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EXECUTIVE SUMMARY 

The TaRDIS project’s objective is to build a distributed programming toolbox that simplifies the 
development of decentralized applications deployed in a diverse setting. Work Package 4 
(WP4) focuses on pioneering formal analyses to assess the soundness, security, and reliability 
of heterogeneous swarms. These analyses will be specifically tailored to the TaRDIS models, 
ensuring that desirable security, data integrity, AI coordination, and interaction properties are 
satisfied, aligning with TaRDIS use cases and requirements. To this end, in this report, we 
categorise the properties regarding to TaRDIS use cases that necessitate analysis and 
verification. Additionally, we delve into both the existing and advanced verification techniques 
that will be employed to validate these properties. 
Our key contributions for this report encompass various aspects: 
 
Firstly, we identify the challenges arising from intelligent swarms as well as use cases related 
to verification and analysis. 
 
Secondly, we categorise the properties that will undergo in-depth analysis in the upcoming 
WP4 deliverables, organising them based on the specific tasks to which they are assigned. 
 
Thirdly, we classify the existing verification techniques and discuss how TaRDIS will go beyond 
the state-of-the-art. 
 
Finally, we summarise the desirable models and properties that are specifically relevant to the 
TaRDIS use cases. 
 
Here are some key highlights we aim to showcase as the outcomes of the M9 report, which 
effectively tackle the challenges related to formally analysing the soundness, security, and 
reliability of heterogeneous swarms: 

• OXF has published two papers: one that addresses the challenge to account for 
unreliability and failures persists for session types, and another that supports protocols 
allowing dynamic participant joining. 

o David Castro-Perez and Nobuko Yoshida, “Dynamically Updatable Multiparty 
Session Protocols: Generating Concurrent Go Code from Unbounded 
Protocols”, in ECOOP 2023. Click or tap here to enter text. 

o Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou, “Designing 
Asynchronous Multiparty Protocols with Crash-Stop Failures”, in ECOOP 2023. 
(Barwell et al., 2023) 

• NOVA has published five papers, two dealing with replicated data consistency levels, 
two dealing with concurrency control and safe data use, and one dealing with data 
confidentiality.  

o Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix, “VeriFx: Correct 
Replicated Data Types for the Masses”, in ECOOP 2023. (De Porre, 2023) 

o Marco Giunti, Hervé Paulino, and António Ravara, “Anticipation of Method 
Execution in Mixed Consistency Systems”, in SAC 2023. (Giunti et al., 2023) 

o Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João Matos, 
and António Ravara, “AtomiS: Data-Centric Synchronization Made Practical”, 
OOPSLA 2023. (Paulino, 2023) 

o Pedro Rocha and Luís Caires, “Safe Session-Based Concurrency with Shared 
Linear State”, ESOP 2023. (Rocha & Caires, 2023) 

o Eduardo Geraldo, João Costa Seco, and Thomas Hildebrandt. Data-Dependent 
Confidentiality in DCR Graphs. In PPDP 2023. (E. Geraldo et al., 2023) 
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● UNS has published two papers: one that develops in edge systems a Python Testbed 
for two generic Federated Learning Algorithms – a centralized and a decentralized, and 
the follow-up that formally specifies and verifies these two algorithms using the 
Communicating Sequential Processes calculus (CSP) and the Process Analysis Toolkit 
(PAT) model checker. 

o Ivan Prokić, Silvia Ghilezan, Simona Kašterović, Miroslav Popovic, Marko 
Popovic, Ivan Kaštelan, “Correct orchestration of Federated Learning generic 
algorithms: formalisation and verification in CSP”. In ECBS 2023. CoRR 

abs/2306.14529 (2023). (Prokic et al., 2023) 
o Miroslav Popovic, Marko Popovic, Ivan Kastelan, Miodrag Djukic, Silvia 

Ghilezan, “A Simple Python Testbed for Federated Learning Algorithms” in 
ZINC 2023.   (Popovic et al., 2023) 
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1. INTRODUCTION 

The Work Package 4 (WP4) develops novel formal analyses for determining whether a 
heterogeneous swarm is sound, secure, and reliable. Specifically, analyses will apply to the 
TaRDIS models to ensure that desirable security, data integrity, AI coordination, and 
interaction properties are satisfied, with properties chosen according to the TaRDIS use cases 
and requirements. WP4 will facilitate safe usage of the AI and data primitives from WP5 and 
WP6. The developed tooling will be incorporated into the TaRDIS APIs and IDE and AI 
optimisation framework. 

1.1 FORMAL SPECIFICATIONS 

This document reports the M6 delivery (D4.1) which focuses on formal specifications for 
requirements delivered in D2.1 “Report on the initial requirements analysis from co-design". In 
particular, it will focus on formal definitions of properties based on behavioural types, replicated 
data convergence and integrity requirements, security and privacy requirements, and 
federated learning orchestration for heterogeneous swam. The key points with respect to 
Tasks 4.1, 4.2, 4.3 and 4.4 are given below. 

Task 4.1 

Task 4.1 [Leader OXF] develops novel formal analyses for interaction behaviour. For D4.1, 
this task defines novel properties and techniques based on behavioural types. In particular, to 
determine whether systems expressed using the TaRDIS models (T3.1) satisfy desirable 
behavioural properties, e.g., protocol compliance, communication safety, deadlock freedom 
and liveness, we explain how to extend current state-of-the art techniques, e.g., syntax-based 
analyses and model-checking-based analyses, to support an event-based setting where 
system entities are heterogeneous, may dynamically join, leave, fail, and not have complete 
views of the system. We examine the requirement and use case analyses (D2.1) to determine 
the behavioural properties of communication that are critical in decentralised systems in the 
cloud-edge continuum. We also discuss how to compositionally analyse these defined formal 
properties.  
 
Specifically, Task 4.1 uses the theories of: 

1. Typestates (Strom & Yemini, 1986a), which considers that resources have internal 
state that determines which operations are “safe” and define the behaviour of such 
resources in terms of state machines, akin to protocol descriptions. 

2. Session Types (Honda, K., Vasconcelos, V. T., & Kubo, M., 1998), namely adhering to 
the propositions-as-types foundation, based on Linear Logic, to describe 
communication patterns of systems’ components over channels. 

3. Multiparty Session Types (Honda et al., 2008, 2016), which is a type discipline for 
concurrent and distributed systems, a global description of the system’s intended 
behaviour considering all participants’ actions. 

Task 4.2 



TaRDIS | D4.1: Report on the desirable properties for analysis 

 

 Page 10 of 57 © 2023-2025 TaRDIS Consortium 

Task 4.2 [Leader NOVA] concerns the development of compositional static analysis 
techniques for checking data convergence and integrity in the presence of data replication. 
The developments in these first six months were threefold. 
 
Firstly, assuming the nodes that replicated the data have the same consistency model (weak 
consistency), VeriFx – a specialised programming language for Replicated Data Types (RDTs) 
– is under development: programmers implement RDTs atop functional collections and 
express correctness properties that are verified automatically. 
 
Secondly, assuming nodes can have different consistency models, to deal efficiently with 
sequences of operations on different replicas, it is useful to know which operations commute 
with others and thus, when can an operation not requiring synchronisation be anticipated wrt 
others requiring it, thus avoiding unnecessary waits. 
 
Finally, to ensure data integrity in concurrent applications, it is crucial to guarantee access to 
shared resources in mutual exclusion. The standard approach, which is difficult as reasoning 
is cumbersome, is control centric. We develop an alternative methodology that is instead data-
centric, only requiring to identify the resources to protect. 

Task 4.3  

Task 4.3 [Leader DTU] develops novel and connect existing verification techniques for security 
properties. Amongst other things, we consider privacy-type properties aimed at protecting the 
relationship between data, actions, and entities. Task 4.3 employs both symbolic methods, to 
detect vulnerabilities early in the design, and abstract interpretation techniques that can 
capture key properties of devices to enable security proofs. We plan to formalise the security 
proofs for key building blocks (that are made available in the TaRDIS API) in Isabelle/HOL to 
obtain a very high security guarantee through machine-checked proofs. We will employ 
compositional reasoning by defining assumptions and guarantees of devices in their interaction 
such that the composition of an entire system is secure even when some devices have 
vulnerabilities or cannot be trusted. The composition will define minimal guarantees that 
devices must satisfy (e.g., not leaking certain keys) so that recovery is still possible. We are 
currently investigating how to incorporate information flow analysis to analyse code under the 
assumption that the communication primitives ensure given confidentiality and integrity 
properties. The analyses developed in Task 4.3 will complement those from the other WP4 
tasks, enabling reliable communication that also respects privacy protocols, that data is 
replicated consistently and securely, and that distributed AI primitives use data which they are 
entitled to access. Task 4.3 will first identify desirable security analyses, leveraging 
requirements and use case analyses (WP2); and second, iteratively develop compositional 
analyses for the identified properties, incorporating feedback from TaRDIS evaluation tasks, 
and ensuring integration with the unified interface and tooling developed by WP3. 

Task 4.4  

Task 4.4 [Leader UNS] develops an integration framework for the safe orchestration of the 
decentralised machine learning model (Leader UNS). Overall, the framework is facilitating the 
coordination of the machine learning primitives developed in WP5 over a communication 
system using techniques based on process algebras and behavioural types. To the best of our 
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knowledge, there is no previous work on the formal verification of distributed machine learning 
algorithms.  
Thus, as a starting point Task 4.4 has made an effort to build a common language for the two 
research communities, specifically, Federated Learning and Behavioural Types. Towards this 
goal and for D4.1, in Task 4.4  

• We have used process algebra of Communication Sequential Processes (CSP) 
(Hoare, 1985) to provide simple formal specifications of two generic federated learning 
algorithms (Popovic et al., 2023).  

• Based on these CSP specifications we performed model-checking-based analyses 
using Process Analysis Toolkit (PAT) (Sun et al., 2009).  

• We have proved the correctness of the two generic FL algorithms by showing their 
deadlock freedom and termination.  

Further, for D4.1, Task 4.4 inspects the federated learning requirements of the use cases 
(D2.1) to determine the behavioural properties that are to be defined and verified. 

1.2 RESULTS SUMMARY  

Our key contributions are:  

• We identify the challenges of intelligent swarms and use cases related to 
verification and analysis.  

• We categorise the properties that will undergo further analysis in the subsequent 
deliverables of the WP4, organising them according to their respective assigned tasks. 

• We classify the existing verification techniques and discuss how the TaRDIS will 

advance beyond the state-of-art.  

• We summarise the desirable models and properties which are specifically related 
to the TaRDIS use cases.  

Overall, we consolidate various requirements, properties, and advanced techniques for 
analysing interactions in distributed systems. These are applied to TaRDIS models to ensure 
the satisfaction of desirable security, data integrity, AI coordination, and interaction properties, 
tailored to specific TaRDIS use cases and requirements. 

