.

Funded by

the European Union Page 16 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

Optional tools, such as ESLint for code quality and the VS Code Debugger for real-time testing,
further enhance the development experience. Together, these tools create a robust
environment for building and managing distributed systems using the TaRDIS extension.

By combining project management, protocol integration, federated learning support, and
distributed execution capabilities, the TaRDIS extension provides a comprehensive solution
for developing modern distributed systems within Visual Studio Code. It not only simplifies
complex workflows but also ensures users can focus on development without being burdened
by intricate configurations.

2.5 INSTRUCTION MANUAL FOR THE TARDIS EXTENSION

2.5.1 OVERVIEW

The TaRDIS Visual Studio Code extension is a comprehensive toolbox designed to streamline
the development and management of distributed systems and projects. The extension
provides a range of functionalities, including project creation, protocol importing, and class
generation, to help developers quickly and efficiently set up and manage their projects. This
manual outlines how to use the TaRDIS extension and its current features.

2.5.2 INSTALLATION

Currently the TaRDIS IDE extension is not yet published into the Microsoft marketplace, but it
will be made available soon. Nevertheless, it is possible to download it through the TaRDIS
internal Git repository — named CodelLab! — by following the step 3 down of the installation
process described below.

1. From the Visual Studio Code Marketplace:
o Open the Extensions view in VS Code (Ctrl+Shift+X).
o Search for "TaRDIS."
o Click "Install.”

2. Manually via VSIX:

Obtain the VSIX file for the TaRDIS extension.

Open the Extensions view in VS Code (Ctrl+Shift+X).

Click on the "..." in the top right corner of the Extensions view.
Select "Install from VSIX..." and locate the VSIX file.

o O O O

3. From debugging mode in VS Code:

o Obtain the code present in CodeLab in the link:
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/VS Code/VS Code-ide-
integration/-/tree/tardis-development?ref type=heads
Open the code on VS Code

o Run the extension by choosing Run->Start Debugging or simply press the F5
button to load the extension in debug mode.

1 https://codelab.fct.unl.pt/di/research/tardis

Funded by

the European Union Page 17 of 59 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/vscode/vscode-ide-integration/-/tree/tardis-development?ref_type=heads
https://codelab.fct.unl.pt/di/research/tardis/toolkit/ide/vscode/vscode-ide-integration/-/tree/tardis-development?ref_type=heads
https://codelab.fct.unl.pt/di/research/tardis

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

o

A new instance of VS Code will pop up in a new window, with the extension
already installed.

Keep in mind that in order to run the extension, there are prerequisites and
technologies mentioned above in order to create and run Java and PTB-FLA
projects or open the Workflow editor (install the extension available on link
https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visua
I-swarm-protocol-editing), as well as OCamel (https://ocaml.org) and Dune
(https://github.com/tarides/dune-release) for the DCR Choreographies
compilation to work.

2.5.3 GETTING STARTED

Onceinstalled, the TaRDIS VS Code extension can be accessed directly from the Activity Bar
under the "TaRDIS" view, serving as the central hub for all its features. This interface provides
an intuitive way to create new projects, import protocols, generate classes, and manage
various development tasks. Users are presented with a set of clearly labelled buttons, each
corresponding to a specific functionality, making it easy to navigate and utilize the extension’s
capabilities, as depicted in Figure 5.

TARDIS: PROJECTS) Welcome X

Get started with
TaRDIS by choosing
any of the following
actions:

Create Project
Clone Repository

Open Project
Personalize your
TaRDIS project with
babel by choosing to
create a generic class

or import an existing
babel protocol:

Create Class
Import

Visualize Swarm

Figure 5: The TaRDIS VS Code extension

Funded b .
tl:lenEﬁrop);an Union Page 18 of 59 © 2023-2025 TaRDIS Consortium

https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visual-swarm-protocol-editing
https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visual-swarm-protocol-editing
https://ocaml.org/
https://github.com/tarides/dune-release

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

The TaRDIS extension allows users to create structured projects with predefined setups and
configurations. By selecting the Create Project option, developers can initiate a new project
tailored to their needs. During the setup process, they can choose between different project
types, including Java-based projects utilizing Babel libraries, PTB-FLA projects designed for
federated learning applications in Python, or DCR Choreographies for orchestrating distributed
prosumers. After specifying a project name and selecting a destination folder, TaRDIS
automatically configures the project with the necessary dependencies and structure. For Java
projects, this means integrating Babel and its required configurations. PTB-FLA projects, on
the other hand, include the creation of a virtual environment (venv_ptbfla), automatic
installation of the PTB-FLA package, and generation of a dedicated source folder for
implementations. DCR Choreography projects establish an execution-ready structure,
enabling users to compile and run choreographies with customizable prosumer counts. Once
created, the project workspace seamlessly opens in VS Code, allowing users to start coding
immediately.

For developers working with external codebases or collaborating on shared repositories,
TaRDIS provides a Clone Repository feature. By selecting this option, users can enter a
repository URL and specify a destination folder. The extension then clones the repository,
making the project available in the local workspace. This feature simplifies the integration of
external projects into the development environment, ensuring that users can quickly access
and modify the cloned codebase without additional setup.

TaRDIS also includes functionality for opening existing projects stored locally. Using the “Open
Project” option, users can browse their file system, select a project folder, and have it loaded
into the workspace. This allows developers to seamlessly switch between projects without
needing to manually configure the workspace each time. By automating these processes,
TaRDIS enhances productivity and provides a streamlined experience for managing multiple
development workflows within VS Code.

In addition to project creation and management, TaRDIS simplifies the development of Babel-
based applications by providing built-in support for generating essential components. With the
Create Class feature, developers can quickly define fundamental building blocks such as
messages (seen in the figure below), protocols, timers, notifications, replies, and requests, as
shown in Figure 6. After selecting a class type, the user is prompted to enter a name, and the
extension generates a corresponding template file within the appropriate package. This
eliminates repetitive boilerplate coding and ensures consistency in the project's structure.

Funded by

the European Union Page 19 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

@ EXPLORER MyMessagejava X
vunmi. AR O 8 babel-test > src > main > java > com) tardisproject > J MyMessagejava > ..
v babel-test 1
v Sre package com.tardisproject;
V. man

import io.netty.buffer.ByteBuf;

S TRARACOTE | KRS import pt.unl.fct.di.novasys.babel.generic.ProtoMessage;

MyMessage java import pt.unl.fct.di.novasys.network.ISerializer;
TaRDISApphcat)
> resources import java.nio.charset.StandardCharsets;
> test
> target public class MyMessage oxtends ProtoMessage |
' pomumd

public static final short MSG 10 « 101;

private final int messageld;

private final String messageContent;
w public MyMessage(int sessogeld, String messogeContent
O o geld;

public int getMessageld() {

return pessapelo;

public String getMessageContent() {

return messageContent;

public static ISerializer<MyMessage> serlallzer = new ISerlalizer<MyMessage>() {

goverride

public void serialize(MyMessage msg, ByteBuf owt) |
out .writelnt(msg.messageld);
encodeUTF8(msg.messageContent, out);

Figure 6: Babel feature for Create Class

For users who need to extend their projects with predefined communication patterns, the
Import Protocol functionality allows for seamless integration of Babel protocols. By selecting
this option, developers can browse and import communication protocols categorized by type,
such as Eager Gossip Broadcast.

Once a protocol is chosen, TaRDIS automatically handles dependency management, adding
the required entries to the project's configuration files and injecting initialization code into the
main application. This streamlined workflow accelerates development while ensuring that
imported protocols are correctly integrated and fully functional.

This process can be seen below: Figure 7 shows the init function before the import action of
a chosen protocol. The image on the right shows us the after, with Eager Gossip protocol
imported and properly initiated in the function, ready to be used.

RN Funded b)
tr:Je Europizan Union Page 20 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Figure 7: Babel importing of a protocol — before the importing

s Exception {

e o

ipBroadcast(null, properties,

Figure 8: Babel importing of a protocol — after the importing

Funded b
- the Earopean Union Page 21 of 59 ©2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Another powerful feature within TaRDIS is the ability to Visualize Swarm Protocols, which
integrates with the "Visual Swarm Protocol Editing" extension. If a valid swarm protocol file is
detected in the workspace, users can launch a graphical representation of the protocol directly
within VS Code. This visualization provides insights into the communication flow and
interactions between entities, aiding in debugging and validation of distributed applications.

For projects based on DCR Choreographies, TaRDIS includes a dedicated Compile & Run
DCR feature, allowing users to build and execute distributed systems based on dynamic
condition response logic. By selecting a .tardisdcr file, users can configure the execution
environment, specify the number of prosumers, and initiate the build process. The extension
ensures that Docker is running, compiles and packages the project, builds a Docker image,
and sets up a dedicated network for communication. Once the setup is complete, multiple
prosumer instances are launched in separate Docker containers, each executing a part of the
choreography. The integrated terminal in VS Code provides real-time logs, allowing users to
monitor execution and analyse interactions between components. This feature facilitates the
development and testing of distributed applications, making it easier to validate choreography
behaviour in a controlled environment.

By combining project management, class generation, protocol importation, visualization tools,
and execution capabilities, TaRDIS provides a comprehensive development environment
tailored for decentralized and distributed systems. Whether users are working on Java-based
Babel projects, federated learning algorithms, or DCR choreographies, the extension ensures
a smooth and efficient workflow, integrating seamlessly with VS Code to enhance productivity
and streamline development.

Funded by

the European Union Page 22 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

3 TARDIS TOOLBOX INTEGRATION

The development of the TaRDIS Toolbox is being progressively accompanied by the
integration of its tools into the TaRDIS IDE. This section outlines the ongoing evolution of these
integration activities.

3.1 T-WP3-01 WORKFLOWEDITOR

Describe Tool

A graphical editor which allows its users to edit either the textual specification or the graphical
representation of a swarm protocol and update the other accordingly. It is used to design,
analyse, and implement workflows between actors based on the Actyx tooling.

Details

See Caroline Bjgrch Fallesen, “A Visual Studio Code Extension for Editing Swarm Protocols.”
MSc thesis, Technical University of Denmark, 2025.

Available at: https:/findit.dtu.dk/en/catalog/679d746fabd7f915d2a6809d

Integration needs

Visual Studio Code extension, with preliminary release and source code available at:
https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visual-swarm-
protocol-editing

The WorkflowEditor is a graphical editor for swarm workflows, offering a bidirectional link where
the final user can edit either the text or the graphical representation of a swarm protocol, and
update the other accordingly. It is used to design, analyse, and implement workflows between
actors hosted on swarm devices.

The description of the tool was already stated in the TaRDIS deliverable D3.2 [1], showing that
the tool has a self-contained functionality, and listing the foreseen interactions with the IDE.

This tool was already integrated in the IDE, itis offeredas an VS Code extension that is invoked
by the IDE in case of the creation of an Actyx project, as shown in Figure 9. The IDE
instantiates an empty workflow and invokes the editor. All edits of the workflow definition then
occur via the graphical editor. The resulting workflow and corresponding declarative
persistency statements are then stored in the environment workspace, which can then be used
to define the swarm activities, using e.g., the Actyx machine-runnerlibrary (T-WP4-01) and the
Actyx machine-check library (T-WP4-02).

