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EXECUTIVE SUMMARY

The TaRDIS project aims to develop a distributed programming toolbox that simplifies the 
development of decentralised applications across varied environments. Work Package 4 
(WP4) is dedicated to pioneering formal analyses to assess the soundness, security, and 
reliability of heterogeneous swarms. These analyses are specifically designed for TaRDIS 
models, ensuring they meet the desired security, data integrity, AI coordination, and 
communication properties, aligning with the TaRDIS use cases and requirements. 

In Deliverable D4.1, the properties related to TaRDIS use cases requiring analysis and 
verification were categorised, and both existing and advanced verification techniques for 
validating these properties were explored. 

In this report, the initial toolset for communication, data, AI/ML, and security analyses is 
provided, describing the developed analyses for a subset of the properties outlined in D4.1 
across T4.1 – T4.4. Additionally, any changes to the identified set of properties in D4.1 are 
discussed, and other new properties not covered in D4.1 are introduced. 

The main contributions of this report are outlined below: 

● Descriptions of tools for communication behaviours analysis, data integrity, security 
verification, and federated learning analysis, along with their developed analyses for 
the properties described in D4.1. 

● Modifications to properties identified in D4.1, tailored specifically to these tools, as 
well as additional properties suited for analysis by these tools.

The following are some key highlights from the M18 report in terms of academic publications, 
effectively addressing the challenges associated with formally analysing the soundness, 
security, and reliability of heterogeneous swarms: 

● UOXF 
○ Nobuko Yoshida and Ping Hou: Less is More Revisited: Association with 

Global Multiparty Session Types. To appear in The Practice of Formal 
Methods: Essays in Honour of Cliff Jones, Part II, 2024. 

○ Lorenzo Gheri and Nobuko Yoshida: Hybrid Multiparty Session Types: 
Compositionality for Protocol Specification through Endpoint Projection. Proc. 
ACM Program. Lang. 7(OOPSLA1): 112-142 (2023). 

● DTU
○ Simon Tobias Lund and Sebastian Mödersheim, Dolev-Yao Information Flow, 

submitted, 2024
○ Andreas Hess, Sebastian Mödersheim, Achim Brucker, and Anders 

Schlichtkrull: PSPSP: A Tool for Automated Verification of Stateful Protocols in 
Isabelle/HOL, submitted, 2024.

○ Sebastian Mödersheim and Siyu Chen: Accountable Banking Transactions, 
Open Identity Summit 2024, to appear.

○ Jens Kanstrup Larsen, Roberto Guanciale, Philipp Haller, Alceste Scalas: 
P4R-Type: A Verified API for P4 Control Plane Programs. Proc. ACM 
Program. Lang. 7(OOPSLA2): 1935-1963 (2023)

○ Christian Bartolo Burlò, Adrian Francalanza, Alceste Scalas, Emilio Tuosto: 
COTS: Connected OpenAPI Test Synthesis for RESTful Applications. In: 
COORDINATION 2024. Lecture Notes in Computer Science, vol 14676. 
Springer.
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● NOVA
○ Marco Giunti, Hervé Paulino, António Ravara: Anticipation of Method 

Execution in Mixed Consistency Systems. SAC 2023: 1394-1401. 
○ Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João 

Matos, António Ravara: AtomiS: Data-Centric Synchronization Made Practical. 
Proc. ACM Program. Lang. 7 (OOPSLA2): 116-145 (2023).

● UNS
○ Milos Simić, Jovana Dedeić, Milan Stojkov, Ivan Prokić: A Hierarchical 

Namespace Approach for Multi-Tenancy in Distributed Clouds. IEEE Access 
12: 32597-32617 (2024)

○ Simona Prokić: Probabilistic reasoning in computation and simple type theory. 
PhD Thesis, University of Novi Sad (2024).

● ACT
○ Roland Kuhn, Hernán Melgratti, Emilio Tuosto: Behavioural Types for 

Local-First Software. ECOOP 2023.
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1. INTRODUCTION

The main objective of Work Package 4 (WP4) is to develop novel formal analysis tools to 
ensure that a heterogeneous swarm is sound, secure, and reliable. These tools will be 
applied to the TaRDIS models to verify that key properties such as security, data integrity, AI 
coordination, and communication are satisfied, with specific properties chosen based on 
TaRDIS use cases and requirements. WP4 aims to enable the safe use of AI and data 
primitives developed in WP5 and WP6, and the developed tools will be integrated into the 
TaRDIS APIs, IDE, and AI optimisation framework.

1.1 TOOL SPECIFICATIONS AND MODIFIED PROPERTIES

This document reports on the M18 delivery (D4.2), highlighting the development of analysis 
tools for a subset of the properties delivered in D4.1, “Report on the Desirable Properties for 
Analysis". Specifically, it focuses on tools developed for analysing communication 
behaviours, ensuring data convergence and integrity requirements, verifying security and 
privacy, and orchestrating federated learning for heterogeneous swarms. These 
developments are outlined according to the four specified tasks below. 

Communication Behaviours Analysis

● WorkflowEditor and Actyx Middleware (by Actyx): utilise  Actyx middleware to formally 
describe and analyse workflows between swarm participants.

● Compositional Verification of Swarm Protocols (by DTU and Actyx): verify the 
well-formedness and deadlock-freedom of a composition of two given swarm 
protocols, which are individually well-formed and deadlock-free. 

● Fair Join Pattern Matching (by DTU): specify fair and deterministic join pattern 
matching for actor-based systems. 

● P4R-Type (by DTU): a verified P4Runtime API in Scala 3 to perform static checks on 
programs controlling P4-based software-defined networks. 