1.3 DELIVERABLE STRUCTURE 

We begin the report by providing a comprehensive introduction to the complexities of intelligent 
swarms, highlighting the associate challenges tied to each use case (Section 2). We then 
categorise the properties that will be analysed throughout the rest of the WP based on their 
respective tasks (Section 3). Subsequently, in Section 4, we classify the existing verification 
techniques related to these properties, delving into both the state-of-the-art and upcoming 
advancements in verification methodologies. Furthermore, we delineate potential avenues for 
future research. Finally, we present a concise list of the desirable properties unique to each 
use case, which necessitate verification (Section 5). 
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2. THE CHALLENGE OF INTELLIGENT SWARMS 

2.1 GENERAL INTRODUCTION 

Developing and managing distributed systems is a highly complex task requiring expertise 
across different domains. This complexity becomes more pronounced when considering 
swarm systems which are highly dynamic and require fully or partial decentralised solutions to 
cope with the scale and heterogeneity of devices and execution environments. Developing 
correct, reliable, and secure systems in such contexts requires developers to reason about 
aspects across multiple layers of the system and across heterogenous devices and 
communication mediums. 

TaRDIS development environment aims to assist developers in building correct systems by 
taking advantage of sophisticated techniques, as described in this document, to automatically 
analyse the interactions between the different components of the distributed system. This aims 
to ensure correctness-by-design of applications considering specifications of both the 
application invariants and the considered execution environment. 

2.2 IDENTIFIED CHALLENGES BY USE CASE 

A comprehensive discussion of the specific challenges pertaining to different use cases can 
be found in Section 3 of Deliverable 2.1. In this subsection, we provide a concise overview of 
the challenges we have identified concerning the analysis of interactions within distributed 
systems for each use case.  

2.2.1 Actyx 

Context: Next-generation factories are built from intelligent components that collaborate 
autonomously to perform mission-critical tasks without central infrastructure. Implementing this 
dynamic machine-to-machine cooperation correctly and resiliently is not yet possible. Rigid 
classical automation approaches lack the flexibility and agility to efficiently express such high-
level orchestration. 

Challenges: Actyx has identified challenges related to the specification and verification of the 
general structure of communication and participant behaviour in their swarm system, the 
integration of these behaviours within their system using specific programming languages, and 
ensuring the resilience of the system. 

2.2.2 EDP  

Context: The multi-level smart charging concept is built to overcome the foreseen electric 
vehicle charging problem. The concept is divided into three core energy and network levels. 
These levels aim to provide a local energy balance by matching energy generation with local 
flexible loads of the consumption – energy consumers with controlled usage of energy.  
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Challenges: The challenges identified by EDP primarily pertain to the decentralization of their 
energy grid control system and the corresponding adjustments required for components, 
communication, and data configurations. 

2.2.3 GMV 

Context: Next-generation of swarm satellite constellations in Low Earth Orbit will be 
characterized by an increasing number of satellites for which Orbit Determination and Time 
will be more and more challenging. They will strongly take advantage of the Inter-Satellite-Link 
technology for both communication and navigation measurements, with the goal of achieving 
more autonomy respect to the ground. 

Challenges: GMV's identified challenges involve decentralising a single satellite into a large 
constellation of satellites, specifying, and verifying the required interactions between these 
satellites, and achieving autonomy to reduce dependency on ground station support. 

2.2.4 Telefónica 

Context: Smart homes include a wide range of devices designed to work together as a swarm 
to make our lives more convenient and comfortable. Many devices are built to incorporate 
artificial intelligence algorithms to improve their functionality. However, the heterogeneity of 
these devices makes it difficult to share the intelligence without sharing data with each other 
or to a central location, raising concerns about privacy. Further, with so many devices collecting 
data about us, there is a risk that our personal information may be compromised. The use-
case aims to develop a privacy-preserving federated learning framework that can work in a 
hierarchical fashion. 

Challenges: The identified challenges by Telefónica address investigating a Hierarchical 
Federated Learning framework for mobile environments that enables cross-device and cross-
app (i.e., on-device cross silo) Federated Learning, and offer an as-a-service solution to 
provide app developers with user-friendly tools and APIs.  
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3. CATEGORIES OF PROPERTIES 

In this section, we categorise the properties that will undergo further analysis in the subsequent 
deliverables of the WP, organising them according to their respective assigned tasks. 

3.1  BEHAVIOURAL PROPERTIES TO DISCIPLINE INTERACTIONS  

The primary objective of analyses for interactions behaviour is to develop innovative 
techniques based on behavioural types, specifically, Typestates and (Multiparty) Session 
Types. These techniques are particularly aimed at determining whether systems expressed 
using the TaRDIS models satisfy desirable interaction behavioural properties. These 
properties include:  

Communication Safety 

The exchanged data in a well-defined sequence of interactions (referred as a communication 
protocol) adheres to the expected type, ensuring the absence of any type errors. For instance, 
consider the interactions between browser clients and a server in a web-based distributed 
system, communication safety ensures that all endpoints progress without type errors, 
conforming to a specified protocol.  

Deadlock-freedom 

Communications will eventually terminate. More specifically, a communication task can be 
completed through permitted interactive actions. For instance, consider a communication 
protocol, deadlock freedom ensures that the protocol will end successfully, allowing all 
participants to avoid getting stuck.  

Termination 

Communications will terminate finitely. More specifically, a communication task can be 
completed through a finite number of permitted interactive actions. For instance, consider a 
message-passing process, termination ensures that the process will reach the final state in a 
finite number of reduction steps. 

Never-termination 

Communications will persist indefinitely. More specifically, a communication task can be 
executed infinitely through permitted interactive actions. For instance, consider a message-
passing process, never-termination indicates that the process can always infinitely reduce. 

Liveness  

Every event in a communication task can be completed through permitted interactive actions. 
For instance, consider a message-passing process, liveness guarantees that each input or 
output action of the process can be performed eventually. 

Protocol conformance and completion 
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Valid sequences of calls of an API’s methods can be defined with a typestate specification 
(henceforth called protocol). The code can be statically type-checked to ensure that clients 
following the protocol never generate run-time errors like null-pointer exceptions (a safety 
property known as protocol conformance). Moreover, in the absence of divergent computation, 
it is also possible to ensure that such client code complete the API’s protocol (a weak liveness 
property known as protocol completion). In the context of a communication protocol, local 
conformance of all participants ensures the network's overall conformance to the initial 
protocol. Likewise, when considering a message-passing process, protocol conformance 
guarantees that the process behaves conforming to its declared types.  

3.2 PROPERTIES FOR DATA MANAGEMENT AND REPLICATION 

Heterogenous swarms require the development of decentralized data management 
techniques that rely on data replication to provide high availability and low latency. These 
techniques resort to weak consistency solutions enhanced with support for strong consistency 
when required by applications. When adopting weak consistency models, a replica executes 
locally an operation requested by a client without any coordination with other replicas and 
immediately returns to the client. The operation is later propagated in the background, leading 
to different execution orders at different replicas. To guarantee that replicas’ state converge it 
is necessary to address the conflicting concurrent updates made by clients at different replicas. 
Replicated Data Types (RDTs) that resemble sequential data types (e.g., counters, sets, 
maps), guarantee convergence-by-design by providing efficient and deterministic data 
reconciliation solutions. These data types will serve as basic building blocks for developing 
heterogenous swarm applications. However, although individual RDTs guaranteed 
convergence, when combining RDTs that might not the case.  

Even though RDTs guarantee state convergence, most do not guarantee well-formedness 
properties of application data, commonly called integrity invariants (e.g., the account balance 
must be nonnegative). In general, these data properties are global properties that cannot be 
ensured under weak consistency and require coordination between replicas. To address this 
tension between consistency and availability, TaRDIS will provide support for mixed 
consistency models that may execute some operations under weak consistency and others 
under strong consistency. For instance, a replicated counter that can be both incremented and 
decremented ensures convergence as both operations commute. However, if we consider the 
integrity invariant that the counter must be nonnegative, then this invariant cannot be 
guaranteed without some coordination, but strong consistency can be avoided. The insight is 
that increments can be executed under eventual consistency, while decrements require strong 
consistency. 

Lastly, dynamic partial replication will also be needed. There are multiple reasons for having 
partial replication. For instance, to keep private data in the clients’ devices, storage capacity 
limitations of devices, among others. 

The properties to be studied here are concerned with the following two properties. 

 

State convergence 
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This property expresses that replicas eventually converge to the same state. As discussed 
above, in weak consistency models each replica might execute operations in different orders. 
Therefore, it is crucial to ensure that, independently of the execution order, two replicas that 
have received the same operations do indeed converge to the same state. 

Data integrity preservation 

This property is concerned with guaranteeing data integrity invariants of the application data. 
These include referential integrity, uniqueness constraints, numeric constraints, among others. 

Beyond verifying these properties for heterogenous swarm systems at large, the goal is to 
provide static analysis tools that help developers determine the necessary mechanisms to 
ensure these two properties. For instance, given the application code assuming a sequential 
setting, determine where RDTs should be used, and where stronger consistency is needed. 

3.3 PROPERTIES FOR SECURITY    

For verifying the security and privacy properties of the system, we are going to employ two 
basic approaches: Firstly, the verification of communication protocols that use cryptographic 
means to protect communication from leaking information, tampering with information and 
unauthorised access. Secondly, we will use information flow control techniques applied to 
event-based languages to analyse systems for illegal flows that are introduced by 
programming mistakes. This aims to prevent classified information from being “leaked” into 
public places and to prevent untrusted information from “leaking” into a trusted information 
base.   

Transmission Security Properties 

Here are the classical properties of security protocols: authentication and confidentiality for the 
data transmitted. This includes that the parties agree on each other’s name and the content of 
the transmission, that the transmission is not a replay, and that the data is kept confidential. 
Such properties can be specified by marking which data must be kept confidential between 
whom and who is expected to be authenticated on which data. Special cases are injective vs. 
non-injective agreement, unicast vs. multicast, and unauthenticated endpoints.   

Information Flow Properties 

In the analysis for information flow control of the code, we have the counterpart of the 
transmission properties, namely lattices of labels for confidentiality and integrity levels, so that 
information of a certain confidentiality/integrity level cannot be used in places of lower 
confidentiality level nor of higher integrity level, respectively. The specification is in the form of 
lattices of security levels, which can be linked to the roles of individuals in the system, owners, 
readers, or writers of data. We follow and will push the state-of-the-art on the use of dependent 
security levels to make the analysis more flexible and usable in real cases. 

 

Compositional Specification 
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More generally, an API interface between protocols (with shared databases) can be specified, 
or an interface between an application and transmission protocols, specifying which interaction 
the components have on their interface, which modifications they can make to the shared 
databases, and when they can declassify shared secrets. This then requires each component 
to perform only actions allowed by their interface (Hess et al., 2023), under the assumption 
that all other components do as well. 

Privacy-type Properties 

These are more advanced properties for communication protocols, such as unlinkability, i.e., 
a third person cannot see if two actions were performed by the same device/participant or a 
new one. Such a property can be specified via privacy variables (e.g., agent names) and 
releasing formulas about them (e.g., the owner of a device may know which actions are done 
by their device, and which are not).  

Cryptographic Compliance 

When a security protocol is specified as a multi-party session type, we want to infer that for a 
given cryptographic knowledge of each role, each role can perform all their steps. Moreover, 
we can automatically derive all cryptographic checks that the role can (and in fact must) 
perform at each step of the protocol; this in fact ensures that the role is executable and 
unambiguous.  