Funded by

the European Union Page 23 of 59 © 2023-2025 TaRDIS Consortium

https://findit.dtu.dk/en/catalog/679d746fabd7f915d2a6809d
https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visual-swarm-protocol-editing
https://marketplace.visualstudio.com/items?itemName=CarolineFallesen.visual-swarm-protocol-editing

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Expet iz PHG

SFel Changes m A e stabe

P .
—
N -
]
opananon |
I cevopcee]
[oo
P |
== =

Figure 9: Screenshot by Caroline Bjgrch Fallesen - from the MSc thesis “A Visual Studio Code
Extension for Editing ~ Swarm Protocols” (DTU, 2025). Available at:
https://findit.dtu.dk/en/cataloqg/679d746fabd7f915d2a6809d

3.2 T-WP3-02 SCRIBBLE EDITOR

The Scribble editor (NuScr) serves as an extensible toolchain for MPST-based multiparty
protocols. This toolchain converts multiparty protocols into global types within the MPST
theory. These global types are then projected into local types and further transformed into
corresponding communicating finite state machines (CFSMs). Additionally, NuScr generates
APIs from these CFSMs to implement endpoints in the protocol. The design of NuScr supports
language-independent code generation, enabling APIs to be generated in various
programming languages. This tool is packed closely with the Scribble extensible toolchain for
MPST (T-WP4-05).

This tool is under development and will be integrated with the IDE in a near future.

3.3 T-WP3-03 DCR CHOREOGRAPHY EDITOR

TaRDIS provides an editor and compiler for files whose source language is formatted as a
DCR choreography. Its output is the projected behaviour in the form of Java code to be
integrated in a fully functional communication framework.

A DCR choreography specifies the messages exchanged between participants as well as
constraints on control flow that define causality between events and messages in the system's
logic. Such choreographies go beyond the traditional sequential choreography specifications

Funded by

the European Union Page 24 of 59 © 2023-2025 TaRDIS Consortium

https://findit.dtu.dk/en/catalog/679d746fabd7f915d2a6809d

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

(c.f. sessions). It allows for a more flexible and extendable programming framework for
swarms.

The integration of this tool into the TaRDIS IDE streamlines the entire process—from project
creation to compilation and execution—by providing an intuitive interface for managing DCR
Choreography projects, as shown in Figure 10.

) M A Yot Ve Dn S et . D e e e & 20C0

B —
Table of Content

Saal ekl = Gobal gegtatameC) Requirements

.......

i LN)

Sehal oy fatartratin ol Cow Ther dpptad eind 1 by B vprand fn ot i 4 Swele & v Ot bt onf Lk Do Rillimrng

Figure 10: DCR Choreography integrated in the TaRDIS IDE

When anew DCR Choreography project is created within TaRDIS, the extension automatically
generates the necessary folder structure and configuration files to support execution. This
predefined workspace ensures that all dependencies are properly set up, allowing users to
focus on defining their choreography without worrying about manual setup. The project
structure includes a dedicated workspace for the DCR logic, configuration files for managing
dependencies, and a preconfigured environment that ensures compatibility with the required
tools. Once the project is initialized, the user is guided through the next steps of compiling and
running the choreography, through a readme preview that pops-up on the right (as seen in
Figure 10) in order to provide an explanation on how to operate and set up the project just
created. When a DCR project is present in the workspace, a new button appears on the activity
bar under the TaRDIS extension tab as shown in Figure 11 onthe left, as well as the command
“‘compile TaRDIS DCR”on the same figure on the right, to perform the compilation at the press
of a button.

Create Class
Import -,
Visualize Swarm TaRDNS: Compale tardis DCR recently used (&
Wiew: Show TaRDNS
Compile & Run DCR Developer: Reload Window o + R
Wisualize protocol Cirl + Shift + E

Figure 11: IDE buttons for compiling a DCR Choreography project

Funded by

the European Union Page 25 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

The TaRDIS extension simplifies the execution of DCR Choreographies by integrating directly
with Docker, Maven, and other required tools. It provides an interactive interface where users
can configure and execute their distributed workflows with minimal setup. Users start by
pressing the compile button, then a menu pops-up on the right panel (figure below) giving the
programmer the option of choosing a .tardisdcr file from their workspace, which defines the
communication behaviour of multiple participants (prosumers) in the distributed system. They
can then specify the number of prosumers that will participate in the choreography execution.

By default, the extension sets up three prosumers, but this value can be adjusted, as shown
in Figure 12.

B Preview READMEmd E Run DCR Choreography X @ --

Select a DCR Choreography File
Choose File

No file sclected

Set Number of Prosumers

Figure 12: Run a DCR Choreography form

Once the file and configuration are selected, the compilation and setup process begin. By
clicking Compile & Setup, the extension verifies that Docker is running, executes necessary
build scripts, compiles and packages the project using Maven, builds a Docker image for
running the DCR Choreography, and creates a dedicated Docker network to allow
communication between prosumers, as shown in Figure 13. These steps ensure that the
execution environment is correctly set up before launching the choreography.

3 2 Srasane b3 X — € a XA Oneagapdy 0 Pvecama 01 X + D-

5 €1 oA M e 4 Ca L ne M\ LSRR AT) Gk Tt LaniTi-bated-duchen
Gret o b TP come TP Lt tardtis Sabel Backend Lntorf scerthd Larprt asme"NI)"

SUPAY: Fa5led %5 Sowd Clint “org. A164] Spl SEat Lt ogmriiater™.

SUHY: Cefaultisg %3 ro-cperstion (M¥) logper Swplesentation

SUPAY: Sou BE1p:) fub A3 14 Jorg) i MaZStat lopport Indir For Furthor detulls. 1 ek 11741 g e vumz.»n.xwt.\.w for further Stilli.

€ 13090508, 308 mmteerk gt 13140 e | 15 F etur kg iditiey ethe

€ 2510005, 50 Mtartligilsite 2o s ' Mkt iticies 1o

11810 10,000 Flagurgrranacal Piagnongryetacal Saitiallasd, Auming o 170,300,290 r 1359158, Tt Pingrorgrvotnos] Firgrrgrranionl Ialtialised, rowisng on L17.19,0, 11900

6"’.(WA \odeA Ly Caumrt $ L ot B L L T L A R Tl St
A -'!Il >

{'hels’ fir pallsbie comerhy)

(hels’ for mnllale tommbs)
iy comrsts X1

AT ety 2 |

FOIVL O DRGNS TIMRN s v WD Carpl e OOR e A X

3 1 o M Cicument 3 \Cal n MACHA\SHETY et (U Bnier A —aeturt Tardly-batel-Daciend et com N "7 2% cnme TPIT S 11 Wedls Setel dathend [Meed miewe 0 Trgetmwe" 1) =310k

e AL e v.:i Lt it uwom.
) Jegser Swslewmtation (IO O
. uum-u\g-nv.u e Parthir Static, ! () Prosmer P

LS00, 90 S hert g AT LI 30
1 15:5°17,808 Hrghorgiroroce] Pnghongretaca] Sxdtdalized, numing on 171, 10.0.4%000

(e’ 4or madlable comndh)
alict comanch X []

Figure 13: Building the environment for a DCR Choreography

M Funded b .
BB <. E.opean Union Page 26 of 59 © 2023-2025 TaRDIS Consortium

* %k

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

With the environment ready, users can execute the choreography by clicking Run
Choreographies, which starts multiple terminals, each running a separate prosumer instance
inside an isolated Docker container. Each prosumer is assigned a unique identifier (e.g., P_O,
P_1, P_2), and the DCR logic is executed according to the provided specifications, simulating
a distributed environment. Throughout the execution, users can observe real-time logs in VS
Code’s integrated terminal, allowing for direct monitoring of message exchanges, event
triggering, and overall choreography behaviour.

By following this structured workflow, developers can easily simulate distributed systems using
DCR choreographies, ensure correctness in message exchange and event handling through
automated validation, seamlessly manage execution environments without manual
configuration, and quickly debug and refine their workflows with real-time feedback in VS Code.
To enhance usability, the TaRDIS extension also provides a graphical interface for managing
DCR execution. This interface allows users to select a .tardisdcr file, set the number of
prosumers, and monitor execution progress while displaying any errors that may occur. This
integration ensures that users can focus on developing their DCR-based communication logic
without needing to manually manage complex execution environments.

3.4 T-WP4-03 JOINACTORS

JoinActorsis a Scala 3 library (developed by DTU) for performing pattern matching on complex
combinations of messages/events and conditions. The underlying matching algorithm
implements a formal specification of “fair matching” ensuring that, if some incoming message
can be matched by a pattern, then that message will be eventually matched and processed.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.5T-WP4-06 JAVA TYPESTATE CHECKER (JATYC)

A tool that verifies Java source code with respect to typestates. A typestate is associated with
a Javaclass by the @Typestate annotation and defines the object's states, the methods that
can be safely called in each state, and the states resulting from the calls. The tool statically
verifies that when a Java program runs sequences of method calls obey to object's protocols,
objects' protocols are completed, null-pointer exceptions are not raised, and a subclass'
instances respect the protocol of their superclasses.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.6 T-WP4-07 DATA CENTRIC CONCURRENCY (ATOMIS)

This extended Java compiler is used to mark resources which need to be accessed in mutual
exclusion; a type-checking and inference system ensures race freedom and produces
deadlock free code.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 27 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

3.7 T-WP4-08 ANTICIPATIONOF METHOD EXECUTION IN MIXED CONSISTENCY
SYSTEMS (ANT)

A tool to statically determine operations that can safely commute with other operations and
use this information to allow the run-time to anticipate calls to commutable operations. The
analysis takes into consideration the consistency policy of each operation.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.8 T-WP4-09 CORRECT REPLICATED DATA TYPES (VERIFX)

A language to design provably correct replicated data types (RDTSs), supported by a library of
verified conflict-free RDTs.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.9 T-WP4-10 IFCHANNEL

Verify that the use of channels (generating and reacting to events) respects the secure
information flow policy, e.g., confidential information of some group of participants is not
accidentally transmitted on a channel where non-members of the group can read. This includes
implicit flows, e.g., we assume the attacker can see that communication is occurring.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.10 T-WP4-11 PSPSP

Tool for verifying security protocols that setup and implement the channel (e.g., TLS) or change
group memberships and the associated key infrastructure. This is internally used by TaRDIS
for verifying security of the communication infrastructure that libraries provide.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.11 T-WP4-12 CRYPTOCHOREO

An implementation of a verified choreography will not be secure if the actors do implement the
behaviour expected by the top-down model. Cryptographic Protocols formulated as a
choreography can be translated into local behaviours. Local behaviours can be checked with
PSPSP and also an implementation can be derived from them.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 28 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

3.12 T-WP4-13 (SEC)REGRADA-IFC AND DCR CHOREOGRAPHIES

A compiler and type checker with Dependent Information Flow Control for ReGraDa graphs,
mapped onto a centralised graph database, currently being extended to a decentralised
version using Actyx as backend runtime support.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.13 T-WP5-01 FLOWER-BASED FL MODEL TRAINING

The Flower-based FL model training tool provides ML model training by utilizing federated
learning solutions. The aim of the tool is to offer an AI/ML library with a set of different
decentralized solutions, as well as to provide use case specific solutions. The implementations
of FL algorithms are relying on the Flower framework. The tool provides a simple user interface
that does not necessarily require expert knowledge to start the training process. The user can
select the task that needs to be solved, and the tool provides a list of applicable models and
algorithms. The finished training process produces a trained ML model and a training status
overview. This provides a customizable and reliable approach that supports the developers’
decisions with ease of use.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.14 T-WP5-02 DATA PREPARATION FOR FLOWER-BASED FL MODEL
TRAINING

The Data preparation for Flower-based FL model training tool provides data preparation and
preprocessing approaches for the ML model training, with the aim to overcome potential
irregularities in the target data set. This includes common approaches, such as dealing with
outliers, duplicates, missing values etc., but also some custom data preparation techniques,
for example pseudo-labelling, that enables adding labels to an unlabelled data set, when a
model requires them. The tool offersthe facilitation of the ML training process (it provides input
for the T-WP5-01 tool), by supporting a more efficient process of the preparation of the data.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.15 T-WP5-03 FLOWER-BASED FL MODEL INFERENCE AND EVALUATION

The Flower-based FL model inference and evaluation tool provides the possibility of getting
output forthe relevant data on a model trained by tool T-WP5-01. The output can be of different
forms, depending on the needs regarding the relevant data, for example, predictions,
forecasting, anomaly detections, and metrics. It offers a straightforward approach for gaining
valuable insights into the quality of the trained model and for obtaining important conclusions.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 29 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

3.16 T-WP5-04 PTB-FLA AND MPT-FLA

As reported in D5.1 [6] and D5.2 [7], PTB-FLA stands for Python Testbed for Federated
Learning Algorithms. It consists of a framework for developing and testing distributed federated
learning algorithms. PTB-FLA execution environment provides SPMD (single program multiple
data) applications’ launching facilities and the simple APl (amenable both to Al & ML
developers who do not need to be professionals and generative Al tools), which offers the
generic centralized/decentralized federated learning algorithms that may be specialized by
specifying client and server callback functions.