● COTS (by DTU):  model-based testing of swarm applications.
● Scribble (by UOXF): a description language for application-level protocols among 

communicating systems. 
● JaTyC (by NOVA): a Java typestate checker for statically verifying memory-safety, 

protocol compliance, and protocol completion.

Data Convergence and Integrity

● VeriFx (by NOVA): libraries for implementing and verifying Conflict-free Replicated 
Data Types and operational transformation functions.

●   Ant (by NOVA):  an automated method to identify operations that can safely 
commute, prioritising those that do not require inter-replica coordination, ensuring 
data integrity and consistency.

● AtomiS (by NOVA):  a DCCC approach to  mandate specific types for parameters and 
return values in interface definitions, as well as for fields in class definitions.

Security Verification
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● Channel Information Flow (by DTU and NOVA)
○ DCR Choreographies with IFC: a mechanism to prevent side channels by 

considering the timing of events, ensuring data confidentiality. 
○ Information Flow Channel: a framework for securely extending information 

flow analysis to systems with communication over an untrusted network. 
● PSPSP (by DTU):  a low-level language for security protocols. 
● Cryptographic Interpretations of Choreographies (by DTU): a cryptographic 

choreography language emphasising the practical application of cryptographic 
operations by agents. 

Federated Learning Orchestration 

● Correct Orchestration of Federated Learning Algorithms (by UNS): formal verification 
of correctness of centralised and decentralised FL algorithms

● Correct Hierarchical Namespaces (by UNS): a hierarchical namespaces model 
encouraging the organised and efficient distribution of resources. 

Additionally, this document includes any modifications to the properties identified in D4.1. 
The modified and new properties are detailed below for each tool.

● WorkflowEditor and Actyx Middleware: deadlock-freedom, resilience through 
replication, liveness, eventual consensus, protocol conformance, perfect availability, 
fault tolerance, and termination of failure. 

● Compositional Verification of Swarm Protocols: compositional verification. 
● Fair Join Pattern Matching: mailbox communication safety and fair join pattern 

matching. 
● P4R-Type: safety w.r.t. network configurations,  deadlock-freedom, and liveness. 
● COTS: test correctness and fault detection soundness. 
● JaTyC: memory-safety, protocol compliance, and protocol completion.

1.2 RESULTS SUMMARY

Our key contributions are: 

● We specify the analysis tools developed for the properties outlined in D3.1, spanning 
T4.1–T4.4.

● We outline any revisions made to identified properties in D3.1, as well as newly 
introduced properties, related to each tool.

Overall, we consolidate various analysis tools developed for the TaRDIS models to ensure 
the satisfaction of desirable properties such as security, data integrity, AI coordination, and 
communication. These tools will be integrated as a toolset into the TaRDIS APIs, IDE, and AI 
optimisation framework.
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1.3 DELIVERABLE STRUCTURE

The report starts by presenting comprehensive specifications for the tools developed to 
analyse the desirable properties outlined in D4.1 in Section 2. Subsequently, Section 3 
specifies any modifications made to these properties and introduces newly identified ones for 
each tool.

Page 10 of 48 © 2023-2025 TaRDIS Consortium
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2. TOOLSET

This section provides an in-depth exploration of tools designed to analyse communication 
behaviours, enforce data convergence and integrity requirements, verify security and privacy, 
and orchestrate federated learning across heterogeneous swarms.

2.1 COMMUNICATION BEHAVIOURS ANALYSIS

2.1.1  WorkflowEditor & Actyx Middleware (Actyx)

The aim of this work is to formally describe and analyse workflows between swarm 
participants using the Actyx middleware. This peer-to-peer system lives completely in the 
realm of edge computing and allows processes distributed across a swarm to reliably send 
each other information updates in the form of durable event streams. Another important 
feature of this middleware is that it uses a logical clock mechanism to assign each event a 
timestamp that captures its causal dependencies with minimal effort and allows a total order 
to be established between events that does not require any coordination. In summary, Actyx 
aims for full availability, which implies that it tolerates weak consistency (it achieves eventual 
consensus, a notion known from blockchains like Bitcoin).

While application developers are free to design any interaction or workflow they desire, not 
all such workflows achieve eventual consensus when the access of participants to some 
information (i.e. certain event types) is restricted. Eventual consensus is a very useful 
property to have in a distributed system: its absence means that different swarm participants 
may have diverging world views without ever reconciling them. Given that it is extremely 
challenging to program a system with unbounded inconsistency, we deem eventual 
consensus the least we need to offer in order to be successful — most programmers today 
routinely use the much stronger notion of strict consensus, which is built into all traditional 
relational databases. The basic problem we attacked is thus how to retain eventual 
consensus in a swarm where not every participant is allowed to know everything.

For the full details we refer you to the ECOOP paper [1]. The main idea is to describe a 
workflow as a state machine, starting out in its initial state and proceeding to new states via 
transitions that are each labelled by a command name, the participant role that is allowed to 
invoke the command, and the sequence of event types that are emitted by invoking the 
command. This representation lends itself well to a diagrammatic visual representation, an 
aspect that has been used by Actyx with its customers to great success. One important 
aspect is that each role is assumed to be present within an execution of the workflow with an 
arbitrary positive number of replicas; in other words, the computational model accommodates 
the use of redundancy in real-world applications (such as in factories) to achieve operational 
resilience in the face of hardware and software failures.

Once the workflow is designed from a global view as a swarm protocol, it is projected into 
locally executable state machines, one for each participating role. These machines differ not 
only in the commands offered for invocation in each state, they may also lack the input of 
some of the event types that are present in the global swarm protocol — this filtering 
mechanism is called the role’s subscription. Each swarm participant that partakes in the 
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workflow picks one such role, instantiates the corresponding machine, and uses this as a 
device to interpret the state of the workflow according to the event logs that are locally 
available. These logs contain not only the locally emitted events but also the events emitted 
on other swarm devices and disseminated across the swarm using the Actyx middleware’s 
peer-to-peer protocols. Using the total event order we know that eventually the same log 
sequence will be available to everyone, filtered locally by each role’s subscription.