Accountability 

Whenever there are no cryptographic means to enforce that users behave according to 
protocol, we want to ensure that they are accountable for their actions, i.e., when violating the 
rules (that can include general laws, but also contractual obligations and protocol descriptions) 
they run the risk of being detected and reprehended. Accountability involves a specification of 
three things: the rules that limit what actions participants may and may not do; what can 
possibly be detected; and a “judicial” process, detailing how to derive in case of a detection of 
misbehaviour. To verify this property is that the judicial process will never “convict” an innocent 
participant, it will convict at least somebody, and for certain misbehaving actions, there is a 
positive risk to get convicted. This allows then a verification of the system under the assumption 
that that said those actions will not occur. 

Resilience and Recoverability 

These are more advanced properties of security protocols that we describe in more detail in 
Section 4.2 (advanced beyond the state-of-the-art) and where it is at this point not entirely clear 
how to specify them within TaRDIS. We will therefore leave this for future deliverables. 

3.4 PROPERTIES FOR DECENTRALISED MACHINE LEARNING MODELS 

Federated Learning Models (FL) are the best suited Machine Learning Models for 
heterogenous swarms (McMahan, 2019). The communication in FL can be organised as a 
centralised organisational structure, decentralised organisational structure, or their 
combination. Each of these communicational structures can have different topologies which 
have to ensure that the necessary information is propagated. 
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One of the main goals is to identify the communication topologies of the use cases, 
distinguishing e.g., between static hierarchical scenarios, dynamic peer-to-peer scenarios, and 
combinations of the two. The objective is to ensure that the TaRDIS models support the most 
dynamic scenarios, and address the more static scenarios as special cases, without 
introducing excessive burden or difficulties for the programmers.  

Swarm topology sufficiency: The topology of the system must be dense enough to ensure 
that the necessary information is propagated. The communication can be organised in two 
ways: centralised organisational structure and decentralised organisational structure. In both 
organisational structures different topologies can be implemented such as: star topology, tree 
topology, full mesh topology, partial mesh topology and ring topology. In star topology, all 
nodes (devices) are connected to a central node (device). A variant of star topology is tree 

topology. This topology has a hierarchical flow of data. In a full mesh topology, each node 
is connected to every other node in the network. This topology ensures the highest level of 
redundancy, since there is always an alternative path for data to reach its destination if one 
path fails. However, this topology is expensive and difficult to manage in large networks. In 
order to reduce the cost and complexity of the network a partial mesh topology can be used. 
A partial mesh topology is a compromise between the full mesh topology and other topologies 
such as star topology. In this topology, some nodes are connected to all other nodes, while 
others are connected to few nodes. Another type of network topology is ring topology. In this 
topology, nodes are connected in a circular manner, forming a closed loop. Data travels around 
the ring in one direction, passing through each device until it reaches its destination. 

These techniques are particularly aimed at determining whether systems expressed using the 
TaRDIS models satisfy desirable FL properties, which include: 

FL Roles of agents 

Some of the agents involved in the FL algorithm can have limited capabilities. The FL Roles of 
agents property ensure clients receive only the data they can process. Assigning roles to 
agents can ensure that “small” clients cannot receive “large” data. Moreover, for “low power” 
clients it ensures that the data and frequency can be limited, whereas the “higher power” 
clients can function in full capacity. This contributes to the efficiency of the model and green 
energy. 

FL Data privacy  

Ensure statically that only the model parameters can be sent by the clients and servers, and 
not the actual data that always should remain private to the clients and servers. This 
contributes to privacy protection in the model. 

FL Message delivery  

In case of asynchronous communications, agents acting like servers should have large enough 
buffers to support receiving messages from all clients preventing system congestion with 
received messages. This contributes to the liveness of the model.  

FL Clients equality 
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Clients participating in one round of FL algorithm should equally contribute to the algorithm - 
behaviours in which a single client sends multiple messages within a single round should be 
avoided. This would prevent cases in which a single client is making unwanted large influence 
on the FL algorithm. This contributes to the fairness of the model and uniform participation of 
the clients.  
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4. VERIFICATION TECHNIQUES 

In this section, we categorise the existing verification techniques relevant to the identified 
desirable properties, exploring both the current state-of-the-art and forthcoming advancements 
in verification approaches. Additionally, we outline potential directions for future work. 

4.1 CATEGORIES OF VERIFICATION TECHNIQUES 

4.1.1 Behavioural Types for Interaction Analysis 

Significant research effort has been devoted to ensuring the safety and reliability of 
communicating systems. A key approach is that of behavioural types (Hüttel et al., 2016) (BTs), 
which specify the intended interaction patterns of systems, such that well-typed systems 
adhere to the prescribed interactions. BTs can be incorporated into existing languages 
(Ancona et al., 2016) and describe both internal and external system behaviour. The main 
approaches for the former are typestates (Strom & Yemini, 1986b); for the latter, contracts, 
and session types (Honda et al., 1998).  

Session types provide a lightweight, type system–based approach to message-passing 
concurrency. This type discipline is further advanced by Multiparty Session Types (MPST), 
which enable the specification and verification of communication protocols among multiple 
message-passing processes in concurrent and distributed systems. MPST ensure that 
protocols are designed to guarantee desirable behavioural properties, i.e., communication 
safety, deadlock-freedom, and liveness (Scalas & Yoshida, 2019). By adhering to a specified 
MPST protocol, participants can communicate reliably and efficiently. From a practical 
perspective, MPST have been implemented in various programming languages, e.g. Go 
(Castro-Perez et al., 2019), Java (Hu & Yoshida, 2016), Rust (Cutner et al., 2022), Python 
(Demangeon et al., 2015), Scala (Cledou et al., 2022), Typescript (Miu et al., 2021), and 
OCaml (Yoshida et al., 2021), enabling their applications and providing safety guarantees in 
real-world programs. 

Based on behavioural type system methodologies, the type-level behavioural properties that 
align with the scope of the TaRDIS APIs are verified for correctness utilising exhaustive static 
reasoning methods, such as static type checking and model checking, whenever feasible. 
These approaches enable us to provide comprehensive and concise feedback to programmers 
regarding any identified problems. 

● Type Checking API’s Code against Protocol Specifications: 
o Incorporating the protocol as its behavioural specification within the API code allows 

to check/enforce that client code interacting with the API correctly follows the 
protocol. 

o Moreover, the protocol can also be used to monitor requests arriving at the API, 
only allowing, for each client, the sequences of requests prescribed by the protocol. 

● Model Checking Type-Level Behavioural Properties:  
o Express the type-level behavioural properties, such as communication safety, 

deadlock-freedom, termination, never-termination, and liveness, as modal µ-
calculus formulas (Groote & Mousavi, 2014); and  
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o Use model checkers, such as mCRL2  (Bunte Olavand Groote, 2019) to check 
the correctness of these behavioural properties.  

4.1.2 Verification Techniques for Distributed Data Management 

• Verification and Synthesis of RDTs: 
o The verification and synthesis of RDTs rely on static analyses done at compile time. 

In the operation-based consistency approach, the analyses evaluate a high-level 
specification of the application, more specifically, each operation pre and post-
conditions, plus the data invariants to be guaranteed. Several works (Gotsman et 
al., 2016; Houshmand, 2019; Li et al., 2020) rely on this high-level specification to 
determine the safety of an RDT, however these works differ on the assumptions 
made. While some assume causal consistency (Gotsman et al., 2016), others rely 
only on eventual consistency (Houshmand, 2019; Li et al., 2020). According to the 
CISE (Gotsman et al., 2016), a logic for reasoning about the correctness of a 
distributed application operating on top of a causally-consistent database, an RDT 
is safe if: (1) it is safe in sequential execution; (2) converges; and (3) the 
precondition of each operation is stable under the effect of any other concurrent 
operation. Formally, a database computation is defined by a partial order on 
operations, representing causality, and a conflict relation (between operations) that 
further constrains the partial order. A crucial aspect of this logic is that instead of 
reasoning about all possible interactions between operations, the logic reasons 
over each operation individually under a set of assumptions on the behaviour of 
other operations. Recently, the other works (Houshmand, 2019; Li et al., 2020) 
extend the above safety conditions with a dependency analysis that is used to 
determine which operations require causal delivery or whether eventual 
consistency is enough. These (four) safety conditions can be leveraged to define a 
deterministic ordering relation between concurrent operations, thus enabling the 
construction of RDTs from sequential data types. The ordering relation is used at 
runtime to avoid conflicts by locally (re-)ordering conflicting operations when 
possible and coordinating operations only if correctness cannot be guaranteed 
otherwise. 

• Conflict and Dependency Analyses: 
o Language-based static analysis can extract information at compile-time on which 

operations can commute with which other operations and thus get information that 
can be used by the run-time support to decide on call anticipations of operations in 
replicas without compromising consistency. Data-centric concurrency control 
(DCCC) shifts the reasoning about concurrency restrictions from control structures 
to data declaration. It is a high-level declarative approach that abstracts away from 
the actual concurrency control mechanism(s) in use. 

4.1.3 Verification Techniques for Security Properties 

For the verification of security protocols, several methods and tools exist that we plan to employ 
and improve upon, namely: 

• Abstract Interpretation, e.g., like ProVerif and PSPSP (Blanchet, 2016; Hess et 
al., 2021) 
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• Model-checking tools like OFMC (Mödersheim & Viganò, 2009). 

• Privacy-verification tools like Noname (Fournet et al., 2023). 

A major aspect of integrating different methods is compositional reasoning, i.e., modelling 
components with their interfaces, ensuring every component adheres to their interface, and an 
attacker cannot interfere with the components in a way that arises only from the composition. 
As far as feasible, we plan to use the PSPSP/StateParComp framework of the proof assistant 
Isabelle/HOL, which ensures that the composition is machine-checked. This is especially 
helpful in composition since subtle requirements may otherwise be overlooked. Moreover, it 
allows for the use of the automated verification module PSPSP on many components.  

Information flow techniques are applied in this context in complement to the verification of 
security protocols to ensure the proper cryptographic properties. Information flow checks for 
confidentiality and integrity of data assuming that all communication and interaction work within 
the expected parameters. The expected techniques to be used here vary from static type 
checking, when possible, to dynamic verification with runtime monitors when necessary (E. 
Geraldo, Santos, & Costa Seco, 2021). Additionally to using a hybrid approach to information 
flow adapted to declarative event-based languages (E. Geraldo et al., 2023), we are also 
applying a technique called value-dependent security labels (E. Geraldo et al., 2023; E. 
Geraldo, Santos, & Costa Seco, 2021; Lourenço & Caires, 2015) that allows for a more flexible 
and fine-grained definition of security compartments that dynamically adapt to the data being 
processed and the context of the computation, e.g. the user accessing the data.  