PTB-FLA is a completely independent solution based on pure Python, without additional
dependencies, that is available as open source. It is directly compatible with the main Al & ML
libraries and supports the development of both centralised and decentralised federated
learning algorithms. This tool was designed to target small 10Ts in edge systems, such as
Raspberry Pi Pico W boards, ROS2 robots, etc. and support the FL algorithm development on
a single computer. With its simple API, the tool is easy-to-use by non-professional
programmers, and it is amenable to LLMs such as ChatGPT. To facilitate easier development
of the federated learning algorithms from sequential algorithms, a development paradigm was
proposed to guide developers in transforming a referent sequential code into the target PTB-
FLA code. The target PTB-FLA code is also easy to transform into the CSP formal model,
which can then be used to formally verify the system properties, such as deadlock freedom,
termination, etc.

MPT-FLA, which stands for MicroPython Testbed for Federated Learning Algorithms, was
developed as a successor of PTB-FLA to support very small 10T edge devices with very limited
computational capabilities. It is based on MicroPython, a lightweight version of Python. It
supports decentralised applications whose instances can run on Raspberry Pi Pico W boards,
robots, and PCs, connected to a Wi-Fi network.

The PTB-FLA and MPT-FLA are already being integrated with the TaRDIS IDE, namely with
the inclusion of the creation of a PTB-FLA project, which includes several options, as seen in
Figure 14.

The TaRDIS IDE now provides seamless support for the creation and management of PTB-
FLA projects, offering a user-friendly environment for the development of federated learning
algorithms. When creating a PTB-FLA project, users have access to various options designed
to streamline the setup and development process.

One of the key features is the automatic setup of a dedicated Python virtual environment
(venv_ptbfla). This ensures that all necessary dependencies are pre-installed, guaranteeing
compatibility with major Al & ML libraries and eliminating the need for manual configuration.

Funded by

the European Union Page 30 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Select Options for PTB-FLA Project

This will create a PTB-FLA type project with all the necessary configuration and setup done for youl If neither checkbox is ticked, TaRDIS
will create an empty project that includes the setup for the environment and an empty project directory inside the src folder.

M Tutorial: Includes a tutorial with a quickstart guide and sample files.

M Predefined Project: Skeleton project for FL algorithms.,

Figure 14: Configuration of a PTB-FLA Project

To accommodate different levels of expertise and project requirements, users can choose
between several project structure options, the menu can be seen in the figure above. The most
basic option is the Empty Project, which provides a clean and minimal PTB-FLA project
structure, allowing developers to configure it according to their needs. Alternatively, users may
opt for the Guided Tutorial, which assists newcomers in navigating PTB-FLA development. In
this mode, the left panel of the IDE displays a script for novice PTB-FLA programmers, while
the right panel contains a README file with step-by-step instructions, ensuring a smooth
learning experience (see Figure 15).

A) wosmo Sl poniion A py Dl = F kbbb X -
- . el P) P) Rtid 3 © K3k boponcum Shud py W PR) RS) Mt S ® 138l .

o St e . B8 Teersiad Lbiraang AI50E Perdipe | OS(MEMY Cosle

) 1O by ey

Compie &7 Costopl (2rd W1 salng w5 Logiiehc rrames o movr

oy 1 B Moy
v e
]

THIS guide Mtradeos 1he & ghacs drusiigmont poralipn fir Fedaratod |

L4 Alpwisses (1Lha) wadeg IR ALA The sorplipe Sramdore sequential «
« e I o bopnat Sk Boin (v = Talor Aol BapSement o bim, wi1h aaih Wlop pradaing code 3ier 1o Dha
r Ce .
I’}> ~ .
T Regosbery it lee —
&= & Baw [he deiiripiTim of 1A(4 sammpis bn The BTHE 2050 papwr, bow LD bn BLVE o
Gyt Bagux
= 2 B
[4*-‘ Ponavelioros B T s e e —
e b 8 Cna oot Srd finin] D0 0547 78 o0 gl et eyt

q sewiyovargls
B gvte b porerd sirm

= o Tepert mayy ob rp

PO i Ampert ,.»4.:‘;;.,0 The ariemry £l 1 80 mone fhe code mubnrt and sedfieamtalond, bry shers o lude
Saprd WAPIILILY, prpsed ab piT
v Coemy I Arvw shlearn el select b fmpert tradetertoaslin it Ml Lg?t) Lk el sermemesy detes edeg srever salifting e
o . . free asth Lapirt anp TPASATAg ond BisTag babidls,
1 ©] Bl et o) Bed e the algeelthe's Sralelog. serdiition, wd
ryey 20 Cagiit 18 regersiTan muvd enitation Lglc,
Yonsher Joors THIC Phics emceret Jou Rove & ginidd Batipecel whIch you Cot wis 13 svilists The
rmel Cor dete Trereitenys of Whe sbarpant phases
Sl w134 (1|
rrter K - Eaeenl) 4 Pase 37 Tedeovt ol Segeret 103 Tode
T U0ks phase, the pmgeretfal e L5 (rmmibormed Ge slmelate o fodeepird drarslog
Soviiraeat, The SALAAT 15 Eiviied SAL6 euSliple perTiTlink, Kih Pepevisaling 4

Wby peasliT Link
ol 1L, 30, 83 1ent®s Do)l dthe These pertidlins mer gromesnrd badmpmniesly, prmielng boial
POt mpiererill /(b s wop(i1 " 30 ¢ oL T BL ")) e u 1a A]) Seulh. The Aeialll ate Dhed g gatod Th saclste & Contral Livuer (Radiillg witet.

Loy Alaps B4 EAIL phais Sacele

apecras 0] | » TTEULA FatItiieg Tl MAIT D /AT SA6 CLIMT ApeiIAIC LBGATE, Snbarag
seadIALe AR ina

- Fo ey v 8 A X

Chaliag dmtipratiom, .,
Tome Jostdeg toed ipwet o

() 170 LA gt et 100" oeind ey

[0}) 170 LA propect et o arvmment 30 pamrrA By

Figure 15: PTB-FLA project considering less experienced developers’ support

For those who prefer a predefined starting point, the TaRDIS IDE offers three structured
templates for federated learning algorithms, as depicted in Figure 16:

1. Centralized FLA, which follows a centralized server-client model.
2. Decentralized FLA, enabling fully distributed learning without a central coordinator.

IR Funded b)
tr:je Europizan Union Page 31 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

3. TDM Peer Data Exchange, which allows time-division multiplexing for peer-to-peer
data exchange.

Select a file to include in the predefined project

Centralised FL

A central server coordinates model updates from distributed clients without sharing raw data.
Decentralized FL

Clients communicate directly with peers to collaboratively train models without a central server.

TDM Peer Data Exchange
Nodes directly exchange specific data points or measurements in a synchronized manner.

Figure 16: TaRDIS PTB-FLA form for selecting Federated Learning algorithms

Additionally, every PTB-FLA project includes a custom implementation folder. Upon creation,
the TaRDIS IDE automatically generates a <project_name>_ src folder where users can
develop their Python-based Federated Learning (FL) implementations. If one of the predefined
FLA skeletons is selected, the corresponding boilerplate code is placed in this folder,
significantly reducing the effort required to get started.

These enhancements allow developers to quickly create, customize, and experimentwith PTB-
FLA projects while ensuring seamless integration with Al & ML workflows. Whether starting
from scratch, following a guided tutorial, or leveraging predefined federated learning templates,
the TaRDIS IDE provides an efficient and structured environment for federated learning
development.

3.17 T-WP5-05 FEDERATED Al NETWORK ORCHESTRATOR (FAUNO)

The Federated Al Network Orchestrator (FAUNO) is atool providing state-of-the-art agents for
Multi-Agent Reinforcement Learning (MARL) working in the collaborative, federated setting.
FAUNO is compliant with the PettingZoo APl and exploits and specialises the MARL
framework for the planning, deployment, and orchestration of the complete TaRDIS framework
through federated reinforcement learning and other relevant methodologies.

This framework is trainable with the TaRDIS tool PeersimGym, a MARL environment for
training MARL agents, already reported in D5.1 [6].

The FAUNO tool is already being integrated with the TaRDIS IDE, namely with the inclusion
of the creation of a FAUNO project, which includes several options.

3.18 T-WP5-08 PRUNING
Lightweight Functionalities and Energy-Efficient ML

The lightweight inference functionalities provided by these tools are: (i) The early-exit tool
transforms a pre-trained deep neural network (DNN) model in a more lightweight version that
includes multiple exits during the model feed-forward for purposes of providing quick inference

Funded b .
tl:lenEﬁrop);an Union Page 32 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

at the cost of reduced accuracy. In addition, a distributed form of the early-exit tool was
developed in order to implement the deployment of the early-exit in a distributed architecture,
i.e., model segment among several edge nodes; (ii) The knowledge distillation tool transforms
a pre-trained ML model in a more lightweight version in terms of network complexity, number
of neurons and ultimately in terms of computational intensity. In specific, the original model is
utilized to train a student, more lightweight model, essentially reducing the computational
resources required during the inference process at the cost of decreased model accuracys; (iii)
The pruning tool again transforms a DNN in a more lightweight version by nullifying the neuron
connections that have a negligible impact on the DNN performance. To this end, the pruning
functionality streamlines the inference process, in terms of latency and conservation of energy
and computational resources.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.19 T-WP5-09 DECENTRALISED FEDERATED LEARNING FRAMEWORK
(FEDRA)

This tool provides a decentralised federated learning framework integrated with p2p
communications between the participating nodes, specifically designed for swarm systems.
Fedra leverages libp2p for peer-to-peer communications between the swarm members,
enabling the secure model weight exchange for aggregating the federated global model,
guaranteeing privacy and data ownership. Moreover, Fedra is model-agnostic, in the sense
that different ML algorithms can be seamlessly integrated and utilized to train ML federated
models, including models for forecasting, resource allocation, anomaly detection, among
others.