It is easily visible that not all participants may come to the same overall conclusion — e.g. 
regarding whether the workflow is still running or has completed — if too many events are 
filtered out. We identified the following three well-formedness conditions to counter this issue:

1. causal consistency requires that a role must subscribe to at least one of the event 
types emitted by each of the commands it is allowed to invoke, and that it must 
subscribe to at least one event type emitted by the preceding command in the swarm 
protocol; these constraints ensure that the local machine awaits its turn and then 
moves on, preventing infinite command invocation

2. choice determinacy requires that a role that remains active later in the protocol must 
subscribe to the first event type emitted after a choice (i.e. a branch in the diagram), 
so as to follow along the general progress of the execution

3. confusion freeness requires that an event type that immediately follows a choice 
cannot appear elsewhere in the protocol; otherwise that other appearance may 
accidentally be confused with making a choice, leading some roles astray in their 
understanding of the general progress of the execution

While these constraints are sufficient to establish eventual consensus, they are not 
necessary. In other words, the constraints are stricter than they need to be; the reason is that 
we have not yet been able to prove the effectiveness of weaker constraints. We are working 
on such improvements and on the corresponding proofs to give protocol designers more 
flexibility and in particular to allow more information to be hidden from participants while still 
keeping their understanding of workflow progress intact.

Another angle that we’re following is that workflows in factories often turn out to require one 
specific machine to perform some of the protocol steps: for example, once the material is on 
a logistics robot, only that particular robot can deliver the material to its destination. Picking 
out a single instance of a role and restricting some protocol transitions to that instance will 
allow designers to more precisely model system behaviour and lead to more faithful 
implementation of the local agents. On the other hand, adding such constraints makes the 
system susceptible to the failure of exactly that machine. Hence we are also considering the 
addition of timeouts and rollbacks whenever such restricted commands are being used. This 
has also been corroborated by Actyx customers who would like to gain support from an 
analysis tool to ensure that compensating actions are properly employed in all failure 
cases — not only in those caused by Actyx’s weak consensus model but also those caused 
by real-world problems.

Current state and next steps: The underlying Actyx middleware is an existing and 
commercially used product that will receive some updates and new features based on WP6 
work that is unrelated to the analytic capabilities of the WorkflowEditor. The well-formedness 
checking (machine-check) of declared workflows for swarm protocols (machine-runner) is 
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implemented and commercially used based on the ECOOP paper [1]. These will be 
enhanced as described in the above two paragraphs within the second half of the TaRDIS 
project. The visual editor does not yet exist and will be implemented later this year.

2.1.2 Compositional Verification of Swarm Protocols (DTU and Actyx)

DTU is currently working (in collaboration with Actyx) on the compositional verification of 
swarm protocols — i.e., given two swarm protocols G and G’ which are individually 
well-formed and deadlock-free, determine whether their parallel composition G|G’ is also a 
well-formed and deadlock-free swarm protocol, without analysing the whole combined swarm 
protocol “from scratch” - and without requiring changes to the actual implementations of the 
swarm participants projected from G and G’. More specifically, DTU is researching sufficient 
conditions that, given two correct swarm protocols G an G’, ensure the correctness of their 
composition G|G’; it is also researching the necessary conditions for correct composition. 
This would allow developers to maintain a library of well-formed swarm protocols and 
participant implementations, that can then be combined without introducing deadlocks or 
communication errors.

This research work will be implemented as a series verification routines that will be integrated 
in the swarm design tool currently being implemented by Actyx (see previous section 2.1.1).

2.1.3 Fair Join Pattern Matching (DTU)

Join patterns provide a promising approach to the development of concurrent and distributed 
applications where different components may need to interact using complex message 
combinations and conditions. A join pattern (with conditional guard) is reminiscent of a clause 
in a typical pattern matching construct: it has the form “J if γ ⇒ P” — where J is a message 
pattern describing a combination of incoming messages and binding zero or more variables, 
and γ is a guard, i.e., a boolean expression that may use the variables bound in J. A program 
using join patterns can wait until a desired combination of messages arrives (in any order); 
when some of the incoming messages are matched by the message pattern J and (their 
payloads) satisfy the guard γ, the process P is executed.

The theoretical foundation of join patterns was introduced in the join calculus [2], and 
subsequent research extended the approach in multiple directions. DTU is developing a 
novel specification of fair and deterministic join pattern matching for actor-based systems, 
i.e., a formal definition of how an actor should perform join pattern matching to select 
messages out of its mailbox, guaranteeing that older messages are always eventually 
consumed if they can be matched. DTU has also developed a direct implementation of the 
fair matching specification, and a novel stateful, tree-based join pattern matching algorithm 
that is proven correct w.r.t. the fair matching specification above [3]. Such algorithms have 
different performance characteristics, and DTU is evaluating their efficiency and suitability in 
various settings. Both implementations are research prototypes, and will be further refined 
and optimised during the rest of the project.

The two implementations above will be contributed (as a ready-to-use library for the Scala 3 
programming language) to the TaRDIS toolbox: by construction, any program using the 
provided join pattern libraries will enjoy the fair and deterministic join pattern matching 
guarantees. The first intended use of such libraries in the TaRDIS toolbox will be a monitoring 
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program for the Actyx use case: the program will observe the flow of messages describing 
ongoing activity on a factory shop floor, and match some combinations of messages to 
maintain statistics and report quality of service (QoS) issues. The program is outlined in 
Figure 1 below.