4.1.4 Verification Techniques for Federated Learning 

Like other communication protocols, we can use the MPST for the specification of federated 
learning protocols and rely on type-checking (possibly combined with model-checking) to verify 
their desirable properties.  However, some of the federated learning protocols utilize 
communication patterns that cannot be directly modelled using the existing MPST models. 
Another direction toward this goal is to 

• Use Communicating Sequential Processes Calculus (CSP) (Hoare, 1985) for modelling 
federated learning protocols. The CSP provides modelling of the concurrency primitives 
as follows 

o the system components are CSP processes;   
o communication between the system components is performed through the 

communication channels;   
o the system of parallel processes communicating asynchronously (i.e., without 

barrier synchronization) is assembled via interleaving of the CSP processes. 
• Express a behavioural property of considered protocols (e.g., safety, liveness, 

deadlock freedom) as a linear temporal logic formula and use model-checkers, such 
as Process Analysis Toolkit (PAT) (Sun et al., 2009), to verify the correctness of the 
property. 

4.2 LOOKING BEYOND THE STATE-OF-THE-ART 

4.2.1 Type Systems for Behavioural Analysis of Interactions  

State-of-the-art: Extensions to core theories of session types and multiparty session types 
include features to support heterogeneous swarms: Failure handling extensions include affine 
sessions, permitting processes to fail, and coordinator-based failure handling techniques 
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(Viering et al., 2021); other extensions enable dynamically evolving connections between 
protocol participants (Hu & Yoshida, 2017) and dynamically sized participant pools 
(Demangeon & Honda, 2012). Recent works preliminarily address compositional verification 
(Barbanera et al., 2021) of open systems (Horne, 2020) and a session-typed, higher-order, 
core language (𝖢𝖫𝖠𝖲𝖲) that supports concurrent computation with shared linear state (Rocha 
& Caires, 2021). 

Beyond state-of-the-art: In WP4, Task 4.1, we intend to build upon the above approaches, 
enabling the application of behavioural types to heterogeneous swarms. 

𝖢𝖫𝖠𝖲𝖲, the first proposal for a foundational language able to flexibly express realistic concurrent 
programming idioms, features a type system ensuring all the following three key properties: 
𝖢𝖫𝖠𝖲𝖲 programs never misuse or leak stateful resources or memory, they never deadlock, and 
they always terminate. 𝖢𝖫𝖠𝖲𝖲 expressiveness is illustrated with several examples involving 
memory-efficient linked data structures, sharing of resources with linear usage protocols, and 
sophisticated thread synchronisation. 

In order to address the challenge to account for unreliability and failures persists for session 
types, (Barwell et al., 2023) has introduced a toolchain that utilises asynchronous MPST with 
crash-stop semantics to support failure handling protocols. Additionally, to support protocols 
in which participants can join an already existing session (dynamic participants), (Castro-Perez 
& Yoshida, 2023) has proposed multiparty session types extended with the ability to add 
unbounded participants dynamically during a protocol execution.  

Multiparty protocols with crash-stop failures 

We introduce a top-down methodology for designing asynchronous multiparty protocols with 
crash-stop failures: (1) We use an extended asynchronous MPST theory, which models crash-
stop failures (Cachin et al., 2011), and show that the usual session type guarantees remain 
valid, i.e. communication safety, deadlock-freedom, and liveness; (2) We present a toolchain, 
Teatrino, for implementing asynchronous multiparty protocols, under our new asynchronous 
MPST theory, in Scala, using the Effpi concurrency library (Scalas et al., 2019) 

 

Figure 1: Top-down view of MPST with crash. 

As depicted in Figure 1, the top-down design of multiparty protocols with crash-stop failures 
begins with a given global type (top), and implementations rely on local types (bottom) for 
participants, obtained from the global type. Well-typed implementations (processes) that 
conform to a global type are guaranteed to be correct by construction, enjoying full guarantees 
(safety, deadlock-freedom, liveness) from the theory. 
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We model crash-stop failures, i.e., a process may fail arbitrarily and cease to interact with 
others. This model is simple and expressive and has been adopted by other approaches 
(Barwell et al., 2022; Brun & Dardha, 2023).Using global types in our design for handling 
failures in multiparty protocols presents two distinct advantages: (1) global types provide a 
simple, high-level means to both specify a protocol abstractly and automatically derive local 
types; and (2) desirable behavioural properties such as communication safety, deadlock-
freedom, and liveness are guaranteed by construction. We focus on asynchronous systems, 
where messages are buffered whilst in transit, since most communication in the real distributed 
world is asynchronous.  

 

Figure 2: Workflow of Teatrino. 

On the practical side, we present a code generator toolchain, Teatrino, to implement our 
MPST theory. As depicted in Figure 2, our toolchain takes an asynchronous multiparty protocol 
as input, using the protocol description language Scribble (Yoshida et al., 2013), and generates 
Scala code using the Effpi concurrency library as output. Our code generation technique, as 
well as the Effpi library itself, utilises the type system features introduced in Scala 3, including 
match types and dependent function types, to encode local types in Effpi. This approach 
enables us to specify and verify program behaviour at the type level, resulting in a more 
powerful and flexible method for handling concurrency. By extending Scribble and Effpi to 
support crash detection and handling, our toolchain Teatrino provides a lightweight way for 
developers to take advantage of our theory, bridging the gap on the practical side. We 
demonstrate the feasibility of our methodology and evaluate Teatrino with examples 
incorporating crash handling behaviour.  
 

Dynamically updatable multiparty session protocols 
 

Existing MPST frameworks do not support protocols with dynamic unbounded participants and 
cannot express many common programming patterns that require the introduction of new 
participants into a protocol. This poses a barrier for the adoption of MPST in languages that 
favour the creation of new participants (processes, lightweight threads, etc) that communicate 
via message passing, such as Go or Erlang. To tickle this challenge, we introduce Dynamically 

Updatable Multiparty Session Protocols (DMst), a new MPST theory that supports protocols 
with an unbounded number of fresh participants, whose communication topologies are 
dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness. We 
implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst, 
ensuring by construction, that the different participants will only perform I/O actions that comply 
with a given protocol specification. We evaluate our toolchain by (1) implementing 
representative parallel and concurrent algorithms from existing benchmarks, textbooks and 
literature; (2) showing that GoScr does not introduce significant overheads compared to a 
naive implementation, for computationally expensive benchmarks; and (3) building three 
realistic protocols (dynamic task delegation, recursive Domain Name System, and a parallel 
Min-Max strategy) in GoScr that could not be represented with previous theories of session 
types. 
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Next Steps: We will expand upon the research developed in (Barwell et al., 2023) to study 
different crash models (e.g., crash-recover), as well as failures of other components (e.g., link 
failures). In addition, we aim to generalise failure handling to accommodate the new crash 
models and failures, while also relaxing network reliability assumptions. This will enable 
systems to effectively address network and hardware failures.  

We plan further to enhance MPST to incorporate time specifications, affinity, and exception-
handling mechanisms. This will tackle the challenges of handling failures, particularly timeouts, 
that may occur during the execution of communication protocols. 

We will also extend MPST to facilitate the dynamic joining and leaving of protocol participants, 
leveraging (Castro-Perez & Yoshida, 2023) and work on Conversation Types, and explore the 
integration of verification techniques such as model checking to augment BT and MPST 
applicability. Moreover, we will study the composition techniques of MPST to enable more 
comprehensive forms of open system reasoning, fostering both compositional and broader 
understandings of system behaviour. 

All these next-step efforts will provide methodologies to facilitate the reliability of 
communications across all heterogeneous swarms, while aiding in the verification of properties 
within the initial TaRDIS toolset. 

4.2.2 Verification of RDTs 

State-of-the-art: RDTs verified with VeriFx can be transpiled to mainstream languages 
(currently Scala and JavaScript). VeriFx provides libraries for implementing and verifying 
Conflict-free Replicated Data Types (CRDTs) and operational transformation functions. These 
libraries implement the general execution model of those approaches and define their 
correctness properties. 

Beyond the state-of-the-art: Currently there are two alternative approaches for the 
verification of RDTs, operation-based or data-centric. We aim to combine these two separate 
verification techniques. Moreover, we aim to analyze the correctness of RDTs that are built by 
composing existing ones. 

Commutation of operations with different consistency requirements 

State-of-the-art: To achieve an automatic approach to determine operations commutation, we 
develop a language-based static analysis to extract information at compile-time and thus get 
information that can be used by the run-time support to decide on call anticipations of 
operations in replicas without compromising consistency.  We illustrate the formal analysis on 
several paradigmatic examples and briefly present a proof-of-concept implementation in Java. 

Beyond the state-of-the-art: We plan to mechanically prove sound the approach described. 
The algorithms are already implemented in Coq and the envisaged results are formally stated. 
We will build on this work to develop the proofs. 

Data integrity in concurrent applications 

State-of-the-art: We developed AtomiS, a new DCCC approach that requires only qualifying 
types of parameters and return values in interface definitions, and of fields in class definitions. 
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The latter may also be abstracted away in type parameters, rendering class implementations 
virtually annotation-free. From this high-level specification, a static analysis infers the atomicity 
constraints that are local to each method, considering valid only the method variants that are 
consistent with the specification, and performs code generation for all valid variants of each 
method. The generated code is then the target for automatic injection of concurrency control 
primitives that are responsible for ensuring the absence of data-races, atomicity-violations, and 
deadlocks. 

Beyond the state-of-the-art: We will show that AtomiS formally guarantees thread-safety 
properties like absence of atomicity violations, data-races, and deadlocks. 

 

4.2.3 Verification of Security Properties 

Protocol Verification 

State-of-the-art: There is a rich body of research on the verification, where we limit ourselves 
to black-box models of cryptography (aka Dolev-Yao-style models (Dolev & Yao, 1983)) where 
we assume that the intruder only uses the normal cryptographic operators (i.e., composing and 
decomposing messages with known keys) but does not attempt crypto-analysis. One line of 
works is in bounded model-checking with symbolic techniques (Mödersheim & Viganò, 2009) 
that allow for analysing protocols with rather complex concepts, but need to impose a bound 
on the number of steps that honest agents can perform, or otherwise would not terminate on 
secure protocols. In fact, this bound usually has to be usually extremely low (two or three 
protocol sessions) and thus these approaches work very well for quickly finding security flaws, 
but have limited value for positive statements.    

To overcome the infinity and state-explosion problem, some tools follow an abstract 
interpretation approach, most notably the tool ProVerif (Blanchet, 2016). The abstract 
interpretation here maps fresh messages that have been created in the same context to the 
same constant, and also ignores the temporal structure, lumping together all messages that 
are ever available to the intruder, or rather an over-approximation thereof. One can then often 
efficiently prove that this over-approximation contains no secrets without the exploration of a 
state-space. While this works very well on simple protocols, the underlying monotonous 
framework does not allow for protocols that have a mutable long-term state such as a database 
of requests that have not been processed yet. For this reason, several tools have considered 
a modified version of the abstraction approach, to allow for a small amount of state while 
maintaining the advantages of abandoning the state space exploration, namely AIF/AIF-
omega/set-pi (Mödersheim & Bruni, 2016) to abstract data by membership in sets, StatVerif 
(Arapinis et al., 2011) to abstract by the state of some memory cells, and GS-Verif (Cheval, 
Cortier, et al., 2018) to handle mutable maps. 