It should be noted that the frameworks that have been developed for FL training cover, in
principle, different requirements. The Flower-based framework is more standardised, being
acknowledged to the open-source community, while revisions and updates are frequent. On
the other hand, Fedra deals with completely decentralised learning using p2p communication,
without the requirement of a centralized aggregator in the framework. Finally, PTB-FLA
framework deals with a more lightweight version of FL, to be deployed in resource-constrained
devices.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.20 T-WP5-10 FLAAS

FLaaS (FL-as-a-Service), developed by Telefonica, is a practical federated learning framework
for mobile environments that allows app developers to perform cross-device and cross-app
(i.e., on-device cross-silo) FL. There are four core components of FLaaS: 1) App Developer
Interface 2) FLaaS Server 3) Notification Service and 4) Client Devices. The FLaaS developer
orchestrates the FL operations through the Admin Developer Interface and the clients’ devices
should have installed FLaaS local, which is a standalone service/app for Android devices.
FLaaS may be used by a swarm developer in order to initiate and orchestrate a federated
learning instance with Android devices and a cloud-based FL aggregator. Lastly, we stress

Funded by

the European Union Page 33 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

here that, while the initial version of FLaaS was built outside of TaRDIS, the development and
subsequent integration of the TaRDIS tools into FLaaS will result in an improved or more
modular version of FLaaS.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.21 T-WP5-11 SIMULATOR FOR PEER-TO-PEER NETWORKS

A simulation for training a Reinforcement Learning (RL) agent has been built as tool ML-Gym.
It is divided into discrete time steps and can handle various network configurations, i.e., peer-
to-peer networks but also networks where there is a hierarchy among the nodes. The simulator
runs in Java and must be wrapped into a Python environment following the interface defined
as a Markov Decision Process or a Markov Game, in the case of decentralised decision-
making. Such RL training environments are embedded in an RL training framework, in our
case, we chose PettingZoo. The developed environment models task offloading-based
orchestration. It is an open platform that the team plans to extend to broader action spaces.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.22 T-WP6-01 A GENERIC APl FOR DECENTRALISED OVERLAY AND
COMMUNICATION PROTOCOLS

This tool consists of a collection of protocols (i.e., pre-made interactions between swarm
participants for various shapes of communication, to be performed over network connections),
a runtime component for managing instantiated protocols, and programming language
bindings for interacting with the protocol manager as well as each protocol instance. This
allows a TaRDIS application to use higher-level communication primitives than manually
opening connections and sending or receiving bytes on them. Examples include efficient
routing of messages between peers that are not directly connected or broadcasting from one
peer to a group of peers, each offering arange of message delivery guarantees to select from.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.23 T-WP6-02 ANEPIDEMICAND SCALABLE GLOBAL MEMBERSHIP SERVICE

This membership abstraction (provided in the form of a library) allows a TaRDIS application to
obtain information on the size of the surrounding swarm and the identities and health of its
participants. In contrast to earlier work that only gave a partial view (focusing on a peer’s
neighbours), this tool aims to provide a global view, albeit with eventual consistency —i.e. after
a membership change there is a delay before this change is reflected in the swarm view
presented on all participating peers.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 34 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

3.24 T-WP6-03 ACTYX: RELIABLE EVENT BROADCAST WITH CONFIGURABLE
DURABILITY

Actyx is a middleware tool that will internally use the above tools for swarm communication
and membership to provide even higher-level services to TaRDIS applications, namely the
reliable and durable dissemination of event streams within the swarm. This is significant
because individual events are quite small and typically don’t warrant the overhead of being
individually treated (e.g. for being identifiable or localisable) in a swarm system. Therefore,
Actyx partitions the emitted events into streams that are then the unit of dissemination, leading
to significant benefits in compressed event storage size. Storage resource usage can be
controlled via configurable per-stream data retention policies. Actyx also introduces an
eventually consistent global order between events that allows the resolution of conflicts arising
from concurrent swarm behaviour in a fashion that does not compromise on system availability
or resilience.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.25 T-WP6-04 BABEL

This internal tool allows a more formal expression of low-level communication behaviour of an
application or algorithm and its validation in a variety of environmental scenarios (i.e., network
availability and performance). It will be used to develop and test several of the TaRDIS tools,
and it may also be of use to external developers, for example when they create their own
communication protocols to be used via the generic communication protocol API. The Babel
framework existed before the start of TaRDIS. In the context of TaRDIS Babel has evolved
into a full ecosystem for supporting the development of highly decentralised swarm
applications compatible with a variety of different devices. This ecosystem is composed of
Babel-Swarm which enriched the framework with support for security, self-configuration, and
self-management; and Babel-Android which transfers and expands the capabilities of Babel to
the Android environment, including mobile phones and tablets.

This tool was integrated into the IDE, consisting of an option to create a Babel project, with
multiple options available which may take into account the expertise of the developer. When
creating a new Babel project, the developer is guided through a structured process to ensure
a smooth workflow. The process begins with the selection of a project type, where the user
can choose to create a Java-based project utilizing Babel libraries. The IDE then prompts the
developer to enter a project name and select a directory where the project should be created,
as you can see in the example below, depicted in Figure 17.

Funded by

the European Union Page 35 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

X0 70T ki e 68 i e T {n D A R Tt - ensE = =

| @ e = L0 st J LA Ayt et . X o-m—
LD MR B S O 3 06 3 s 3 w3 o 3 Badguipn 3 J LACHANpR b gons 3 () bt g
() vhssisete v 1 febhege dee Sty o
- e -~ Topert Jows, o, Ingel Chrun
134 = i froert Jrer.viil Arecerties: —=
> e L Lrgart org msche, baczing ret) Logtwnager:
o > rewpomn Tmpert arg. apeabe, Bagging. Mgt Ligaori

) rept Tt P 4 AT ity Aobad 4 bre bl

a v il (Shopd B4 ot b [
£ 4inal Logzrr Jogorr o LegServgrr, prtlocoee (VoR0TMep llcotiem cins |

mate(Stringl | #751) taroa Oaestion {
¥ frwe the Leepig ae Ple o atm

1 iy
o 1623l Pripertien propertsen = sov
1ry (Inpwtitraee Bagat « Totiiiigy

I [Eaowt -« mll) |
Tagger, seror{Tomd g, progeet 164 reh foud [n he dTonpeth®);

Lo b wAA S e an(nate | " md i prvpert 1)) {

rpet):
prvpertionr {7 propertlon);

Saetlng <ref g arwpertion”, o3

1isal Faretinelication aoo = sov TWOtiAlLcmtiond);
ot VL1 (prpart lon) s
)

oA @ QAT MKCNOT MM Rom T T et v T - A x
Vnatling comlhgeret bom. .o
Cute SAaling Shalpwatton

i et
Figure 17: TaRDIS IDE integration with Babel

Once the project details are set, the extension automatically generates the required folder
structure, including the necessary Maven configuration files. The setup includes predefined
dependencies for Babel, ensuring that the project is ready to be developed without requiring
manual dependency management. The generated structure provides a dedicated src folder,
where Java classes and the main application logic can be implemented. This automated setup
eliminates the need for manual environment configuration, allowing developers to focus on
building their applications.

After setting up a new Babel project, the TaRDIS extension offersadditional tools that enhance
development productivity. Within the TaRDIS project view in the sidebar, users have access
to buttons that facilitate common tasks, including the creation of essential Babel components
and the importation of predefined communication protocols developed by NOVA. These
options allow users to extend functionality of their project without any manual configuration of
dependencies onto the pom.xml file or writing boilerplate code.

To assist developers in managing their project's communication structure, the extension
provides a streamline process for importing existing Babel protocols. When clicking on the
‘“Import Protocol” button, the user is presented with a categorized dropdown list of
communication protocols available for integration. The protocol selection menu, as shown in
the screenshot, allows the user to browse different protocol types, including options such as
AntiEntropy, Eager Gossip Broadcast, Flood Broadcast and One Hop Broadcast. This
categorization ensures that developers can quickly choose and locate the protocol that best
suits their application needs, as seen in Figure 18.

R Funded b)
tr:Je Europ};an Union Page 36 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

AntiEntropy

Eager Gossip Broadcast

Eager Gossip Broadcast Self-Adaptive
Flood Broadcast

One Hop Broadcast

Figure 18: Babel selection of communication protocols

Once a protocol is selected, a detailed information panel appears within the right side panel,
providing an overview of the protocol’'s functionality, implementation details and configuration
parameters. This information is presented in a formatted documentation view, making it easier
for developers to understand how the protocol works before making a decision to integrate it
into their project. The protocol documentation outlines key aspects such as membership
services, broadcast mechanisms and required configuration parameters. For example, in the
case of the Eager Gossip Broadcast Protocol, the documentation specifies how it handles
message dissemination and highlights relevant parameters like the fanout setting.

The information panel also includes two interactive buttons: Import Protocol and Cancel, as
shown in Figure 19. The Import Protocol button confirms the user's selection and proceeds
with integrating the protocol into the project. The extension automatically updates the pom.xml
file to include the necessary Maven dependencies and repository links. Additionally, it injects
the required initialization code into the main application, ensuring that the protocol is properly
registered and ready for use. This automated integration significantly reduces the risk of
misconfiguration and allows developers to start using the protocol without additional setup.

"

Do you want to import?

For more information about the protocol your about to import, see the details bellow

Import Protocol ~ Cancel

Details for Eager Gossip Broadcast

Eager Push Broadcast Protocol

This is a simple and pragmatic implementation of a eager push gossip-based broadcast protocol as the one used in the original
publication of the HyParView p I. The impl 5 that there exists a membership service (ideally based on partial
views) that uses the interface made available in the Babel protocols-commons library based on notifications.

Configuration Parameters

« EagerPush sipBroadcast Fanout (Mandatory, default: 4): the fanout used to disseminate messages in a gossip way.

Figure 19: Babel form for confirmation of inserting a protocol

RN Funded b)
tr:Je Europian Union Page 37 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

If the developer decides that the selected protocol is not suitable, they can click the Cancel
button, which closes the window without making any modifications to the project. This provides
an intuitive and non-intrusive way to explore available protocols before committingto an import.

Beyond protocol integration, the TaRDIS extension further accelerates Babel projects
development by simplifying the process of creating commonly used Babel components and
classes. The Create Class button, as seen in Figure 20, enables users to generate structured
Babel elements such as Messages, Protocols, Timers, Requests, and Replies. When selecting
this option, the user is prompted to choose the type of class they wish to create and provide a
name for it. Once confirmed, the extension generates the necessary Java class file with
predefined templates, ensuring that it is structured correctly and follows best practices for
Babel-based development.

Message

Protocol -
Timer ir
Notification a
Reply

Request

Figure 20: Babel form for creation of a class

By incorporating these functionalities, the TaRDIS extension provides a comprehensive toolkit
for developing distributed applications in Java using the Babel framework. The seamless
workflow, from project creation to protocol integration and component generation, allows
developers to build robust communication-driven applications efficiently. This combination of
automation, predefined templates, and interactive documentation makes TaRDIS an
invaluable extension for managing Babel-based projects within Visual Studio Code.

3.26 T-WP6-05ARBOREAL: EXTENDINGDATA MANAGEMENTFROMCLOUDTO
EDGE LEVERAGING DYNAMIC REPLICATION

Arboreal is a data management tool that replicates key-value bindings across data centres and
dynamically distributes updates to these bindings within each data centre according to the
declared interests of each edge node. Due to the way updates are propagated and using the
included metadata, the system ensures so-called causal+ consistency which means that
updates become visible at any swarm participant in an order where causality is preserved (i.e.
you only see an effect once you have already seen the corresponding cause, and you will
eventually see all changes) while ensuring that all replicas of a data objects eventually
converge to the same value. This makes Arboreal a fully available and high-performance
NoSQL database a.k.a. key-value store.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 38 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

3.27 T-WP6-06 PoTIONDB: STRONG EVENTUAL CONSISTENCY UNDER
PARTIAL REPLICATION

PotionDB is a data management system designed to be deployed in a small number of nodes,
potentially geo-distributed, and with support for partial replication. Unlike Arboreal, PotionDB
supports atransactional API, thus providing a more powerful API for the application. Still under
development, it is the support for materialised views over geo-partitioned data, providing a
mechanism for supporting recurrent queries that are common in applications.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.28 T-WP6-07 INTEGRATION OF STORAGE SOLUTIONS INTO THE TARDIS
ECOSYSTEM

Similar in spirit to the generic API for communication, this library facilitates the use of a range
of storage solutions by a TaRDIS application through a common API. Current solutions other
than the above include the industry standard Cassandra (also with C3 enhancements for
causal+ consistency), Engage, and Hyperledger Fabric. The latter will allow to easily leverage
on blockchains in the design of TaRDIS use cases, which will provide a tamper-proof and
publicly verifiable ledger where, for instance, exchanges between members of the swarm can
be reliably registered, for instance, energy exchanges among elements of the renewable
energy community.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.29 T-WP6-08 DISTRIBUTED MANAGEMENT OF CONFIGURATION BASED ON
NAMESPACES

This tool allows swarm administrators to inject the desired configuration for any participant or
application running on it. Parameters are selected based on namespaces to isolate parts of
the system from each other, which allows a large measure of heterogeneity within the swarm:
applications do not need to be co-designed to guard against interference, and even different
versions can be clearly and cleanly separated. In addition, labels are used to allow fine-grained
grouping of any kind of resources, allowing homogenous configuration where required.