Figure 1:  Sample program using DTU's actor library with join pattern matching.

2.1.4 Verified APIs for Software-Defined Networking (DTU)

Many modern network switches and routers provide Software-Defined Networking (SDN) 
capabilities, which allow for writing control programs that can define and alter the network’s 
packet processing rules. The de facto standard for programming SDN devices is the P4 
language. However, the flexibility and power of P4 (and SDN more generally) gives rise to 
important risks: errors in SDN control programs can compromise the availability of networks, 
leaving them in a non-functional state.

For this reason, DTU has developed P4R-Type [4], a novel verified P4Runtime API for Scala 
3 that performs static checks for programs that control P4-based software-defined networks. 
If a control program using P4R-Type can be compiled, then all its operations that may modify 
the P4 network configuration are guaranteed to be compliant with the network specification 
(i.e. all updates will respect the packet processing tables, allowed  actions, and action 
parameters).
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Figure 2 shows a sample control program written in Scala 3 using P4R-Type. The program 
connects to two different P4-enabled network routers with different configurations, by 
instantiating the connections s1 and s2. Then, the program attempts to insert new packet 
processing rules in both routers. The first insert operation is correct (no errors are reported), 
whereas the second one is wrong: the red highlight on the rule “NoAction” means that the 
rule is not valid for the selected packet processing table. The error is caught at compile-time 
and reported via an IDE (in this case, Visual Studio Code).

Figure 2: Sample P4 control program using the P4RType library.

P4R-Type is currently being investigated as a possible component of the TaRDIS toolbox. A 
possible application is to regulate swarm membership at the network level, using SDN: the 
network may drop all packets sent by new swarm members, until they authenticate 
themselves; the authentication packets, in turn, would be forwarded to a trusted service 
(written using P4R-Type) that would update the network configuration only after a successful 
authentication. By using P4R-Type, the authentication service is guaranteed to respect the 
network configuration.

2.1.5 Model-Based Testing of Swarm Applications (DTU)

The development of a TaRDIS internal application (outlined in Deliverable D3.1) is based on 
the specification of a global swarm protocol, which is then projected into local workflows, 
which in turn act as “blueprints” for individual swarm components. This specification-based 
approach provides a promising starting point for the study of model-based testing of swarm 
applications.

Generally speaking, model-based testing [5] uses a model to automatically generate 
randomised test cases conforming to the model itself; then, it uses suitable tooling to observe 
whether the component-under-test behaves as expected by the test model. In the context of 
TaRDIS, the test model could be based on either a swarm protocol specification, or on a 
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projected workflow; then, a series of randomised test cases could emit and read events 
according to the model (e.g. by simulating one or more components in the swarm), checking 
whether the component-under-test reacts to its inputs by emitting the type of events expected 
by the model. Model-based testing can provide a useful complement to static verification: if 
some component of a swarm cannot be statically verified (e.g. because its implementation 
cannot be inspected), then the behaviour of the component could be checked by performing 
randomised model-based tests.

DTU has recently studied and developed a novel methodology for the model-based testing of 
web applications, and a tool (called COTS) based on such a methodology [6]. In this line of 
work, the system-under-test (SUT) provides a RESTful [7] API, and the test models are 
session types augmented with assertions about the data being received and transmitted by 
the SUT. For instance, a COTS test model can express that “if a warehouse item with id X is 
created, and then deleted, then the id X must not appear in the result of subsequent queries”.

Figure 3 shows a simple example of the COTS test model (called S_shop) for an e-shop 
application. The model says that the e-shop protocol expects the client to send an ‘addCust’ 
request (to add a customer to the e-shop), and then await for a response ‘C201’ (denoting 
success) carrying the id of the newly-added customer (‘custId’). Then, the client can 
recursively add information about the credit card or address of the newly-added customer, 
retrieve the customer information, or delete the customer and terminate. The test model 
contains assertions like ‘checkCustomer’ (line 9) to ensure the customer data retrieved from 
the e-shop (c2) matches the data generated at the beginning of the interaction (c1 on line 1). 
COTS can use this test model to generate random tests that simulate e-shop clients 
interacting with an e-shop SUT; if the SUT does not respond according to the test model 
(e.g., if it crashes or sends back invalid customer data), the fault is immediately detected and 
reported.

Figure 3: Sample test model for the COTS tool.

DTU is evaluating whether COTS could be the basis for a similar tool for model-based testing 
(to be included in the TaRDIS toolkit) that communicates through the TaRDIS toolkit, and 
uses as test model a swarm protocol or workflow, possibly augmented with assertions about 
the data being transmitted/received.

Page 16 of 48 © 2023-2025 TaRDIS Consortium



TaRDIS | D4.1: Report on the desirable properties for analysis

2.1.6 Scribble (UOXF)

Scribble is a language to describe application-level protocols among communicating 
systems. Building on the theory of Multiparty Session Types (MPST) [8], Scribble tackles the 
challenges of adapting and implementing session types to meet real-world usage 
requirements. Scribble and Swarm protocols serve different roles in managing distributed 
systems. Scribble is used to specify and verify communication patterns between software 
components, ensuring that messages are exchanged correctly between different parts of a 
system. On the other hand, Swarm protocols focus on managing containerised applications 
by defining how containers are deployed, networked, and maintained, ensuring the 
applications run smoothly and efficiently. While Scribble ensures correct communication, 
Swarm protocols ensure efficient operation and management of containerised applications.

Figure 4: Top-down MPST methodology. 

Global Protocol Specification. Following the top-down MPST design methodology, as 
illustrated in Figure 4, the Scribble framework starts from specifying a global protocol, a 
description of the full protocol of interaction in a multiparty communication session from a 
neutral perspective, i.e. all potential and necessary message exchanges between all 
participants from the start of a session until completion. 