Another is the inductive method of Paulson in the proof assistant Isabelle/HOL (Bella, 2007; 
Paulson, 1998). The advantage of this approach is that proofs are machine-checked, so do 
not rely on the correctness of a verification tool. Moreover, the nature of such a proof assistant 
does allow a wide range of proof techniques (basically what is accepted mathematics) where 
a particular abstraction or model-checking approach may not work. On the other hand, most 
of the proof work has to be done manually with only smaller proof steps being done 
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automatically by the engine. The work PSPSP (Hess et al., 2021) integrates into Isabelle/HOL 
the abstraction approach of AIF, allowing for automated proofs for protocols with long-term 
mutable state that have the high security of machine checked proofs. 

Beyond the state-of-the-art: We plan to deploy these tools for security verification in TaRDIS, 
and this is likely to work “out-of-the-box” for many problems already. However, we envision 
several extensions. First, some cryptographic primitives require modelling of algebraic 
properties (e.g., applying a verification step to a zero-knowledge proof, as in the EDP case 
study) and the support for algebraic reasoning is a challenge for all these tools. Moreover, 
several modern protocols use ratchet mechanisms, which are not supported by the tools 
currently either, and that are in some sense at odds with the abstract interpretation approaches 
denoted above. We therefore plan to extend and adapt the abstraction approach for ratchet 
mechanisms. Moreover, we will investigate alternative ways to prove such protocols manually 
in Isabelle/HOL and try to obtain a general paradigm for conducting such proofs. The long-
term goal is to obtain methods for handling larger classes of protocols automatically. 

Protocol Composition 

State-of-the-art: When running several protocols together on the same communication 
medium, where the protocol may share for instance the same public-key infrastructure, there 
can arise new attacks that the protocols in isolation would not have had, e.g., the intruder can 
abuse a message from one protocol and play it in the context of another protocol where it is 
interpreted in a different way by participants. The motivation for protocol composition is that 
the verification of the variety of protocols for instance on the Internet is far too big to verify them 
together as one system. Moreover, we cannot expect all protocol developers in the world to 
coordinate their efforts with all other protocol developers. Finally, a simple update to one 
protocol may require the entire system to be verified again. The first works on protocol 
composition concern just parallel composition, i.e., protocols that are basically unrelated 
except that they share a key infrastructure and the communication medium. Here the main 
proof argument is that this composition is sound as long as messages of the two protocols are 
sufficiently different such that they cannot be abused by the intruder in another protocol. A next 
step is sequential composition, where one the result from one protocol (e.g., a negotiated 
session key) is the input to the next protocol.  

A major generalisation has been achieved with the works of Hess et al (Hess et al., 2023) to 
allow for the composition of stateful protocols. This in particular allows for sets to be shared 
between protocols. A typical example is a web server that is “speaking” several protocols, and 
maintains a database of all orders/tasks that are currently open. In this way, a complex service 
can be decomposed into smaller units that can be verified independently. This paradigm is so 
general that it subsumes parallel composition and sequential composition. The fact that this is 
also implemented in Isabelle/HOL and connected to the PSPSP tool allows for a complete 
machine-verified security proof of complex systems where small components have been either 
verified automatically or manually. This is particularly interesting as the compositionality 
theorems often have subtle requirements and the entire proof is only accepted when all these 
requirements are satisfied.  

Another relevant development is the vertical composition result of Gondron et al. (Gondron & 
Mödersheim, 2021). Here the idea is that one protocol provides a kind of communication 
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channel that can be used by an application protocol to transmit payload messages. This result 
builds on the aforementioned stateful composition result: the payload protocol that wants to 
send a payload message from A to B puts the payload message into a shared set outbox(A,B) 
where the channel protocol picks it up, applies encryption operations to it (or, if needed, an 
entire hand-shake protocol between A and B) and sends out the encrypted message on an 
insecure communication medium. On B’s end, the channel protocol unpacks the received 
message, performs necessary checks (e.g., message authentication codes) and then delivers 
the message into the shared set inbox(B,A), where the application can pick it up. For the 
application protocol this is no more involved than sending and receiving operations and being 
able to rely on the guarantee given by the channel (e.g., authentication/integrity and 
confidentiality), but its verification is independent of how the channel protocol works. Dually, 
the channel protocol can be oblivious to the messages the application protocol is transmitting. 
It is ensured that this works both in the case that the payload message is known or unknown 
to the intruder, as well as both when the payload message is fresh or repeated.   

Beyond the State-of-the-art: We plan to offer as part of the TaRDIS API a variety of such 
channels or, more generally, message transmission interfaces. This will include the many 
standard channels like those provided by TLS where we have typically an unauthenticated 
client and an authenticated server, and this can be composed with an authentication 
mechanism (e.g., password-based login, SSO, OAuth) to authenticate the client and obtain a 
full secure channel.  

A major development we plan is to combine the verification of security protocols with the 
verification of information flow of the TaRDIS applications via the compositionality reasoning. 
The idea is that we define a security lattice for confidentiality and integrity that is combined 
with access control, so that data in the program is labelled within this lattice, and similar are 
the API calls for sending and receiving messages that connect to the security protocols. On 
the protocol side, we have then to verify that the transmission mechanism is strong enough to 
ensure the requires integrity, confidentiality, and authorization requirements; on the application 
side we have to verify that no information flows in a way that contradicts the security policy 
induced by the lattice, i.e., that unauthorised entities cannot manipulate data and data is not 
leaked to them.  

While the initial goal is to (manually) verify a set of transport mechanisms used in the case 
studies, we aim for a general automated verification of such vertical composition, and that 
embedded into the Isabelle proof assistant if feasible.  

Protocol Privacy 

State-of-the-art: Privacy-type properties for security protocols are more challenging than 
standard secrecy goals, because they are not about the secrecy of randomly chosen 
cryptographic secrets like a secret key, but about guessable data such as the names of 
participants, requested orders, etc. An example relevant to the project is unlinkability, i.e., that 
an observer cannot tell whether two actions have been performed by different entities or the 
same entity. The classical approach here are observational equivalence approaches (Blanchet 
et al., 2008; Cortier et al., 2007; Delaune et al., 2008) in some form: a notion of 
indistinguishability between processes that is applied to two possible scenarios. In the example 
we may have a process where any number of cards can perform one single session with a 
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card reader and a process where each card can run multiple sessions. There have been 
several approaches towards this verification problem: DEEPSEC (Cheval, Kremer, et al., 
2018) is currently probably the most advanced tool in that it supports the most privacy 
properties, but it is limited to a bounded number of sessions. The infinite session tools like 
ProVerif have been equipped with a notion of bi-processes, i.e., processes where each 
message has a left and right variant. This allows for integration into the unbounded verification 
approaches; however, it requires, roughly speaking, that all conditions in the program either 
yield true for both variants or false for both, i.e., the two variants can be distinguished based 
on conditions. 

With alpha-beta privacy (Mödersheim & Viganò, 2019) another approach was proposed that 
departs from distinguishability-based notions and rather represents a state space where every 
state contains as a formula beta the information that the intruder can infer from their 
observations and their knowledge of the protocol - this is basically a symbolic execution of the 
protocol by the intruder who does in general not know all the concrete values and thus not 
whether a condition evaluates positively or negatively. Besides that, every state has a formula 
alpha that describes what information has been publicly released and the intruder is thus 
cleared to know. It is then defined as a violation of privacy if in any reachable state the intruder 
can infer from beta any (relevant) information about the payload data that was not released in 
alpha. There is a first prototype implementation of an automated verification tool for alpha-beta 
privacy for a bounded number of sessions (Fournet et al., 2023). This is similar to DEEPSEC 
and other bounded session approaches in that similar challenges have to be overcome, and 
the state explosion hits already for rather small examples. 

Beyond the state-of-the-art: For TaRDIS, privacy-type properties can be highly relevant, 
since we want to prevent, e.g., in a collaborative environment where not all participants trust 
each other, that one cannot directly observe a competitors customer base or working patterns. 
Since the specification of desired privacy properties as observational equivalence can be a 
challenge for programmers, we see an advantage in being able to specify simply where 
information is released; however, this also need an extension over existing alpha-beta privacy, 
as we usually will deal with releases not to a general public, but rather to selected 
communication partners. 

Moreover, in connection with verifying compositionality security protocols with information flow 
analysis of protocols, we believe it can be sufficient that programmers just need to specify the 
security labels for the communication end-points and data, and the privacy verification can 
infer a specification of alpha-beta privacy from there. This will minimise the burden on 
programmers and designers in specifying the properties that must be analysed. We thus plan 
to extend compositionality results also for alpha-beta privacy properties and develop infinite-
state verification techniques tailored to channel protocols, namely exploiting that the channels 
in a vertical composition are oblivious to the content of the payload messages. As explained 
above, this restricts the problem to fall into a much simpler class of privacy properties that 
conditions of the channel protocol do not depend on. 

Behavioural types for security 

State-of-the-art: Multiparty session types have already been used to describe security 
protocols and their properties, even though the concept is geared towards concurrency 
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properties like deadlock-freedom. For instance, (Bruni et al., 2021) describes a privacy-
enhancing protocol between non-trusting parties using the general API of a trusted platform 
module. Such specifications can allow for a more comprehensive and intuitive view of the 
communication structure and is thus beneficial for programmers, especially given the 
envisioned use of MPSTs throughout the project.  

Beyond the state-of-the-art: It turns out that in such descriptions we cannot directly obtain 
the local behaviour of each participant by an endpoint projection: it is necessary to understand 
what the recipient of a message can check (e.g., by decryption, comparing cryptographic 
hashes and MACs) and how they can compose messages from their current knowledge. This 
can help avoid subtle specification mistakes: that programmers forget to specify checks that 
can and should be made, or that a formal model has messages that one end sends but the 
other can never receive. In both cases an actually vulnerable protocol may falsely be classified 
as secure. We are currently developing a formal definition of end-point projection for MPSTs 
that can handle cryptographic operators in an appropriate way. 

Accountability, Resilience and Recoverability 

State-of-the-art: These three topic complexes are not on a critical path for TaRDIS in the 
sense that they are nice-to-have, but not essential. Accountability is a set of mechanisms for 
giving incentives for participants to behave honestly where this cannot be directly enforced 
(Alhadeff et al., 2012; Kunnemann et al., 2019; Küsters et al., 2010; Mödersheim & Cuellar, 
2021), e.g., a certificate server could maliciously issue certificates for people who are not 
eligible in exchange for a bribe. However, accountability can in this case ensure that the server 
runs a risk of being detected and penalised for such illegal behaviour. Resilience is about 
mechanisms to ensure that even after an attacker has compromised some components of a 
system, other components continue to function and ensure at least their most basic security 
goals (Jacomme & Kremer, 2018). Recoverability is about the ability of a system to recover to 
a secure state after a compromise (Cohn-Gordon et al., 2016). 

Beyond state-of-the-art: All three topics are with a bit of manual specification work in the 
realm of what protocol verification tools can already analyse. This can however be a bit of 
tedious work, e.g., generating many scenarios with scripts and feeding them into verification 
tools. Time permitting, we plan to investigate whether we can integrate easier ways to specify 
the three properties for given systems, and improve verification methods for these 
specifications, avoiding that a large set of scenarios has to be enumerated and checked but 
can rather be handled symbolically. 