This tool is being developed and will be considered for integration with the IDE in a near future.

3.30 T-WP6-09/10 TELEMETRY ACQUISITION FOR DECENTRALISED SYSTEMS

These tools (one for containers and one for Babel protocols) consist of a manager, registries,
and exporters for a wide variety of measurements performed within a running swarm. Due to
the dynamic nature and usually complex communication topology of such systems, dedicated
tooling is necessary to transport this data from the device where it originates to the person or
ML algorithm that monitors the swarm. The purpose is to enable the smooth operation of the
system, which includes quick incident response as well as proactive management of resources
to avoid incidents. This is currently being evolved to take advantage of in-network processing

Funded by

the European Union Page 39 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

by swarm elements to ensure that telemetry can be effectively and efficiently processed and
disseminated to elements of the swarm that make decisions related to the current
configuration.

This tool is being developed and will be considered for integration with the IDE in a near future.

Funded by

the European Union Page 40 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

4 TARDIS DEVELOPER STORIES

This section aims to state as many as possible different storyboards on how to develop a
swarm project, in order to create an easy identification of the challenges that businesses will
face when developing a swarm environment.

4.1 DEVELOP A BABEL SWARM PROJECT

Building swarms is a complex and challenging task due to the inherent unpredictability and
scale of such systems. These systems often consist of multiple nodes that may be located in
differentgeographic regions and need to collaborate seamlessly to provide services or process
data. The difficulty arises in managing issues like network latency, node failures, variable load
distribution, or possibly node displacement in particular environments.

Babel is a framework that aims to simplify the development of distributed protocols, by offering
a set of tools, abstractions, and best practices to allow developers to design, deploy, and
manage dynamic, scalable, and robust distributed applications.

The main unit of interaction with the framework is the protocol. Protocols embed the logic
implemented by the developer and use the abstractions provided by the framework to interact
with other protocols being executed locally, as well as handling communication with other
nodes. When using Babel, developers specify a set of protocols for each node, which will
dictate the different behaviours and interactions with the system. For instance, if a user intends
to create an application to transmit messages, a possible protocol stack would be:

1) A protocol for reading the input from the user
2) A protocol to disseminate the messages through the network to other nodes, and

3) A protocol in charge of membership, i.e., a protocol responsible for finding other
nodes/neighbours in the swarm, leading to this interaction, as depicted in Figure 21.

Application e Application
Dissemination Dissemination
Membership -+ Membership
Node Node

A B

Figure 21: Developer Story over the development of an application using Babel

Funded by

the European Union Page 41 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

In this context, we will describe the developer story for creating applications with Babel.

4.1.1 INITIALIZATION

First and foremost, to use Babel, each node in the system should specify the list of protocols
it wishes to use, as depicted in Figure 22:

main(config):
framework = Babel.newInstance()
props = framework.loadConfig{config)

app = Messagefpplication()
dissemination = EagerGossipProtocol()
membership = FullMembershipProtocol()

framework.registerProtocol{app)
framework.registerProtocol{dissemination)
framework.registerProtocol{membership)

app.init(props}
dissemination.init{props)
membership.init{props)

framework . start()

Figure 22: Example of Babel definitions for a swarm node

Each Babel instance receives a configuration file, which contains the different parameters that
are supposed to be loaded into the framework (i.e., method for discovering other nodes, the
network interface being used in the device, etc.).

After this, the developer should specify which protocols are wished to be used for its
deployment. Finally, when each protocol is initialised, the framework starts executing.

4.1.2 PROTOCOL SPECIFICATION

One of the most important aspects of Babel lies in choosing the right protocols for the
application being built. Protocols dictate how communication is done, what guarantees are
provided in the system, etc. With this in mind, while integrating Babel with TaRDIS, we targeted
two different audiences: developers with high expertise in the area, and newcomers.

Regarding the first, Babel provides extensive ways of building their own protocols and their
custom APIs. With a meaningful variety of functionalities, Babel has all of the necessary tools
to write protocols based on previously set specifications. This way, project owners who wish
to build their protocol stack from scratch are able to do so, by writing or exporting their protocols
from other sources and deploying their own swarm.

On the other hand, considering the developers with less experience, Babel allows importing
protocols already written and tested by developers, from the already established TarRDIS

Funded by

the European Union Page 42 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

protocols repository, available on link https://codelab.fct.unl.pt/di/research/tardis/wp6/Babel-
swarm/protocols. For instance, looking at the previous example, both the EagerGossipProtocol
and FullMembership protocols are available in the repository with their respective
specifications.

Each protocol has relevant information about communication mechanisms, implementation
logic, guarantees and behaviour. When choosing already written protocols, developers are
able to take an informed decision and use the protocols that align with their needs.

4.1.3 PRACTICAL EXAMPLES

Babel Examples? provides a tutorial with the goal of guiding the process of developing
protocols and applications using the Babel framework. The repository contains five different
examples with increasing complexity.

The tutorial describes the different abstractions of Babel and a boilerplate to create protocols
from scratch. Moreover, the tutorial explains how to deploy such protocols. While this example
presents the full-fledged functionalities of Babel, not all developers, especially beginners, have
the required knowledge to implement every component in a swarm system.

Thus, to cover these scenarios, Babel Applications® provides sample applications that import
and use protocols already written by experts on swarm systems. In this context developers
primarily focus on developing their applications and leverage protocols that handle the
complexity of swarm systems, such as handling communication, ensuring fault tolerance in the
presence of fails, etc. to create a highly dynamic application.

4.1.4 IDE INTEGRATION

As stated in T-WP6-04 Babel, the IDE integration with Babel aims to facilitate the process of
building swarm systems. The IDE focuses on giving an intuitive Ul to create a project from
scratch and adding the different building blocks that compose a node.

Users are able to write protocols (and the necessary events) through a boilerplate or simply
import already written protocols with a simple press of a button. Regarding the last option,
while importing a protocol, the IDE shows different details concerning its functionality.

4.2 DEVELOP A PTB-FLA PROJECT

PTB-FLA projects aid the development of federated learning applications and algorithms using
the PTB-FLA and MPT-FLA frameworks. Based on the degree of familiarity a would-be
developer has with both these frameworks and FL in general, three options present
themselves, each catered towards a certain level of expertise.

2 https://codelab.fct.unl.pt/di/research/tardis/wp6/Babel/Babel-examples
3 https://codelab.fct.unl.pt/di/research/tardis/wp6/Babel-swarm/applications

Funded by

the European Union Page 43 of 59 © 2023-2025 TaRDIS Consortium

https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-examples
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/applications

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

The first option would be to use the tutorial, aimed at newcomers, guiding them through the
process of turning a sequential ML algorithm into a fully federated code ready for distributed
execution.

The tutorial guides the user through the PTB-FLA four-phase federated learning algorithms
development paradigm:

Phase one refers to the development of the sequential machine learning algorithm.

e Phase two aims to partition (i.e., split) the data and train client models sequentially
before aggregating them.

o Phase three introduces the use of client callback functions for training and server
callback functions for aggregation and is the final step before introducing the PTB-FLA
framework.

e The fourth and the final step in the paradigm consists of using the callback functions,
developed in the third phase, as callback functions passed to PTB-FLA generic
algorithms.

A more detailed description of the four-phase paradigm is given in TaRDIS deliverable D5.2
[7]. Going through these steps gives users a solid foundation, leading to a more formal and
correct by construction FL application development workflow.

For intermediate developers, familiar with the framework, the predefined project option offers
a choice of three generic algorithms while providing a preset application structure (also called
a skeleton or a boilerplate). The developer is offered a choice of: Centralized FLA,
Decentralized FLA and TDM Peer Data Exchange. These projects are ready to be filled with
outputs of the third phase of the previously mentioned FL development paradigm or can be
used for direct implementation by those confident in their experience. The generated project
files outline the FL application, enhancing development efficiency while ensuring the structure
aligns with the PTB-FLA restricted programming model and API.

The final and default option is an empty project, providing experienced users with complete
control, enabling them to immediately start building FL applications as they like.

The common thread that connects all the project creation options is the automatic setup of the
virtual environment and the pre-installed dependencies, saving users the trouble of doing it
manually. This accounts for a more seamless and hassle-free experience across projects.

Testing the newly developed FL applications could be as easy as invoking the launch
command from the terminal along with the main script path and required parameters (e.g.,
launch ./ptbfla/examples/example1_fedd_mean.py 3 id 0).

As previously mentioned, the PTB-FLA projects can also aid the creation of MPT-FLA based
federated learning applications. This could be done by manually changing: (i) the imports from
ptbfla_pkg.ptbfla to ptbfla_pkg.mp_async_ptbfla, (ii) the function main to the main
coroutine and, (iii) the PTB-FLA API function calls to MPT-FLA API coroutine awaits, thus
transforming the previously developed PTB-FLA applications into the corresponding MPT-FLA
applications that may be used inside tiny IoTs running MicroPython.

Funded by

the European Union Page 44 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

4.3 DEVELOP A PTB-FLA WITH INTEGRATION WITH BABEL

This storyboard focuses on how a PTB-FLA project should be developed, with its option to be
integrated with Babel.

The PTB-FLA Babel adapter may be used by PTB-FLA applications to leverage Babel's
network communication capabilities in a seamless way that does not require any modifications
to the applications. In order to do so, users should do the following:

Clone the PTB-FLA Babel repository.

In the file src/main/resources/adapter.conf, change doppelganger.ports to reflect
those of PTB-FLA application instances running on other devices (IP is formed as 6000
+ instance ID).

3. Build the app by running: mvn clean package -U *

. Run it with the command:
java -jar target/PTBFLA-Babel-adapter-0.0.6.jar Babel.address=<your_device_ip>

5. Proceed to the startup of PTB-FLA applications manually on the devices.

Babel uses maven as a build tool, so it should be installed before using the adapter. If the
remote ports change after the initial build of the adapter, the script portsChangeUtil.py can be
used for changing the doppelganger port without repeating the build. If everything is set up
properly, the PTB-FLA applications can be used for federated learning on multiple devices on
the same network. The PTB-FLA Babel adapter code is publicly available on the repository
PTB-FLA_BabelAdapter, available on https://github.com/LinguineP/PTB-FLA BabelAdapter.

4.4 DEVELOP A DCR CHOREOGRAPHY
Storyboard on how a DCR Choreography project should be developed.

Developing a swarm application using DCR choreographies is possible using the Babel-based
communication stack. The steps that need to be taken are the following:

1) Use the TaRDIS plugin for DCR choreographies to start a new application. This step
creates a new application from an existing template in a git repository.

2) The developer then opens the application textual code in the TaRDIS editor and
programs the choreography using DCR notation. The specification includes security
levels for the information exchanged between participants.

3) The choreography is checkedto eliminate security errors (confidentiality) whenever the
developer compiles the code. The verification is based on the verification of the
language SecReGraDa (IFC) and its runtime assumptions are guaranteed on the
verification by IFChannel of the label communication layers.

4) The compilation process then projects the global behaviour of the choreography onto
Java code that implements the local behaviour of each kind of swarm element.

5) The application code is fully integrated in a Babel application that can then be deployed
following the standard procedures for Babel applications.

Funded by

the European Union Page 45 of 59 © 2023-2025 TaRDIS Consortium

https://github.com/LinguineP/PTB-FLA_BabelAdapter

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

Ongoing and future developments should allow the TaRDIS development environment to edit
DCR choreographies visually, deploy them to container instances, monitor swarms running,
and change them in real-time.