Local Protocol Projection. Subsequently, Scribble syntactically projects a valid source 
global protocol to a local protocol for each role. Projection essentially extracts the parts of the 
global protocol in which the target role is directly involved, giving the localised behaviour 
required of each role in order for a session to execute correctly as a whole. A further 
validation step is performed on each projection of the source protocol for role-sensitive 
properties, such as reachability of all relevant protocol states per role. The validation also 
restricts recursive protocols to tail recursion. A valid global protocol with valid projections for 
each role is a well-formed protocol. 

Endpoint FSM. Building on a formal correspondence between syntactic local MPST and 
communicating FSMs, Scribble can transform the projection of any well-formed protocol for 
each of its roles to an equivalent Endpoint FSM (EFSM). The nodes in an EFSM delineate 
the state space of the endpoint in the protocol, and the transitions the explicit I/O actions 
between protocol states. The local type of an endpoint can be then used in the code 
generation process, to generate APIs that are correct by construction. 

Consider the following scenario, as shown in Figure 5, where an online travel agency 
operates a “travelling with a friend” scheme. It starts when a traveller (B) suggests a trip 
destination to their friend (A), who then queries the travel agency (S) if the trip is available. If 
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so, the friends discuss among themselves whether to accept or reject the quoted price. If the 
trip was unavailable, the friends start again with a new destination. 

Figure 5: Travel agency protocol as a sequence diagram. 

The travel agency protocol is specified in Scribble as shown in Figure 6: 

Figure 6: Travel agency protocol in Scribble. 

while the EFSM for role A is demonstrated in Figure 7: 

Figure 7: EFSM for TravelAgency role A. 

As further work, NuScr is a toolchain for multiparty protocols, designed to handle protocols 
written in the Scribble language. NuScr implements the core part of the Scribble language, 
with various extensions to the original MPST. This allows protocols written in the Scribble 
description language to be accepted by NuScr and then converted into an MPST global type. 
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From a global type, NuScr can project onto a specified participant to obtain their local type 
and subsequently generate the corresponding communication finite state machine (CFSM), 
which can be used for API generation. Additionally, NuScr can generate code for 
implementing the participant in various programming languages from their local type or 
CFSM. NuScr can be used either as a standalone command-line application or as an OCaml 
library for manipulating multiparty protocols. NuScr also features a web interface, allowing 
users to perform quick prototyping directly in their browsers without the need for installation. 
See Figure 8 for a screenshot illustrating an Adder Protocol. 

Figure 8: Screenshot of the NuScr web interface, showing an adder protocol.

In the context of TaRDIS, Scribble, NuScr, and their extensions can be used to specify, verify, 
and validate communication protocols. Here is a specific application: to support the 
configuration of application components at runtime, which is a primary focus of T6.3 in 
TaRDIS, T4.4 introduces a model for hierarchical namespaces that promotes the proper 
organisation and redistribution of resources [9]. All protocols presented for this model are 
validated using the toolchain [10], an extension of Scribble with explicit connection actions to 
support protocols with optional and dynamic participants.

2.1.7 Java Typestate Checker (NOVA)

The Java Typestate Checker (JaTyC) tool statically verifies that, by attaching a protocol 
declaration to each class in the code, the developer gets:

- memory-safety: no null-pointer exceptions nor memory leaks;
- protocol compliance: client code executes respecting each object correct usage;
- protocol completion: all objects used until the end of their protocols (and released).

When a Java program runs: (i) sequences of method calls follow the object's protocols; (ii) 
objects' protocols are completed; (iii) subclasses' instances respect the protocol of their 
superclasses.
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With this, JaTyC assists developers in getting their object usage protocols correct, being able 
to avoid some crashes before the code is executed. This is crucial for application soundness 
in general and for cybersecurity in particular, since crashes may give unintended access to a 
machine. For example, in some places, it is a common occurrence that ATMs show the 
operating system’s desktop interface if the bank’s application crashes. Another application to 
cybersecurity is to analyse systems where security clearance levels are needed in order to 
execute operations: this can be enforced in JaTyC by e.g. requiring that each operation’s 
execution is preceded by the successful verification of the operation’s security clearance.

Concretely, JaTyC helps developing sound code, providing means to specify and guarantee 
correct API behaviour, preventing at the same time critical code vulnerabilities like CWE-306 
(Missing Authentication for Critical Function),  CWE-754 (Improper Check for Unusual or 
Exceptional Conditions), or CWE-841 (Improper Enforcement of Behavioral Workflow).

To illustrate, consider the snippet of code in Figure 9, where the class File is supposed to be 
used as described by the finite-state machine (aka typestate) below that declares available 
transitions from a state are external choices (the circles) and internal choices on possible 
method results (the diamonds):

File f = new File(); System.out.println(f.read());

Figure 9: Snippet of JaTyC code. 

With JaTyC installed as an expansion of their IDE, the developer that wrote the code above 
would get either when typing or at compile time the message ‘error: Cannot call [read] on 
State{File, Init}’. The static typechecker detects the error: one must open before read.

If the developer uses the file with the code

switch (f.open()) {

   case OK:

     System.out.println(f.read());

     break;
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   case ERROR:

     break;

}

the error now is ’[f] did not complete its protocol’. In case OK, after reading the file one must 
close it.