Information Flow Control 

State-of-the-art: Information flow control a technique that relies on the good behaviour of the 
system regarding external agents and effectively maintains confidentiality and information 
integrity withing a system, preventing programming errors from introducing information leaks 
and consumption of untrusted data. Information flow control goes back to the seminal work of 
Denning (Denning, 1976), where she proposes a fixed lattice model, base for type systems 
(Volpano et al., 1996), monitors (Austin & Flanagan, 2009), and hybrid approaches (E. 
Geraldo, Santos, & Costa~Seco, 2021; Toro et al., 2018) aiming to ensure data confidentiality. 
Some approaches trade the fixed-lattice model for more flexible mechanisms such as the 
decentralized label model (Myers & Liskov, 2000) or value-dependent security lattices (E. 
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Geraldo, 2022; E. M. P. C. R. Geraldo, 2018; Lourenço & Caires, 2015). Independently of the 
means of enforcement, information flow control is used in many programming languages like 
Java (E. Geraldo & Costa Seco, 2019; Myers & Liskov, 2000; Snelting et al., 2014), JavaScript 
(Santos et al., 2018), and OCaml (Simonet, 2003), or tools like JOANA (Snelting et al., 2014), 
FlowDroid (Arzt et al., 2014), TaintDroid (Enck et al., 2014), and Snitch (E. Geraldo, Santos, 
& Costa~Seco, 2021).  

However, the digitalisation of even-based languages calls for high-level treatments of 
information flow control that acknowledge the workflows employed (van der Aalst et al., 2017). 
Some formalisms support access control, but few allow for information flow control. A notable 
exception is the analysis of non-interference in Petri Nets (Busi & Gorrieri, 2009), applied to 
business processes in (Accorsi Rafael and Lehmann, 2012; Lehmann & Fahland, 2012). There 
is also work applying the declarative specification and verification of information flow control in 
process calculi; some consider only the control flow and the sequence of messages (Abadi et 
al., 1999; Honda et al., 2000; Kobayashi, 2005), while others integrate imperative languages 
in the calculus, expanding the verification scope (Honda et al., 2000). 

The formal connection between processes and data is a well-known problem addressed by 
different approaches in the literature (Costa Seco et al., 2018; Galrinho et al., 2021; van der 
Aalst et al., 2017). The process-data connection may help overcome one of the disadvantages 
of traditional information flow control approaches for imperative languages. Existing tools can 
be too strict, making it too difficult to adapt to real-world scenarios. In this context, we highlight 
the contribution of data-dependent information flow control (Lourenço & Caires, 2015), which 
is a promising approach to defining security compartments that capture the essence of realistic 
software. 

Beyond state-of-the-art: We will push the state-of-the-art in applying information flow control 
in event-based structures by studying static analysis techniques that prevent erroneous 
situations of confidentiality and integrity of data. We will further extend that into developing 
hybrid approaches in this context, preventing all errors with the most confidence and precision 
possible. The use cases of the project are rich test beds for such techniques mixing personal 
information with sensitive computations. 

4.2.4 Verification of Federated Learning Orchestration 

Formal specification of FL frameworks  

State of the art: Originally, federated learning (FL) was introduced by McMahan et al. 
(McMahan et al., 2017) as a decentralised approach to model learning that leaves the training 
data distributed on the mobile devices and learns a shared model by aggregating locally 
computed updates. Besides preserving local data privacy, FL is robust to the unbalanced and 
non-independent and identically distributed (non-IID) data distributions, and it reduces required 
communication rounds by 10–100x as compared to the synchronized stochastic gradient 
descent algorithm. Inspired by (McMahan et al., 2017), Bonawitz et al. (Bonawitz et al., 2017) 
introduced an efficient secure aggregation protocol for federated learning, and Konecny et al. 
(Konečný et al., 2017) presented algorithms for further decreasing communication costs. More 
recently, Bonawitz et al. (Bonawitz et al., 2022) and Perino et al. (Perino et al., 2022) focused 
on data privacy. 
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Nowadays, there are many FL frameworks. The most prominent such as TensorFlow 
Federated (TFF) (McMahan, n.d.), BlueFog (Ying, Yuan, Chen, et al., 2021; Ying, Yuan, Hu, 
et al., 2021) and Flower (Beutel et al., 2020) are well supported and accepted and they work 
well in the cloud-edge continuum. However, they are not deployable to edge only, they are not 
supported on OS Windows, and they have numerous dependencies that make their installation 
far from trivial. 

Recently, in 2021, Kholod et al. (Kholod et al., 2021) made a comparative review and analysis 
of open-source FL frameworks for IoT, covering TensorFlow Federated (TFF) from Google Inc 
(TensorFlow Federated: Machine Learning on Decentralized Data, n.d.), Federated AI 
Technology Enabler (FATE) from Webank’s AI department (An Industrial Grade Federated 

Learning Framework, n.d.), Paddle Federated Learning (PFL) from Baidu (An Open-Source 

Deep Learning Platform Originated from Industrial Practice, n.d.), PySyft from the open 
community OpenMined (A World Where Every Good Question Is Answered, n.d.), and 
Federated Learning and Differential Privacy (FL&DP) framework from Sherpa.AI (Privacy-

Preserving Artificial Intelligence to Advance Humanity, n.d.). They found out that application of 
these frameworks in the IoTs environment is almost impossible.  

Therefore, developing a FL framework targeting smart IoTs in edge systems is still an open 
challenge. More recently, in 2023, Popovic et al. proposed their solution to that challenge called 
Python Testbed for Federated Learning Algorithms (PTB-FLA) (Popovic et al., 2023). The work 
has been carried out within the TaRDIS project task 5.1. 

PTB-FLA was developed with the primary intention to be used as a FL framework for 
developing federated learning algorithms (FLAs), or more precisely as a runtime environment 
for FLAs. The word “testbed” in the name PTB-FLA that might be misleading was selected by 
ML & AI developers in TaRDIS project because they see PTB-FLA as an “algorithmic” testbed 
where they can plugin and test their FLAs. Note that PTB-FLA is neither a system testbed, 
such as the one that was used for testing the system based on PySyft in (Cheng Shen and 
Wanli Xue, 2021), nor a complete system such as CoLearn (Feraudo et al., 2020) and FedIoT 
(Zhang et al., 2021) (for more elaborated comparison with CoLearn and FedIoT see Section 
I.A in (Popovic et al., 2023)). 

PTB-FLA is written in pure Python to keep the application footprint small so to fit to IoTs, and 
to keep installation as simple as possible (with no external dependencies). PTB-FLA supports 
both centralised and decentralised FLAs. The former is as defined in (McMahan et al., 2017), 
whereas the latter are generalised such that each process (or node) alternatively takes server 
and client roles from (McMahan et al., 2017) or more precisely, it switches roles from server to 
client and back to server. We describe the one-shot FLA execution of both algorithms. 
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Figure 3: The generic centralised one-shot FLA execution. 

The generic centralised one-shot FLA has three phases, see Figure 3 (here  is the server 
and , are the clients). In the first phase, the server broadcasts its local data to 
the clients, which in turn call their callback function to get the update data and store the update 
data locally. In the second phase, the server receives the update data from all the clients (in 
any order, caused by arbitrary delays), and in the third phase, the server calls its callback 
function to get its update data (i.e., aggregated data) and stores it locally. Finally, all the 
instances return their new local data as their results.  

Unlike the generic centralised FLA that uses the single field messages carrying data, the 
generic decentralised FLA uses the three field messages carrying: the messages sequence 
number (i.e., the phase number), the message source address (i.e., the source instance 
network address), and the data (local or update). 

 

Figure 4: The generic decentralised one-shot FLA execution. 

The generic decentralised one-shot FLA has three phases, see Figure 4. In the first phase, 
each instance acts as a server, and it sends its local data to all its neighbours. These messages 
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have the sequence number 1, each instance sends  such messages and is also the 

destination for  such messages. 

In the second phase, each instance acts as a client, and it may receive either a message with 
the sequence numbers  or  . In the latter case, it just stores it in a buffer for later processing 
in the third phase, whereas in the former case, it calls the client callback and sends the update 
data in the reply to the message source. Note that during the second phase, the instance does 
not update its local data, it just passes the update data it got from the client callback function. 
Since messages are sent asynchronously, they may be received in any order. Figure 4 shows 
a scenario where the instance  receives the messages in the messages sequence 

, which is out of the phase order, whereas the instances and  receive the 
messages in the sequence , which is in the phase order. However, by using the 
abovementioned buffering, the instance  postpones processing of the phase  messages until 
the third phase. The second phase is completed after the instance received and processed all 

 messages. In the third phase, each instance again acts as a server, and it calls the 
server callback function to get its update data (e.g., aggregated data) and stores it locally. 
Finally, all the instances return their new local data as their results. 

PTB-FLA enforces a restricted programming model, where a developer writes a single 
application program, which is later instantiated and launched by the PTB-FLA launcher as a 
set of independent processes, and within their application program, a developer only writes 
callback functions for the client and the server roles, which are then called by the generic 
federated learning algorithms hidden inside PTB-FLA. 

Correct orchestration is one of the main challenges of FL frameworks nonetheless it has not 
yet received proper attention. There is an urging demand for formal specification and 
verification of FL frameworks. So far, PTB-FLA usage has been illustrated and validated by 
three simple examples in (Popovic et al., 2023). PTB-FLA has not been formally verified.  

Beyond the state of the art: Within WP4, Task 4.4, we have formally verified the correctness 
of two generic FL algorithms, a centralised and a decentralised one using the Communicating 
Sequential Processes calculus (CSP) and the Process Analysis Toolkit (PAT) model checker. 
All details are presented in (Prokic et al., 2023). 

The work has been done in two phases:  

1) In the first phase, presented below, we construct CSP models of the generic centralised 
and decentralised FLAs as faithful representations of the real Python code. We 
construct these models in a bottom-up fashion in two steps. In the first step, we 
construct processes corresponding to generic FL algorithm instances, and in the 
second step, we construct the system model as an asynchronous interleaving of n FL 
algorithm instances. 

2) In the second phase, presented further in this document in Section 4.1.8, we formally 
verify the CSP models constructed in the first phase in two steps. In the first step, we 
formulate desired system properties, namely deadlock freeness (safety property) and 
successful FLA termination (liveness property). We formulate the latter property in two 
equivalent forms (reachability statement and always-eventually LTL formula). In the 
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second step, we use PAT to automatically prove formulated verification statements 
(Sun et al., 2009). 

The CSP models are constructed bottom-up as a faithful representation of the real Python 
code and they are automatically checked top-down by PAT. 

To the best of our knowledge, this is the first result that formally verifies decentralised FLAs. 

We present two models: one for the centralised algorithm and another one for the decentralised 
algorithm.  