4.5 COMPLEX SWARM: COMMON WORKSPACE FOR MULTIPLE PROJECTS

The development of a sophisticated workspace for intelligent swarms’ software development
requires a robust, flexible environment capable of handling multiple heterogeneous projects,
each with unique requirements and configurations. Intelligent swarms are inherently complex,
requiring a workspace that supports both the simulation and deployment of swarm algorithms,
real-time data processing, Artificial Intelligence algorithms for Machine Learning, and
integration with various hardware platforms.

A key challenge in developing such a workspace for intelligent swarms is managing the
heterogeneity of the projects involved. Each project may have distinct dependencies,
technologies, and runtime environments. As such, the workspace must support a range of
programming languages (e.g., Python, C++, Java), simulation environments and external APIs
to enable seamless development across different aspects of the swarm system.

A successful workspace for swarm development should adopt a modular architecture, allowing
developers to work independently on different components or subsystems. This includes
support for containerized environments (e.g., Docker) for each project, ensuring that the
necessary dependencies and configurations are isolated and independent of other projects.
Additionally, the workspace should support easy management of external resources, such as
hardware for real-world deployment or cloud-based infrastructure for larger simulations or
integration with ML activities.

The simple scenario, mostly followed by the TaRDIS use-case pilots, typically involves:

e A project for the development of some kind of Machine Learning (Federated Learning,
Reinforcement Learning, etc.) algorithm training to create the backbone knowledge of
the environment, e.g., using Fedra (T-WP5-09), PTB-FLA (T-WP5-04), FLaaS (T-WP5-
10), FAUNO (T-WP5-05), or other.

e Then, on the same workspace, a new project can be developed, designing the swarm
workflow(s) using tools like the WorkflowEditor (T-WP3-01), DCR Choreographies (T-
WP3-03) or similar to model the swarm elements’ behaviours and interactions. The
workflows can use the knowledge extracted or inferred by the ML algorithms in the
previous projects, as there can be APIs to make this knowledge available to the other
projects of the workspace.

e Additional Java, C++, TypeScript or other projects may be created and developed on
the same workspace to support the implementation of the behaviours defined in the
previous workflows, and/or other tools to help on the coordination of the swarm. They
can make use of the TaRDIStools such as Babel (T-WP6-04) for defining the protocols,
behaviours and patterns of elements of the swarm in tasks such as registering,
membership, and specific protocol patterns.

e Following, the elements of the swarm can be launched locally or remotely using
TaRDIS tools to launch, monitor and control local and remote nodes such as the

Funded by

the European Union Page 46 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

Distributed Management of Configuration based on Namespaces (T-WP6-08), and
such configurations may be validated by the Scribble Editor tool (T-WP3-02).

More sophisticated functionality can also be foreseen and provided in the common
environment workspace:

e The TaRDIS Toolbox provides services that should do reconfiguration and
monetization of the swarm.

e The developers are allowed to create multiple logically isolated environments using
concepts of namespaces and run different applications in them without the fear of name
and/or resource conflicts.

e Using the provided APIs, the developers can disseminate information and configuration
elements throughout the swarm using:

o (i) direct message propagation to every affected node
o (i) peer-to-peer using already present gossip protocols

e Besides that, the Toolbox can collect metrics from the swarm hardware, kernel and
applications. All metrics are stored in a centralized place which allows:

o (i) dashboard visualisation of the metrics over time

o (i) specific APIs that other sides in and out of the toolbox can utilize for different
purposes.

e The described elements are developed as multiple services communicating over the
network, and to ensure that they do not end up in situations not favourable to the
swarm, every major communication protocol that ensure both reconfiguration and
monitoring are first modelled and verified using multiparty session types.

e Also, the reconfigurations of the system could be formally modelled with graph
transformations, easing the development and creation of models and swarm elements
infrastructures.

The development of a multi-project workspace for intelligent swarms software development
involves creating an environment that can efficiently manage the complexity of heterogeneous
projects while ensuring seamless integration and collaboration across various subsystems. By
leveraging modern tools such as containerization, simulation environments, version control
systems, and real-time data pipelines, developers can work within a flexible, scalable
environment that supports both experimentation and production deployment. As intelligent
swarm systems continue to grow in complexity and scope, the workspace must evolve to
address emerging challenges, ultimately enabling the efficientdesign, testing, and deployment
of decentralized, intelligent systems.

Funded by

the European Union Page 47 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

5 TARDIS PiLoT (Use CASE) DEVELOPER STORIES

This section describes the more complex developer stories that are taking place in order to
produce the complex interactions and flows that are required to provide a solution to the
TaRDIS use-cases (pilots).

5.1 EDP NEW ENERGY: MULTI-LEVEL GRID BALANCING

This developer story considers the utilization in a single environment, of two TaRDIS tools:
Fedra, as aframework for Federated Learning (FL) training, and Pruning, for transforming the
trained ML model into a more lightweight version. This developer story uses a dataset
regarding time-varying power generated by solar panels that are included in smart homes
(each smart home has its individual local dataset). The ML model will enable the prediction/
forecasting of some of the smart homes’ parameters in the future based on historical data.

In this context, the initial objective is to train a Long-Short-Term-Memory (LSTM) model for
predicting the power generated by the solar panels of smart homes in a decentralized
federated framework (Fedra). The FL-trained model is then pruned to be more lightweight and
used for inference purposes.

Regarding the federated learning process, each Client/Node (smarthome) in the FL framework
represents a smart home with a solar panel with its local dataset, as depicted in Figure 23. The
LSTM model of each Client/Node is trained based on the local dataset and the model weights
are aggregated in a federated model after several local rounds.

Power generated from house 3

Environment

=500

e B /ﬂ ﬂ ‘

’ :; i | JL h
l"‘i; s \
Localgaa 10) J ‘LJ(|| tf ‘ ‘_‘J LL

Figure 23: Representation of a smart home for the EDP NEW pilot

5.1.1 USING THE FEDRA TOOL

The configuration for Fedra is straightforward, requiring only the setup of node-specific
parameters and network configurations. Configuration can be achieved through a simple
configuration file (node.conf), which specifies the model parameters, training rounds, and P2P
network settings. Figure 24 illustrates the configuration parameters, i.e., the minimum number
of peers required to join in the framework andthe P2P network configuration, the trained model

Funded by

the European Union Page 48 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

(dimensionality including hidden layers and number of neurons), as well as the learning
parameters (number of federated rounds, epochs, etc.).

(X ohR W fedna gy O rodecort M @ G tanTeroy @ eIy
v IiSA cond > & rode cond
,O > W o 32 atirasecend
)
> 1 weode 2 -
))
jfv Y, "o‘“” 4 moateades w JAPASITIL0L 0. LU SN/t Cul (3250 320 1EINT Y JEMUN TATRW SV B S VTIrST §3 54 2unAN; T Pe
- node cond L) saLh = redebey
b i 4 PPLE » Bodal-rat
Bl £ cen_ditacar ? Let_site = :IN,
o | " 1 nterval -
-0) hourehold_data_€0min_vrglerdercry) _tinecet = 109
= > o 1 5
- R Y 1] L peers » ninpeers ¢ 1« 2
‘\Q v a) modily 8 ers =1
- %) —_—
v o py
- - L 14
A W PPN e s ion by T Cify the podels you WaAL 10 Ue Feblagle_ma celtE, sinple_rn celll, Luta_res), Lsta resd
“ potesmd 18 s = tatererd
& ¥ trgte_m_clasifeation py 1) m—y O)
O off retaert 1" ¢ Tarsseters fer aleple_rn model uiing cell @ Lot
N D Sheri N CiuLe)
Et\) ‘V — Py I datanat e Loffatalcell _dala ey
W Nancier oy n s . %
v ks r}]
by v I _py L
¥ openations py ‘
v X 2
[8] ’.d £ARCess oy 3 nato size o)7
WV ey 27 rpothy = 30
% @ gy o
9 Tedes py e ¢ Parasaters fer sisple_rn modal uring cell § dats
= od SUI S 1o L VR IR ((NR)
3 B rode hey
T 5 datanet oL fdatafcell_dMa gy
R) 1 LMt dis e %
? A 1 R
* gtignore M
)5 drapeat rate o 0.7
A DCENSE
e 4 vilth cell o)
l; MANFESTin) satoa size N2
reds hey 11 epochs e 30
§ FTACNL r
IV sequrements iy] flr."";L fee LSTH codel wilng restdetial) dass
P usnsLs)
R J
9 “iadh 3 Dataset = .. fgatasravtenold_data_thata_staglednden.csv
v oy) sput_site =]
Q tzes 4) Lsize = 58
= [visscn L o _tapees o 4
) it size = 1
- dropoat_rate » 8.2
S SurTINMe ! o Sl

Figure 24: Configuration of the Fedra tool for the EDP NEW pilot

The developer can then initialize the FL training process by running the fedra.py, as depicted
in Figure 25. Note that the process is waiting for the minimum number of peers to connect
before starting the ML model training, printing also the status of the participating nodes.

oL L)

g(ﬁdrn] = fedro git:(dev) * pythen Fedro.py

= fedra =y Toaa.EY — Py Py ara.py — 132924

2024-07=18 10:0B:14,EZE - DESLE = Ll:lng selector: KqueueSelector

~Ganfiguratian leaded,

“Walting Tor ok leoskt 1 peers to coneedb...

Connected peers:! 0. Walking...
[iCannected peerti 9, Mafting...
“'Cannected peers: 1. Procecding.

. 2024:07=18 10:0%:20, B34 - DEEUG - Serlallzed dota size; 150 bykes

w 2024-07-18 10:08: 30,635 - OLEUG - Octo chunked into 1 ports
2024+07=18 10:08:20,93E - DEEWS = Serlolized doto size: 150 byres

112024-07-18 10:08:20,938 - DIANS - Doke chunked into 1 pares

“2025-07-18 10:08:21,041 - QEELG - Serlolized doto size: 150 bykes
2024-07=18 10:08:21,041 = DESLK = Dake chunked inio 1 poris
2024-07-18 1008123, 0TS - DI - Deserlelizing date of sirel 150 bybes
2024-07-18 10:108:23,075 - DEEWS - Deserlolized data type: <closs *fedro.uwbils.state.PeerStatus's

rPegeStalus

= 2024-07-18
202 4-07-18

& Pagritotus
2024-07-18
2024+07=18

=~ Paaritatus
1]

updated for 1P03Eesm) CGUFIFRD T22AGIB 0250 a3UT g5 EagFy EANUITKEC: Sbakuis, KONE i
1010823, 1FE - QI - Qeserlolizing doto of sirei 15D bytes

10108123, 178 ~ DEEVG - Deserlolized dato type:r «closs “fedro.utils.state.PeerStotus’s
updated for 1P03KssMICHIFIFRDj722nGIR0240v 03T 005 EapFs EAMUIYRED: Stakugp,. NONE
10:08: 2% EE1 - DIEUS - Qeserlolizing doto of size: 150 bytes

10108123, 26X » DEENS = Deserlolized doto type: «closs “fedro.utils.state.PeerStotus’s
updated for 1P03Eesw]CHAFITRD 7 2nGIB024byvo3UTgn5d CopFs CAMUIYRED: Stakus, WD

2024 -27-14 10:0d:17 060 - DOEUG - Weimg seledter: Kquaualalector
[Conllguration looded.

malilng Tor o1 1ozt 1 peers b0 Conneck...
9 Egrngdted peerdi 0, Moiking...
"L fannected peers: 1. Proceeding.

L. 30d4-07-13 10:D3:22,073 - DEEUG
4024 -07-18 10404: 22,073 - DEEUG
2024 -07-13 10:08:23,075 ~
2034 -07-13 10403133 075 - DEEUG
1024 -07-18 10:08;23,178 - DEEUG
2024 «07=13 10:03:23,17E = DEELG

= Sertallzed data slzer LSO bytos
- Data thenied Inte L parts

DEELG -

Serbalized date size: 150 bytes

= Daka (hesied Inke L oparts
- ferialized dote size: 150 bytes
= Daka ¢honied Late I pasts

Figure 25: Fedra training process initialisation for the EDP NEW pilot

ST Funded by
L the European Union

Page 49 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

When the required number of nodes enter the Fedra framework, the FL process starts. Figure
26 depicts the initiation of the first federated round, i.e., the participating nodes are performing

local training for a configurable number of epochs.