Resource leakage is also detected: the method close below needs to close the file.

public class LineReader {

     // error: [this.file] did not complete its protocol

     private @Nullable FileReader file;

     private int curr;

     public Status open(String filename) {

       /* ... */

       file = new FileReader(filename);

       curr = file.read(); /* ... */

     }

     public String read() {

       /* ... */ curr = file.read(); /* ... */

     }

     public boolean eof() { return curr == -1; }

     public void close() {}

   }

Even in the presence of polymorphic code, the guarantees stay valid: JaTyC supports 
inheritance (paper to appear in ECOOP’24). Consider a class Bulb with the following 
typestate

typestate Bulb {

  DISCONN = {

    boolean connect(): <true: CONN, false: DISCONN>,

    drop: end

  }

  CONN = {

    void disconnect(): DISCONN,

    void setBrightness(int): CONN

  }

}

and a subclass FunnyBulb ruled by

typestate FunnyBulb {

  DISCONN = {

    boolean connect(): <true: STD_CONN, false: DISCONN>,
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    drop: end

  }

  STD_CONN = {

    void disconnect(): DISCONN,

    void setBrightness(int): STD_CONN,

    Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

    void setColor(String): STD_CONN

  }

  RND_CONN = {

    void disconnect(): DISCONN,

    void setBrightness(int): RND_CONN,

    Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

    void randomColor(): RND_CONN

  }

}

Up/down casting is supported. The code below is well-typed.

public class ClientCode {

  public static void example() {

    FunnyBulb f = new FunnyBulb(); // DISCONN

    while (!f.connect()) {} // STD_CONN

    f.switchMode(); // STD_CONN | RND_CONN

    setBrightness(f);

  }

  private static void setBrightness(@Requires("CONN") Bulb b) {

    if (b instanceof FunnyBulb && ((FunnyBulb) b).switchMode() == Mode.RND) {

      ((FunnyBulb) b).randomColor(); // RND_CONN

    }

    b.setBrightness(10); // CONN

    b.disconnect(); // end

  }

}

The tool reached TRL 5 (it is thus ready to be used and will be added to the TaRDIS toolbox) 
and received the Availability and Functional Badges at ECOOP’24. In the repository one 
finds several examples and case studies used to validate the approach. In the context of 
TaRDIS, the tool can be used to specify, verify, and validate any application developed in 
Java that is API based.
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2.2 DATA CONVERGENCE AND INTEGRITY

Distributed applications (widely common these days) need to replicate data to make it 
available. The problem is: how to keep replicated data (eventually) consistent in a scenario 
where the communication topology is dynamic due to connectivity issues, devices (inherently 
heterogeneous) come and go at any moment?

The correctness of an application results from the correctness of its operations Local views 
on data should not diverge in an irreconcilable way, so, a certain degree of consistency is 
necessary. Strong consistency in such a dynamic scenario is unattainable. Depending on the 
nature of the swarm system, what makes sense is to ask for either eventual or causal 
consistency.

Eventually, possible conflicts must be solved; how? set specific moments for each replica to 
do so and coordinate operations only if correctness cannot be guaranteed otherwise. In the 
context of TaRDIS, we have available two deductive approaches to develop correct 
applications dealing with replicated data.

In short, conflict resolution mechanisms should guarantee (at least some) of these 
requirements: (1) safety in sequential execution; (2) (causal and/or eventually) convergence; 
and (3) the precondition of each operation should be stable under the effect of any other 
concurrent operation. A typical example is a shared set:: inserts can always happen, as sets 
do not have repeated elements (although the local view of the set may be outdated), but 
removals require causal and/or eventual "coordination" (if one cannot remove a non-existing 
value, as in some contexts, this can block or crash the device).

2.2.1 VeriFx (NOVA) 

This tool [11] provides libraries for implementing and verifying Conflict-free Replicated Data 
Types (CRDTs) and operational transformation functions. These libraries implement the 
general execution model of those approaches and define their correctness properties. RDTs 
verified with VeriFx can be transpiled to mainstream languages (currently Scala and 
JavaScript).

2.2.2 Ant (NOVA) 

The tool [12] provides  an automatic approach to determine operations that can safely (from 
the data integrity and consistency point of view) commute, allowing to execute first 
operations not requiring inter-replica coordination. We develop a language-based static 
analysis to extract information at compile-time that can be used by the run-time support to 
decide on call anticipations of operations in replicas without compromising consistency.  We 
illustrate the formal analysis on several paradigmatic examples and briefly present a 
proof-of-concept implementation in Java.

Consider that:

Locally permissible ops are immediately executed

Strongly consistent ops require coordination among replicated sites

An e-bank application could behave as in Figure 10, using our static analysis and runtime 
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support.

Figure 10: An e-bank application of Ant. 

To be usable by third-party developers, the tool needs further work that we will pursue in the 
coming period. In the context of TaRDIS, a possible adaptation is to consider alternative 
policies to strong consistency, as the approach can be made parametric.

2.2.3 AtomiS (NOVA) 

To ensure data integrity in concurrent applications, we developed AtomiS [13], a new DCCC 
approach that requires only qualifying types of parameters and return values in interface 
definitions, and of fields in class definitions. The latter may also be abstracted away in type 
parameters, rendering class implementations virtually annotation-free. From this high-level 
specification, a static analysis infers the atomicity constraints that are local to each method, 
considering valid only the method variants that are consistent with the specification, and 
performs code generation for all valid variants of each method. The generated code is then 
the target for automatic injection of concurrency control primitives that are responsible for 
ensuring the absence of data-races, atomicity-violations, and deadlocks.

Basically, the idea is:

- mark resources which need to be accessed in mutual exclusion;
- a type-checking and inference system ensures race freedom.

Figure 11 describes the approach.

Figure 11: AtomiS approach. 

We illustrate how the code looks like in Figure 12, with a simple yet widely used piece of 
Java code: a concurrent list. The annotations identify the resources to be atomically 
accessed. The static analysis checks the soundness of the code, produces automatically 
variants of code and new annotations to guide the generation of concurrency control.
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Figure 12: Generated code of AtomiS. 