Modeling centralised algorithm 

Figure 5 shows a CSP model for our centralised algorithm. Lines 2-3 define number of nodes 
(NoNodes) (indexed with 0, 1, 2, . . .) with the server (FlSrvId) having the largest index, and 
other nodes being clients. We remark we could set here the index of the server node with the 
smallest index, but this would in fact make our model less intuitive because of the channel 
manipulation (as explained below). Lines 4-5 define arrays of local data ldata and private data 
pdata - one per each node. The communication channels are defined in lines 8-9. The array 
of channels server2client - one per each client (hence, NoNodes−1 channels) are used for the 
server broadcast of their local data to the clients (one channel per client). Notice that the 
indexes of array elements are generated starting with 0, hence the channel index indicates the 
index of the client node. Since we consider one-shot algorithm the server sends their local data 
only once, hence the channels are specified to have FIFO buffers of size 1.  
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Figure 5: CSP model for centralised algorithm. 

Channel clients2server is used in the second phase of our algorithm, i.e. for clients replying 
to the server with the update data. The FIFO size of this channel is NoNodes−1, since all 

clients reply with a single update. 

Lines 11-16 define a generic node as a CSP process with parameters of the number of nodes, 
identification of the node, index of the server, their local and private data. We remark that 
parameters sfun, cfun, and noIters, also present in fl_centralised, were considered out of the 
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scope for this model. Based on the node index the process proceeds as the server node 
CeServer or as one of the client nodes CeClient. 

The server node is modeled in lines 18-22. The process first checks if it is terminated: if not it 
performs the broadcasting of the local data via CeBroadcastMsg, then proceeds to phase 2 
by receiving updates via CeRcvMsgs. The successful termination is modeled with Skip. The 
broadcasting of server’s local data CeBroadcastMsg is defined in lines 24-30. The server 
sends ldata on channels server2clients[id] (if id is not their own index), and then recursively 
calls itself with index increased by 1 - if the index is less than noNodes−1. Since CeServer 
passes id to CeBroadcastMsg to be 0, the server will send the local data to all the clients 
exactly once. Once the broadcast is done, the server starts receiving clients’ updates on 
channel clients2server as defined with CeRcvMsgs in lines 32-35. 

The client process is defined with CeClient in lines 37-40. The client with index nodeId first 
receives server’s local data on channel server2client[nodeId], and then replies updated 
server’s local data with its own local data (here for simplicity modeled with addition) on channel 
clients2server, after which client process successfully terminates.   

The system consisting of NoNodes−1 clients and a single server is then modeled as the 

interleaving of the FlCentralised processes (lines 42-48), since all processes but one indexed 
FlSrvId are instantiated as clients (and the one indexed FlSrvId is instantiated as a server). 

Modelling decentralised algorithm 

The CSP model for our decentralised algorithm is given in Figure 6. Albeit more complex than 
the centralised one, the decentralised algorithm yields a slightly simpler CSP model. The 
reason is that all nodes in the system have the same behaviour. In phase 1 all nodes behave 
as servers broadcasting their local data to all other nodes, which in turn update the data and 
return an answer in phase 2. All the nodes receive messages from all other nodes as they 
arrive, but first process the messages from phase 1 and only then deals with the messages 
from the phase 2. We model this behaviour with assigning two channels to each process (i.e. 
node). One channel is for receiving messages from other processes, called tonode, with buffer 
of size 2*(NoNodes-1) (line 7), since the node will receive messages from all other nodes from 
both phases. The other channel assigned to node, called buffer (line 8), serves only for storing 
messages from the second phase while all messages from the first phase are processed - later 
in phase 3 the same node will read those messages. Hence, the buffer size of these channels 
are NoNodes-1. 

The node processes are defined with FlDecentralised in lines 10-15. Process first broadcasts 
their local data with DeBroadcastMsg (defined in lines 17-23) - which behaves in the same 
way as CeBroadcastMsg in the centralised algorithm, except that the sent messages now 
contain not only field for local data of the node, but also fields marking the phase (here 1) and 
the node’s index (that the receiving node uses for the reply in phase 2).  
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Figure 6: CSP model for decentralised algorithm. 

The node then proceeds with receiving messages from all other nodes with DeRcvMsgs, and 
finally (phase 3) process the messages from the second phase with DeRcvMsgs2. 

DeRcvMsgs is given in lines 25-35. Here we deviate from the centralised algorithm: node 
receives all messages from both phases from the other nodes and then performs an analysis 
on the phase of the received message. If the phase is 1, the node replies updated data to from 
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they received message in the first place, marking the phase of the message 2. If, on the other 
hand, the phase is 2, the node stores the message to their own channel buffer[nodeId]. Once 
the node process all messages from phase 1 (and buffers all messages from phase 2), 
DeRcvMsgs2 (lines 37-41) is used to read from the buffer[nodeId], which behaves in the 
same way as CeRvcMsgs from the centralised algorithm. 

The system of NoNodes nodes is finally modeled as the interleaving of the FlDecentralised 
processes in lines 43-48.   

Next steps: Multiparty Asynchronous Session Types (MPST) were tailored to describe 
distributed protocols relying on asynchronous communications. Hu and Yoshida extended 
MPST in (Hu & Yoshida, 2017) with explicit connection actions to support protocols with 
optional and dynamic participants. These extended MPST enabled modelling and verification 
of some protocols in cloud-edge continuum in (Simic et al., 2021). However, we could not use 
these extended MPST to model the generic centralised and decentralised FLAs, because we 
could not express arbitrary order of message arrivals that take place at an FLA instance. 

The design of robust protocols for coordination of peer-to-peer systems is difficult because it 
is hard to specify and reason about their global behaviour. Recently, (Kuhn et al., 2023) 
presented an approach where a so-called swarm protocol is a global system specification, 
whereas swarm protocol projections to machines are local specifications of peers. They claim 
that swarms are dead- lock free, but liveness is not guaranteed in their theory. We find this 
approach interesting and in our future work we plan to investigate whether it would be feasible 
for our generic FLAs.  

At present, we identify some of the differentiating points between (Kuhn et al., 2023) and our 
work: (i) in their approach communication of peers is conducted through a shared log instead 
of point-to-point message passing; (ii) they model peers using finite state automata, while we 
use (CSP) processes; (iii) they model protocols in the style of MPST via top-down approach 
(projecting global type onto peers to obtain local type specification) while we only write local 
processes specifications, that we ensemble together to obtain global protocol behaviour; (iv) 
they use TypeScript language and develop tools to check protocol conformance at runtime 
through equivalence testing, whereas our protocols are written in Python language, modelled 
in CSP, and we use PAT to prove deadlock freeness and liveness. 

We plan further to combine the two approaches in order to work towards the verification of 
properties of the TaRDIS initial toolset of WP6 along with requirements of WP2 and 
developments of WP3 and WP5. 

Formal Verification of Distributed AI 

State-of-the-art: The most prominent FL frameworks include Flower (Beutel et al., 2020) (for 
centralised federated learning) and BlueFog (Ying, Yuan, Hu, et al., 2021) (for fully distributed 
learning), promising scalable decentralised ML workloads on heterogeneous edge devices. 
More recently, as part of the TaRDIS project, (Popovic et al., 2023) proposed a framework 
called Python Testbed for Federated Learning Algorithms (PTB-FLA). However, none of the 
above frameworks have been utilizing methods for formal verification, lacking trustworthy 
methodologies that can provide safe and reliable systems. 
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Beyond state-of-the-art: As a first step towards formal verification of the FL algorithms we 
conducted an investigation on the formal verification of the two generic FL algorithms 
introduced in (Popovic et al., 2023) (and presented above in this document). To achieve the 
formal verification, we first modeled the protocols of the two algorithms using the CSP process 
algebra (Hoare, 1985) (the CSP models are also given above in this document). The 
correctness of the CSP models is automatically checked by PAT, which supports the system 
analysis in two ways: simulation and model checker. We have used the latter one.  

The correctness of the centralised and decetralised algorithms is verified by proving the 
deadlock freeness (safety property) and successful termination (liveness property). The 
properties of algorithms are stated in the form of queries, called assertions, which are checked 
by PAT (Sun et al., 2009). 

 

Figure 7: Verifying centralised algorithm. 

The assertions that formally verify the correctness of the centralised algorithm are shown in 
Figure 7. The assertion given in line 5 of Figure 7 claims that the centralised algorithm is 
deadlock-free. PAT model checker performs Depth-First-Search or Breath-First-Search 
algorithm to check if the assertion is true. It explores unvisited states until a non-terminated 
state with no further move called a deadlock state is found or all states have been visited. 

The assertion given in line 7 of Figure 7 claims that the centralised algorithm reaches a 
terminated state. This assertion is checked by performing Depth-First-Search algorithm. PAT 
model checker repeatedly explores all unvisited states until it finds a state at which the 
condition Terminated is satisfied or it visits all the states. The condition Terminated is a 
proposition defined as a global definition (line 6 in Figure 7). 

PAT supports the full syntax of the linear temporal logic (LCL), which is used in the last 
assertion of Figure 7 that claims our centralised algorithm satisfies formula []<> Terminated. 
The modal operator [] reads as always and the operator <> reads as eventually, so the 
statement asserts our centralised algorithm always eventually reaches the terminated state. 
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Figure 8: Verifying decentralised algorithm. 

The proof of the correctness of our decentralised algorithm is given in Figure 8 and follows the 
same explanations given for the centralised one. 

Next steps: We will build upon the research developed in (Prokic et al., 2023) to design a 
framework for the safe orchestration of decentralised swarm ML. Further developments of 
TaRDIS will enable the coordination of the ML primitives ensuring that each primitive has 
access to the data that it requires. The framework will ensure the safe execution of machine 
learning actions at collaborative smart edge-nodes. Finally, we will integrate the analyses 
developed across WP4 with the AI-based optimisation developed in WP5. Resource 
orchestration will be made transparent and hence more trustworthy by exploiting transparent 
and secure data management from WP6 that include swarm ML/DL models and models for 
reinforcement learning(Södergård et al., 2020).  We will investigate local model explainability 
based on LIME (Ribeiro et al., 2016) and local surrogate decision trees to be linked with 
allocated resource schemes to increase explainability of decisions on resource allocations to 
humans. 
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5. EXPECTED RESULTS FOR USE CASES 

In this section, we demonstrate the desirable models and properties associated with use cases 
that necessitate specification and verification. 

5.1 FAILURE MODELS 

• Actyx, GMV 
1. Devices can be inaccessible for arbitrary but bounded periods of time; during this time 

local computation on the device may or may not be possible (i.e., device can lose 
network connectivity or battery, application can be stopped and restarted, …). 

2. Devices can be destroyed —fail-stop mode. 

Byzantine faults are not a concern at this stage because all devices are centrally managed by 
a single entity, and potential middleware bugs are not being considered for now. 

• EDP 

1. Grid: A failure in the connectivity of prosumers to the community infrastructures can 
disrupt the system.  

o Assumption regarding overall system architecture: there is a central entity 
(MainProvider, e.g., EDP) that owns a trusted, known, and centralised 
infrastructure. This infrastructure is assumed to have high availability 
(99.999%).  

2. Processes: Failures to provide energy can result from not meeting consumption 
requests and energy offer timeframes. Another failure scenario can occur if there 
is a delayed response to a system failure in providing a failback power source to all 
requests.  