L3 -] B ek == e T = T ek = i P gy = TR
(PrecSvatus wadated for Ld03CcaWILIUFSFRA ST rinb iR s e Uf gt B P ERMLYREC) Status. JOIHER
'E0gA-07-18 10:08:13,593 - DEAUG - Deserinlizing <atp of size: 190 bytes
IOLA-07-18 19:08:33,594 - DEAUG - Deseriolized deto kype: «<closs 'fedro.wtlls.stote.Feeritotus™
PeerSuotus wadated for 1203CoaNICAUFSFRA ST zInG BT s tvod Ul pgdiEogFLERNULTRES : Status. JOTHED
Skeriing trolning for LSTH_RESY madel
LSFH_RES) Dotalopfer Amltlolized with GE_EN_residenticld_grid_espore dato.

LSTH_RESS mofel Wmltiobized.
Reand 155
Z0i4-07-18 1908148, 61F - DEAUG - Serkalized dote sizer 159 byhes
Z024-0F-18 19:08:48,01F - DEBUG - Dove churied fmto 1 porks
20i4-07-18 1Qc08:40,719 - DEAUG - Seriolized doke sizer 152 byhes
ZO24-0F-18 19:08:45,730 - DEBUG - Dovao churied Smto 1 parks
2034-07-18 19:03:45 BF1 - DEAUG - Serialized dobks sizer 153 bykes
Z0iA-0F=18 IRd:cOE:4L, BF1 - DEAUG - Data chunwed &mto 1 parks
2024-07-18 190:08:43,E63 - DEAUG - Deserlolizing @ato of sfzer 150 bybes

Z04.0F-18 19:08243,Eb3 = DEAUG - Oeserlolbzed dsta kyper «rloss ‘fedrd.ablls.stotle-Pespdlatus’s I
PeerSvobus vasdated Tor NZDXC0aRICAUFIFRA ST e2nGSE32abyvadlfpsSlEogFLEAMSLYLES: Staius. TRAINIKG
PO34+07=L8 10:08:43, 964 = DEAUG = ODeserlolizing dato of size! 150 byles

2024-0F-18 12:02:43,965 » DEAUG - Deserlolized data bype: «ofloss ‘fedra,uklls.stote.FeerSlotus™s
Peerivotus uadared Tor L203C0aRLIUFIFRD STanGIB¥EabvedUTpeS1Eog FLEANGLYKES ! Stalus. TRAINIRG
D407 =18 10:08244, 066 = DEAUC « Oezerlolbzing data of skze! 150 bybes

ZOA.0F=18 1008244, 066 = DEAUG « Oeierlolbzed data eype! «floss 'fedrd,ublls. stote Pesrilatus®s
HH!!H!D: urdated Tor PZ03CaaR JLIUFEFRD ST 22AG R abwadUTpe Sl EagFLERNGLYKES ! SEalus. TRATNERG

E0d4-0F-08 100833, 3EC - DEAUG - Covo <hunked smta 1 parks
JZD2A-07-28 1008133, 400 - DEAUG - Sersalired dato sizer 130 byees
Z0¥4-07-48 19:03:33,450 - DEAUG - Covo <hunked Smia 1 paris
ZDXA-07=48 19:08:44 720 = DEAUG - Deserlolizlng Sato of sizer 193 bykes
C2D24:07-40 19:08:44, 720 = DEAUG = Ceserlalized doba eyper <floss "fedra.ublls.stote.PeerSbatus™s
C PeprSvabus upfated Tar Y203EcaRDDh3shePHanZ PIITEMLY KIEATESeA0A3an0E 1S40y NFr SEaLus. TRATMERG
ZDXA«0F=53 19:08:41, 871 = DEAUG » Ceserlalizlng aia of si2e! 15% byees
Z034+0F= 48 19:d8:45, 321 = DEAUG » Cwserlolbzed doto eyper wcloss "fedro.ublls, stoie.feerbialus™s
PeerSvakus updared Tor 1203E2aNDDwh3shePHool TIITEMLYRTEATEveA0d)anDE a0y F: Stalus. TRATHENG
ZD240F=43 12:0&:48,023 « DEAUG « Ceserlolizlag <ata oF sizer 150 bybes
ZD¥4«07=43 1D:O3:48 9F3 = DEAUG = Cwserlalized data eyge:r atloss "Tedro,ublls. stote.Feerbiatus"s
PegrStatus udfated Tor J203K2aRDihdiheflanl P IITEMLY S PES A0 an0E JSuGy P SEaLid. TRATMERG
Searting trakalng Fae LSTH_RESE =adel
LETM_RES4 Databoades ialtiallzed mith BE_KM_ fesfdeatiald_geld eagare data.
LETH.RESS padel ialtialLeed.
Reotd 155
ZOX4-07=53 10:05:43,761 = DEAUC
EOX4-0F-54 10:05:43,761 - DEAUC

= ferfalized doka size: 150 byees
EOTA-07-43 1D:0d:43, 863 - DEALG

Cata chunked §mbe 1 parts
ferfalized doka size: 150 byres

ZOXS-0F-43 10:0d:43, 868 - DEAUG - Cata chudksd §ate 1 pared
- ZOFA.07-1 10:08:43, 064 - DEAUG - Serfalired data fire: 159 bytes
P EDFRL0F-08 19:05:43, 964 - DEAUG Cata chunked §mte 1 parkd

Figure 26: Initiation of the first FL round for the EDP NEW pilot

Once the FL process is finalized, the developer can visualize the performance results of the
training, since Fedra automatically produces the metrics for the training and testing loss, as
demonstrated in Figure 27.

rﬂ LT TR LT D) s e R e et e TR TR L P T M - Y LN T =T
- Piln P02 0 F e il e o, 3ot s RO i B B P T P50 il s) ol By
[I
T o
F - &
‘i - -
e]
B I ool i
B
T ol b .
- = olF Iy
(3 ewrmmn
W
D ikl (o
el
- W T e
ol s
Y L]
@ &l
- ol i
x L

Toa i1 a0 Feit Fp LAGSER S B3 ILATM KIS

nIgsse — TErenlem

Falwm L L
[LLEE]
DrEdRd
i & Ly [TETEE]
i1} W 3
[E— (L LT
- Y
Ty — Gigdak
T [-
=i (ALY
 boain e Pl WY LR A e i
il scasen por bowrdl Wy e i 4L aon oD iR B gt iy (1220 _——___‘_'
Vo b
b = 1] BE Lk id T LE b b ik
[WT-LTH
[RETTET

B el

Figure 27: Fedra metrics for the EDP NEW pilot

R Funded b)
t:e Europ};an Union Page 50 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

5.1.2 PRUNING TOOL

The global FL model that has been trained via the Fedra tool can be then pruned to make it
more lightweight. For this purpose, the pruning tools can be utilized, requiring from the user to
configure at least the following parameters: (i) the ratio of sparsity to be applied to the model;
(i) the shape of the input tensor that the model expects. An example of using the pruning
function is depicted in Figure 28.

SPARSE_RATIO = 0.5

INPUT_SHAPE = (1, 3, 32, 32) # including batch

model = myVGG().to(device)

new_model = prune_model(model,SPARSE RATIO,INPUT_ SHAPE)

Figure 28: The Pruning tool configuration for the EDP NEW pilot

By utilizing the pruning functionality several times, the following metrics can be obtained: (i)
the required memory for the model inference; (ii) the inference latency; (iii) the Mean-squared
error (MSE) of the pruned model. These metrics are showcased in Figure 29 for variable
pruning rate in the LSTM forecasting scenario.

Size of the zipped model file, by pruning rate Mean time over the whole test set by pruning rate Mean Squared Error over the test set by pruning rate

275000

80
250000

2 7
225000 >
200000 2 o

% 175000 g L

MSE

150000 60
125000 18 55

100000 50

75000

45

Figure 29: The TaRDIS Pruning tool metrics

The pruned ML models can be then used to estimate and visualize the accuracy of the
prediction as depicted in Figure 30, i.e., the model that was pruned by 40% follows the trends
of the original model, inheriting the abnormalities at 0 and 250 hours, whereas the model that
was pruned by 90%, being the worst model steadily underpredicts the value of energy
prediction.

original model Best model Worst model

—— Realload —— Real load —— Real load
—— Predicted load —— Predicted load —— Predicted load

Energy (KWh)
»
°
(kWh)
°
Wi
°

&
Energ,
&
9
G

Figure 30: Accuracy of the Pruning activity

Funded by

the European Union Page 51 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

5.1.3 MEMBERSHIP SERVICE FOR ENERGY MARKETS

Membership abstractions allow applications to obtain information on the size of the
surrounding swarm and the identities and health of its participants.

The TaRDIS WP6 is focused on devising a novel peer-to-peer overlay network distributed
protocol that can generate and manage a specific membership management protocol and
adapt to different conditions in the system. This membership abstraction can benefit from an
additional hierarchical organization that will simplify some management activities in this open
and decentralized renewable energy market.

The membership service will be used to model the connections among the different participants
in the energy market and their respective communication, as well as allow layering of other
tools on top of the established connections (i.e., ML applications).

The hierarchical structure of such a network tightly models the different roles in the energy
market and their different interactions, while offering resilience in the presence of failures.

The service is being actively written in Babel, following the APIs described in the TaRDIS
deliverable D3.3 [5], acting as a protocol which can be instantiated and added to the stack of
protocols handling communication during the swarm deployment.

5.1.4 COMMUNITY ENERGY BALANCING APPLICATION

This developer story consists in creating a “bridge” application between the information that is
gathered from the Fedra tool and the Pruning tool and the DCR choreographies. This
application’s objective is to coordinate the different components: consumers, producers and
the Community Orchestrator that are within an energy community. The coordination itself is
based on trying to match everyone’s needs with the lowest possible cost for each one.

The developer’s approach is expectedto be applicable to all energy management components.
In this sense, the best reliable approach is to have a decision tree algorithm where a group of
conditions are defined. Depending on the type of component, the corresponding DCR
choreography is used within the component’s application. If it is a consumer, it will do a
particular DCR choreography; if it is a producer, it will do other DCR choreography, and so on.
By doing this, we can apply all choreographies to every single component. Based on either is
a producer or consumer, hence the corresponding forecasted data that is available through
the Fedra and Pruning Tools is ingested. This strategy even allows a component to assume a
completely different role if needed, e.g., a producer transitioning into a Community
Orchestrator.

The process is schedule driven. This means, the time scheduler triggers each single tool to be
used, in this use case. After the schedule starts, the Fedra and Pruning tools will give the
forecast data, forthe next hour, for production and consumption for respectively each producer
and consumer that exists in the energy community. Then, the community energy balancing
application starts (bear in mind that this app is running on every single component/local
machine, which in this case are Raspberry Pi's). Through a decision tree algorithm, the

Funded by

the European Union Page 52 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

applicable choreography will run on that component, which, by consequence, will define the
set of actions available for itself, as shown in Figure 31.

- . Fockn & Frening vaes
f D — &‘ ™,]

-' . [
_— Narr Data rorszastes Uais L]
|. W * ki - Commutity Enargy Belencing Sapn
\ \ y } -
/

LR etarsagraphy st

B
g
g
E
£
c
g
E
| [

roeoind Dalam

| apply DCR chorgagraply
| vritly forecaseed data

farod actions |

Figure 31: EDP NEW Community energy balancing application

5.2GMV: DISTRIBUTED NAVIGATION CONCEPTS FOR LEO SATELLITES
CONSTELLATIONS

5.2.1 MACHINE LEARNING PROCESS

This pilot project includes, as the other use cases, a Machine Learning process, composed by
Federated Learning or Reinforcement Learning, which will be described in the last version of

this deliverable, D3.6.