To be usable by third-party developers, the tool needs further work that we will pursue in the 
coming period. In the context of TaRDIS, the tool can be used whenever developing 
concurrent applications with Java. Moreover, the can be made parametric on the resource 
control policy, and thus generalised to other data qualifications.

2.3 SECURITY VERIFICATION

2.3.1 Channel Information Flow (DTU and NOVA)

Information flow control is a language-based technique anchored on the property of 
noninterference for detecting and preventing confidentiality breaches in target systems 
through the systematic labelling and tracking of information. There are multiple models for 
information flow control, with lattice-based models being the most common. These models 
allow for the hierarchic compartmentalisation of information according to the security lattice, a 
finite, lower and upper-bounded, partially ordered set of security levels. Information flow 
policies are detailed in specifications defining the secrecy (security level) of a system's data 
items and information receptacles (entities holding/receiving information like variables and 
communication channels). The enforcement of information flow policies boils down to 
preventing secret information from going to less secret receptacles and is achieved at 
runtime or compile time through mechanisms such as information flow monitors or type 
systems. The base model enjoys many improvements, such as value-dependent security 
levels, which enhance the flexibility of the lattice and allow for finer-grained security policies.

2.3.1.1 DCR Choreographies with IFC

In software development, handling data confidentiality in systems implementing complex 
business processes is challenging, even more so when considering distributed systems with 
multiple interacting entities. Mainstream approaches to defining business processes do not 
adequately address confidentiality properties, leaving room for potential information leaks.

We focus on data and time-aware declarative models for specifying interactions in business 
processes [14]. We extend dynamic condition response (DCR) graphs, capturing 
choreographies with data and time, developing a mechanism based on progress-sensitive, 
time-sensitive noninterference to prevent side channels due to the early or late execution of 
events, thus ensuring data confidentiality throughout the process.

Consider the DCR choreography depicted in Figure 13, modelling a fraction of a purchase 
process where the buyer asks multiple sellers for quotes on a product and selects the best 
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offer (at most one quote) among the (possibly empty) set of available quotes. The buyer must 
always register the outcome of the process in its ledger: no quotes received, no quotes 
selected, or the chosen quote. Also, sellers must not know about each other's offers.

Each node represents an event, a stateful entity whose state expresses if it is 
included/excluded, pending/not pending, has executed, and its value and time steps since its 
last execution (if previously executed). Event execution may entail the transmission of 
messages between a sender (on top) and one or more receivers (on bottom). On the graph, 
solid-line events are included, while dashed-line events are excluded, and events with a "!" 
on the top left corner are pending events which have to execute for the process to stabilise.

Figure 13:  DCR choreography, modelling a fraction of purchase process. 

The edges of a DCR graph represent control-flow relations and specify the effect that the 
execution of an event has on the state and enabledness (possibility of execution) of another. 
For instance, green (red) arrows define inclusion (exclusion) relations and lead to the 
inclusion (exclusion) of the event on the  "+" ("%") end of the edge; the yellow arrows denote 
condition relations and define that the execution of events on the headless end as a 
requirement for the execution of events on the "❯⬤" end of the edge; finally, blue arrows 
define response relations and make the events on the "❯" end of the edge pending execution 
whe events on the "⬤" end of the edge execute. Condition and response relations can be 
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associated with time, thus defining a delay and a deadline, respectively. In the example, once 
the "Request Quotes" event executes, the timed condition relation prevents "Timeout" from 
executing before seven days have passed, and the response relation forces "Timeout" to 
execute within a seven-day window; "Timeout" executes in exactly seven days.

We refer the reader to other works [15] for a more comprehensive description of DCR graphs 
semantics and these relations and others not mentioned in this document.

Given the example, we aim to detect confidentiality breaches leading to the unintentional 
disclosure of sensitive information to unauthorised entities. To apply information flow control, 
we start by defining the security lattice. Considering the requirements of the problem at hand, 
we opt for a powerset lattice of value-dependent security labels, which allows both for precise 
security policies and information sharing. The security lattice is depicted in Figure 14, where 
the labels S(s0) and B(b0) define the security compartments seller s0 and buyer b0.

Figure 14: Security lattice of purchase process. 

Depicted in Figure 15 is the security annotated DCR graph. The most strict label one can 
apply to an event is the set containing the security level of each event participant; the 
greatest lower bound. An event should not be above the security clearance of any of its 
participants.

We define a safety property over security annotated DCR graphs sufficient to ensure 
time-sensitive, termination-sensitive noninterference. Simply put, our safety property states 
that secret events cannot influence public events. Therefore, relations where the left-hand 
side event has a security level not lower than the security level of the right-hand side event 
are deemed illegal. Thus, DCR graphs exhibiting this property do not leak information, and 
given that events are both data and computation, this is a sufficient condition to prevent both 
explicit and implicit information leaks.
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Figure 15: Security annotated DCR graph of purchase process. 

A quick glance over the labelled DCR graph above reveals that a few relations between 
events go against our safety property. For instance, the inclusion relations from "Quote" 
influence the enabledness of "Reject" events, and "Select Quote" interferes with the less 
secret events "Reject" and "Accept" through the exclusion relations, allowing for a seller to 
know who made the accepted quote. By detecting the relations not conforming to our 
statically verifiable safety property, we can correct the process to one without leaks, such as 
the one shown in Figure 16.
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Figure 16: Security annotated DCR graph of purchase process without leaks. 

We replace the single selection event followed by acceptance and rejection events with 
individual pairs of "Accept" and "Reject" for each quote. This graph leaves some 
requirements unfulfilled. Namely, a seller can accept multiple quotes. This results from the 
strictness of our progress-sensitive noninterference-ensuring property, which can be 
overcome through a declassification mechanism or a less strict form of noninterference.