3. Optimization: The system should optimize the matching between producers and 
consumers within the energy community, resorting to other communities or the grid 
only when there are no local alternatives available for production, consumption, or 
storage.  

• Telefónica 

A core part of Federated-Learning-as-a-Service (FLaaS) is privacy. Failure to protect 
participant data can lead to privacy breaches and other consequences. Proper privacy-
preserving techniques should be implemented to prevent data exposure. Hence, 
Telefónica needs to account for these failure models: 

1. Network: FLaaS relies on communication between the server and participating 
devices or clients. Communication failures, including network outages, delays, and 
packet loss, can disrupt the learning process. 

2. Data: In FLaaS, data distribution across participants may be imbalanced, leading 
to biased models. Addressing data imbalance challenges and ensuring that the 
model remains fair, and representative is essential. 

3. Model: The aggregation process of model updates from participants can be 
inefficient or error-prone, affecting the quality of the global model. Implementing 
efficient and robust aggregation algorithms is crucial. 
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4. Users and nodes: Participants in FLaaS may drop out due to various reasons, such 
as device unavailability, network issues, or user preferences. Managing participant 
dropouts without compromising the model's performance is a challenge. Further, 
nodes (in the hierarchy) might exhaust their computational, memory, or bandwidth 
resources, affecting their ability to participate effectively. 

5.2 DESIRABLE LIVENESS PROPERTIES 

• Actyx 

1. A workflow always terminates, either with an error condition or by reaching a 
terminal state; this assumes that non-modelled state value computations terminate, 
and it assumes that we limit workflow recursion using established techniques such 
as gas/fuel consumption or timeouts.  

2. Failures (incl. running out of gas/fuel) are handled by other workflows, e.g., using 
an escalation or supervision scheme, also allowing compensating actions or 
recovery to restore a valid overall system state.  

3. All non-failing participants in a workflow reach eventual consensus on the sequence 
of states traversed by the execution of this workflow; some participants may lump 
together workflow states if they don’t care about their distinction. 

• EDP 

1. There is always a way of satisfying a consumption or production request.  

• GMV  
1.  Navigation filter shall eventually converge. 

• Telefónica  
1. Participants are allowed to join or leave the system dynamically.  
2. Feedback mechanisms and incentives should be implemented in FLaaS to 

motivate participants for continued engagement. 
3. Ensuring the absence (or at least minimising) data imbalance can be tackled with 

quality (quantitative) models for data integrity (as a balanced aggregation of parts). 

5.3 DESIRABLE SAFETY PROPERTIES 

• Actyx 

1. Deadlock-freedom: no participant can get stuck; if the local event log puts the local 
view of the workflow into a state where the participant may act (i.e., publish events) 
then it can do so, which will advance the local workflow view.  Together with 
termination (liveness property), this implies lock- and starvation-freedom.  

2. Causality captured in the workflow is maintained in each participant’s local view 
(e.g., “this event can only be seen after that other event has been seen”); this allows 
real-world safety properties like “the robot can only take the workpiece after it has 
been placed on the shelf”.  

3. The programmer can formulate safety constraints like “event A never applies before 
event B”; since we aim for dynamic systems, we start scoping these properties to 
each workflow instance — we regard them as isolated even though they can in 
principle interfere through overlapping event subscriptions 
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4. Conflict-detection: deadlock-freedom in this setting implies the possibility of 
divergent event histories which will be reconciled as events are disseminated (i.e., 
undoing invalidated state computations).  

5. Each participant can detect when reconciliation has invalidated any of its prior 
actions (i.e., external effects incl. event emission); this allows compensating actions 
to be taken.  

6. Compensating event emissions shall not break the other properties listed above. 

• EDP 
1. Consumption and production requests are always matched in a compatible way.  
2. The data provided by the devices to the community/grid is used in accordance with 

specified guidelines.  
• GMV 

1. Deadlock-freedom: entities become available for synchronous communication in 
predetermined time slots as pairs. However, if only a single entity becomes 
available, it may result in blocking, potentially leading to a deadlock. In simpler 
terms, the satellite control code must be designed to prevent the occurrence of 
deadlocks. 

2. Navigation accuracy shall be at least X meters.  

• Telefónica 
1. Concurrent updates from multiple participants can be handled.  
2. Fault tolerance: resilient to failures, including server crashes, communication 

interruptions, or participant dropouts.  
3. Presence of malicious: compromised participants can send incorrect or malicious 

updates to the centre server, affecting the integrity of the global model. Mechanisms 
are employed to detect and mitigate the impact of Byzantine participants.  

4. Efficient and robust aggregation algorithms require good sound concurrency control 
(approaches to control data races are key for consistency/integrity)  

5.4 DESIRABLE SECURITY AND PRIVACY PROPERTIES 

• Actyx 

1. All communication between participants (i.e., event generation, and receiving an 
event in a callback function) must be encrypted such that both confidentiality and 
injective agreement (integrity and authentication, protected from replay) on the 
transmitted events is ensured. This will be verified for the transmission protocols 
underlying the TaRDIS API that is handling the events exchange in a heterogenous 
swarm.  

2. The correct deployment of the channels by the application must be verified: the 
communication may need to be separated w.r.t. a setup of subscriptions for certain 
event types. Moreover, no communication should be performed outside the 
TaRDIS event-based model, or, if it is deemed necessary, verified that this cannot 
leak secrets or import untrusted information.  

3. To an external observed (non-participant) it must not be observable which events 
are taking place, including what type of event. We may assume here that an 
attacker cannot perform a precise timing/traffic analysis (which to protect against 
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would require dummy events and batching of messages that may not be practically 
feasible).  

4. Any protocols that are deployed for updating cryptographic material (e.g., creating 
a new key when a participant leaves a group) should ensure security against 
outsiders and malicious insiders (e.g., participants who shall leave a group but try 
to manipulate the update key exchange such that they continue to have access to 
the group communication). 

5. We will also investigate practically feasible ways to allow the above security and 
privacy in presence of malicious participants, by either using further cryptographic 
means (e.g., restricting access to certain parts of the communication, or using zero-
knowledge proofs) as well as non-cryptographic means such as accountability. 

6. We intend to leverage ML for anomaly detection in event logs, with federated 
learning being a potential approach. 

• EDP 

1. Only the model parameters of distributed ML in a heterogenous swarm can be sent 
by the clients and servers. The actual data should always remain private to the 
clients and servers. This will be verified statically. These properties contribute to 
privacy protection in the TaRDIS model. 

2. All communication between participants must ensure confidentiality and injective 
agreement on the transmitted events is ensured or any other communication 
channels that are employed. This will be verified for the transmission protocols 
underlying the TaRDIS API that is handling the events exchange in a heterogenous 
swarm.  

3. The correct deployment of the channels by the application must be verified: each 
generation of an event (or sending of a message) must only be visible to the 
participants that are allowed to see it, and vice-versa events (or received 
messages) can only be reacted upon when it comes from a participant who is 
authorized to influence the respective data.   

4. To an external observer (non-participant) it must not be observable which events 
are taking place, including what type of event. We may assume here that an 
attacker cannot perform a precise timing/traffic analysis (which to protect against 
would require dummy events and batching of messages that may not be practically 
feasible). 

5. The observability requirement explicitly includes unlinkability goals (as far as 
feasible): it should be impossible (or very hard) to obtain profiles of participants 
linking their actions together. This may involve the use of special zero-knowledge 
primitives in the implementation of communication channels and protocols.  

6. Any protocols that are deployed for updating cryptographic material (e.g., creating 
a new key when a participant leaves a group) should ensure security against 
outsiders and malicious insiders. 

7. Contracts and agreements between participants should be accountable, i.e., in 
case of a breach of an agreement, enough evidence is available to prove the breach 
to a third party (e.g., in court or to an arbitration entity).   

• GMV 

1. All communication between participants must ensure confidentiality and injective 
agreement on the transmitted events is ensured or any other communication 
channels that are employed. This will be verified for the transmission protocols 
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underlying the TaRDIS API that is handling the events exchange in a heterogenous 
swarm.  

2. The correct deployment of the channels by the application must be verified: each 
generation of an event (or sending of a message) must only be visible to the 
participants that are allowed to see it, and vice-versa events (or received 
messages) can only be reacted upon when it comes from a participant who is 
authorized to influence the respective data.   

3. Any protocols that are deployed for updating cryptographic material (e.g., creating 
a new key when a participant leaves a group) should ensure security against 
outsiders and malicious insiders. 

4. The satellites share their models' coefficients, which are used for orbit propagation, 
and enhance their individual estimates through federated learning. 

• Telefónica 

1. Only the model parameters of FL can be sent by the clients and servers. The actual 
data should always remain private to the clients and servers. This will be verified 
statically. These properties contribute to privacy protection in the TaRDIS model. 

2. Besides the privacy properties on the application/machine learning level, all 
communication between participants must ensure both confidentiality and injective 
agreement on any communication channel (including the communication of 
events). This shall be a verified property of the transmission protocols underlying 
the TaRDIS API (or whatever communication channels shall be used). These 
properties shall also hold amongst honest participants when some participants are 
dishonest (e.g., compromised or malicious users).  

3. The correct deployment of the channels by the application must be verified, 
including that guessable, known or repeated messages communicated by the 
application can impact the goals.  

4. Any protocols that are deployed for updating cryptographic material (e.g., creating 
a new key when a participant leaves a group) must ensure that the updated key is 
secure, possibly also removing access to an attacker who had successfully hacked 
into the system. 

5.5 DESIRABLE DATA CONVERGENCE AND INTEGRITY PROPERTIES 

Actyx's liveness property 3 also doubles as a data convergence property, as “eventual 
consensus on the sequence of states traversed by the execution of this workflow” implies 
convergence on the system overall state (thus on data). It also implies data integrity as no two 
participants that can change the state won’t eventually reach consensus on the sequence of 
states traversed by the execution of the workflow. Safety properties 2 and 4 of Actyx are critical 
to ensure this liveness property. 
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6. CONCLUSIONS 

TaRDIS development environment's primary goal is to assist developers in building correct 
systems through automatic analysis of interactions between various components within a 
distributed system. This approach ensures that applications are inherently designed for 
correctness, taking into account both application invariants and the specifics of the execution 
environment. 

As a first step to address these challenges, we categorise the properties regarding to TaRDIS 
use cases that require analysis and verification. Additionally, we delve into both established 
and sophisticated verification techniques that will be utilised to validate these properties.  

The key contributions of this report include identifying the challenges arising from intelligent 
swarms as well as use cases related to verification and analysis, categorising the properties 
that will undergo in-depth analysis in the upcoming WP4 deliverables, organising them based 
on the specific tasks to which they are assigned, classifying the existing verification techniques 
and discussing how TaRDIS will go beyond the state-of-the-art, and summarizing the desirable 
models and properties that are specifically relevant to the TaRDIS use cases. We consolidate 
these insights and apply them to TaRDIS models to ensure that they satisfy the desirable 
security, data integrity, AI coordination, and interaction properties, as aligned with the specific 
TaRDIS use cases and requirements. 
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