5.2.2 DECENTRALIZED STORAGE AND COMMUNICATION BETWEEN SATELLITES

The Babel framework is designed to execute swarm algorithms while emulating a distributed
system using specialized protocols. Its primary function is to simulate the communication layer
in detail, ensuring realistic testing scenarios for swarm algorithms. The baseline
implementation assumes seamless information access for each node, without considering
communication constraints. To enhance this model, developing a satellite simulation that
accurately replicates key satellite characteristics is crucial. Babel's emulation layer focuses on
simulating the connection between nodes and ensuring that each node can access the data
(i.e., the values being calculated for ODTS) seamlessly.

Regarding the first, WP6 is actively developing a membership service for modelling visibility
between nodes (i.e., satellites). This abstraction mimics the conditions of satellite connectivity

Funded by

the European Union Page 53 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

by calculating the visibility taking into account different factors that affect satellite positioning,
such as altitude, distance to the ground station, etc. This aims to create a simulation as close
as possible to a realistic deployment scenario.

With the proper membership service, nodes need to store and propagate locally calculated
information with their respective “neighbours”. To achieve this, the team plans to use the
TaRDIS tool Nimbus, a fully decentralized storage system providing scalable and efficient
data storage without relying on a central authority, to synchronize data between all nodes, as
depicted in the following illustration:

-,

-

-

-

-

-

Satellite
Model

Figure 32: The TaRDIS Nimbus storage model on the GMV pilot

With the proper membership service modelling satellte communication and decentralized
storage in place, each node will use the proper ODTS algorithm and Machine Learning
component especially handmade for this use case.

5.3ACT: HIGHLY RESILIENT FACTORY SHOP FLOOR DIGITALISATION

The ACT use case implementation with the TaRDIS toolbox is expected to utilize a recent
version of the Actyx machine-runner library (T-WP4-01) and machine-check tool (T-WP4-02),
incorporating extensions and enhancements developed during the TaRDIS project. One such
enhancement is the WorkflowEditor project (T-WP3-01), a Visual Studio Code extension for
the graphical design and development of swarm protocols.

A developer will be able to open, under the TaRDIS IDE, a project based on the Actyx libraries
(or create a new project, with the assistance of the TaRDIS IDE extensions). Such libraries
require the developer to define a swarm protocol that describes the intended behaviour of
swarm elements (the specifics of the protocol will be based on the use case requirements).
This definition of the protocol can be performed manually (by editing TypeScript files and

Funded by

the European Union Page 54 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment ﬁ TaRDIS

defining suitable data structures) or graphically, using the WorkflowEditor extension for VS
Code.

The WorfklowEditor extension helps the programmer’s work by reading a (possibly empty)
swarm protocol definition from the swarm application source code and visualising it; the
user/programmer can then interact with the visualised protocol, e.g. by adding or removing
protocol states, modifying transitions, etc.; the user/programmer can also use the
WorkflowEditorto check whether the protocol is well formed. Finally, the programmer can save
the protocol definition back into the application source code. The swarm protocol definition can
be further modified again using the WorkfowEditor, or manually.

The user/programmer then writes the code that controls each element (“machine”) in the
swarm, using the Actyx machine-checker tool (possibly through the WorkflowEditor) to ensure
that each swarm element behaves as required by the overall swarm protocol definition. Then,
the code can be deployed and executed using the machine-runner tooling.

If the swarm protocol definition needs to be further changed later (e.g. to reflect new
requirements from the factory), then the WorkflowEditor can be used to apply the changes,
and the machine-checker tool can be used to verify whether the code of each swarm element
aligns with the updated swarm protocol definition.

54TID: PRIVACY-PRESERVING LEARNING THROUGH DECENTRALIZED
TRAINING IN SMART HOMES

This section focuses on the developer story for the TID use case on intelligent homes. The use
case centres on ML model training using Federated Learning (FL) or Split Learning (SL).
Developers can leverage the Federated Learning as a Service (FLaaS) tool developed by TID.
TaRDIS integration with FLaaS will introduce a privacy-preserving module and extend its
learning capabilities to support SL. Additionally, plans include integrating an energy -efficient
module from WP5 (e.g., the knowledge distillation API) and partially integrating Babel through
a joint effort with WP6.

Figure 33 shows the administrator interface of FLaaS. The idea is that the developer can
initiate an instance of FL through this interface in a way that hides the complexity of the task
and the lines of codes necessary to be modified to capture the characteristics of every
instance. In the baseline implementation of FLaaS, the developer can choose the
characteristics of an FL instance through drop-down menus. For example, she/he can choose
whether the “joint samples” or the “joint models” mode will be used during the training. Further
details on these modes were provided in the TaRDIS Deliverable D7.1 [8].

Upon integration with a privacy preserving module, new drop-down menus could be added to
tune this functionality, e.g., to choose between local or global privacy. Moreover, in the case
of addition of differential privacy, there are additional parameters that should be tuned such as
the privacy budget. This could be also the case for the SL functionality, where the developer
could choose the learning method (FL or SL) through a drop-down menu, eliminating the need
to navigate through blocks of code. Further details on this will be provided upon advancement
of the use case implementation in the next deliverables.

Funded by

the European Union Page 55 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

Home » Apl s Projects » HotMoble2022_Test4 NID_JS

API
roject
: +ass Changeproj
Profies o+ A HotMobile2022_Test4_NID_JS
Projects + A Trle: HotMoble2022_Testd_10_JS
AUTHENTICATION AND AUTHORIZATION Description
Growps + A
Users + Ad
St Compleed
Pragect Sawe
J—
Maodel: O'M‘IO~02_° .
Vol e
Dataset: CIFAR0 :
Trareng Cataset
AP——
Dataset type: L s
e e —————
Normier of rounde. 10)
WVax rurmbert of seccefdl F'L rounds wrtl B project b comg
Nomter of sppr 3 8

Number of a008 per device

Figure 33: Administrator Interface for FLaaS in the TID pilot

Eventual Integration with Babel

As of this writing, TID and WP6 are working on integrating machine learning (ML) training in a
partially decentralized setting, more precisely, Federated Learning (FL) and Split Learning
(SL). This approach enables helpers to perform partial aggregation through peer-to-peer
communication. The implementation will be conducted on Babel, through the implementation
of different protocols for handling communication between nodes and the proper
synchronisation of data.

Funded b .
tr:jenEﬁrop};an Union Page 56 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

6 CONCLUSIONS

This document presents the updated approach towards the definition of an Integrated
Development Environment tool suited for the TaRDIS toolbox integration efforts.

In conclusion, the integration of Visual Studio Code (VS Code) with the toolset explored in the
TaRDIS research project offers a highly effective and streamlined environment for software
development, particularly in modern and dynamic swarm project contexts. By combining the
rich set of features native to VS Code, such as its lightweight, customizable interface, with an
array of specialized tools, this document has demonstrated a significant improvement in both
developer productivity and workflow efficiency.

Throughout the study, it became evident that the combination of VS Code and the TaRDIS
toolbox tools not only enhances code editing and debugging experiences but also fosters a
smoother collaboration across various stages of development. The use of version control
systems, integrated testing frameworks, and advanced extensions—combined with VS Code’s
seamless support for languages, frameworks, and debugging tools—has created an
ecosystem that can adapt to a diverse range of project requirements and developer
preferences.

Furthermore, the extension architecture in VS Code proved to be a key advantage, allowing
for highly specific customization to match the unique demands of different project types. The
ability to incorporate third-party tools, such as continuous integration/deployment pipelines,
Docker containers, and cloud platforms, extends VS Code’s capabilities, making it an ideal
choice for developers working on projects of varying scope and complexity.

From a research perspective, the integration of these tools has highlighted areas of potential
improvement in the development cycle, including streamlining the process for tool
configuration, ensuring robust documentation for new users, availability of templates,
examples and other support, and refining workflowsfor collaborative development. The overall
results confirm that the synergies created by leveraging VS Code as the central hub for
development significantly enhance the overall software development lifecycle.

Ultimately, this research reinforces the importance of using a flexible, well-supported, and
extensible Integrated Development Environment (IDE) like Visual Studio Code as a highly
added value in conjunction with the TaRDIS toolbox, as it fosters an environment conducive
to innovation, rapid prototyping, and efficient code delivery in modern software projects. The
outcomes suggest that further research into refining these integrations and expanding the set
of supported tools will continue to improve both individual and team-based software
development efforts in the future.

This document not only presented the customisation of the VS Code IDE to cope with the
TaRDIS development needs, but also showed how the customisation and integration of each
of the selected tools was performed, from the point of view of the integration process and from
the point of view of the operational instructions.

Funded by

the European Union Page 57 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

As future work for the subsequent and final deliverable of this work-package, the team will
continue to integrate the other TaRDIS tools as they are becoming finalised and available and
will report the integration status and activities on the last deliverable D3.6.

This deliverable also introduces a developer’s vision, where the team leverages their
experience to present multiple developer stories from various perspectives. These stories aim
to help readers relate to specific scenarios and provide guidance for tackling intelligent swarm
challenges.

Funded by

the European Union Page 58 of 59 © 2023-2025 TaRDIS Consortium

TaRDIS | D3.4: Second Report on Integrated Development Environment @ TaRDIS

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D3.2 — First release of TaRDIS development environment, 2024, TaRDIS project,
https://www.project-tardis.eu/download/d3-2-integrated-development-environment

Microsoft (n.d.). Code editing. Redefined. Visual Studio Code. Retrieved February 14,
2024, from https://code.visualstudio.com

Microsoft (2024, January 2). Extension API. Visual Studio Code. Retrieved February 21,
2024, from https://code.visualstudio.com/api

Git (n.d.). Local-branching-on-the-cheap. Retrieved November 17, 2024, from https:/qit-
scm.com

D3.3 — Report on the 2nd iteration of the application model and APIs, 2024, TaRDIS
project, https://project-tardis.eu/download/d3-3-second-report-on-programming-model-
and-apis

D5.1 — Initial report on Distributed Al and Al-based orchestration, 2024, TaRDIS project,
https://www.project-tardis.eu/download/d5-1-initial-report-on-distributed-ai-and- ai-based-
orchestration

D5.2 — Second report on Distributed Al and Al-based orchestration, 2024, TaRDIS project,
https://www.project-tardis.eu/download/d5-2-second-report-on-distributed-ai-and-ai-
based-orchestration

D7.1 — Report on the expected improvements and quantification procedures, 2024,
TaRDIS project, https://www.project-tardis.eu/download/d7-1-report-on-the-expected-
improvements-and-quantification-procedures

Funded by

the European Union Page 59 of 59 © 2023-2025 TaRDIS Consortium

https://www.project-tardis.eu/download/d3-2-integrated-development-environment
https://code.visualstudio.com/
https://code.visualstudio.com/api
https://git-scm.com/
https://git-scm.com/
https://project-tardis.eu/download/d3-3-second-report-on-programming-model-and-apis
https://project-tardis.eu/download/d3-3-second-report-on-programming-model-and-apis
https://www.project-tardis.eu/download/d5-1-initial-report-on-distributed-ai-and-ai-based-orchestration
https://www.project-tardis.eu/download/d5-1-initial-report-on-distributed-ai-and-ai-based-orchestration
https://www.project-tardis.eu/download/d5-2-second-report-on-distributed-ai-and-ai-based-orchestration
https://www.project-tardis.eu/download/d5-2-second-report-on-distributed-ai-and-ai-based-orchestration
https://www.project-tardis.eu/download/d7-1-report-on-the-expected-improvements-and-quantification-procedures
https://www.project-tardis.eu/download/d7-1-report-on-the-expected-improvements-and-quantification-procedures