To transpose information flow control from DCR graphs to choreographies, we define a 
well-formedness property for choreographies that ensures that as long as the underlying 
graph is safe (does not have any relation whose left-hand side event has a label not lower 
than the label of the right-hand side event), the choreography and its endpoint projection 
exhibit time-sensitive, progress-sensitive noninterference. The well-formedness property is 
quite reasonable, only requiring that the label of an event is lower or equal to the security 
clearance of any of its participants.

In our analysis of information flow control in DCR choreographies, we base noninterference 
on the indistinguishability of states during normal system execution. That is to say, without 
explicit attacks on communications routes or data. Our results only ensure that 
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choreographies are well formed and the regular users are not exposed to erroneous 
behaviours embedded in the processes.

To broaden the scope of the analysis, DCR choreographies with IFC, which assumes trusted 
communication, need to be extended with support for IFC using public channels. We still 
assume that information leaks due to the analysis of message routing are admissible. Next, 
we present an approach to use channel information flow as sound support for DCR 
choreographies over public networks by means of encryption operations that help tunnel data 
between trusted contexts via insecure media. 

2.3.1.2 Information Flow Channel

Traditionally, information flow analyses are most concerned with what can happen in a 
system that develops in good-faith adherence to specification. For example, one can check 
that the code executed internally in one of the system’s machines does not violate the 
security policy. This usually ignores a central attack vector: that of an intruder eavesdropping 
or modifying messages sent over a public network. If the communication primitives used by 
the programmer are not sufficiently secure or not used in the right way, such an intruder 
might be able to derive confidential information from patterns in the network traffic or by 
observing the behaviour of machines when sent unexpected messages by the intruder. We 
introduce the IFChannel framework for extending an information flow analysis to systems 
with communication over an untrusted network in a secure way. The main contribution is 
theoretical: we are proving that if the communication is performed using appropriate 
cryptography then the information flow analysis provides the very strong privacy guarantee of 
static equivalence (basically, that the intruder learns nothing about confidential information). 
This proof then tells us which requirements on the implementation of channels are sufficient 
for them to be included in the TaRDIS information flow tool.

We first demonstrate some of the problems which may arise when combining an information 
flow analysis and communication over a public network. Consider the following lines of code:

If bid or threshold is of any other label than ⊥ (i.e. public) this program will be illegal since an 
intruder could infer information about the two variables from the observed network traffic. 
Note that this is the case even if the prosumerChannel completely hides the content of 
messages. To fix this, the program could be restructured to the following version which does 
hide the truth-value of bid ≥ threshold. 
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Conversely, we might have situations where the traffic pattern itself reveals nothing, while the 
content of messages does. Consider the following:

Even if the intruder does not have the keys necessary to decrypt the message, they will be 
able to see whether the secret value is greater than 50 by checking if the two sent messages 
are the same or not.

Another attack vector is the intruder sending a message out of context to make a machine 
reveal something confidential. Consider the following two programs running on different 
machines:

Seller:

Announcer:

The idea is that the first machine is starting an auction and the second machine is 
responsible for announcing the (public) id of the seller. By chance we might have a third 
machine running the following program:

Bidder:
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This introduces an attack on the secret price, since an intruder might capture the message 
from the bidder and send it to the announcer. The announcer will then believe that the secret 
price is a seller id and announce it to the public. 

These examples demonstrate that we need the channels in the information flow analysis to 
be called only in permitted contexts, introduce randomness, and use formats to avoid the 
acceptance of out-of-context messages.

We then also want to prove that these requirements are sufficient. Soundness is proven with 
regards to static equivalence [16], which has traditionally been used to show privacy 
preservation of cryptographic protocols. 

In the following, we briefly outline the soundness proof.

We represent a system state (from the perspective of a single program) as a mapping from 
program variables to terms and a list of terms representing the messages sent to the 
network. Figure 17 shows a program and potential end-state after executing the program:

                   

Figure 17: Potential end-state after execution of program.

We then allow the intruder to construct recipes over the information they are allowed to 
access in such states. A recipe consists of functions the intruder knows and references to 
variables and network messages. An example is the following (given that key1 and key2 are 
below the intruder’s paygrade):

A recipe, r, can be evaluated over a state, written S(r), by replacing the references with the 
values stored in the state. The evaluation of a recipe only succeeds if there are only 
references to information that the intruder is permitted to access (we assume the intruder can 
be a participant in the system with a given security level).
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We can then define that two states, S and T, are statically equivalent if for any two recipes, r1 
and r2, we have S(r1) = S(r2) if and only if T(r1) = T(r2). 

The soundness proof then consists in showing that for a well-typed program and two 
permissible starting states (permissible means, among other things, that they are statically 
equivalent), we have that if the program is executed once from each starting state we will end 
up in two statically equivalent states. The implication of this is that there is no experiment an 
intruder can do to figure out which of the two states they are in. In other words, they have not 
obtained any knowledge about information above their security level.

We have a full formalisation of this result in the proof assistant Isabelle/HOL. 

2.3.2 PSPSP (DTU)

The PSPSP tool [23, 24] was developed by DTU before the TaRDIS project. It is based on a 
protocol security framework we have developed in the proof assistant Isabelle/HOL. At the 
basic level, protocols are modelled in this framework as a set of traces that consist of honest 
agents sending and receiving messages on a public network, as well as changing their local 
state. The network is completely controlled by an intruder, who cannot break the 
cryptography (Dolev-Yao style intruder model), but who may have their own cryptographic 
materials like keys and passwords to be able to engage in the protocol under their real name 
like a normal participant. We can define certain attack events in the protocol and define 
security as the impossibility to reach such an event.

The PSPSP tool has an input language called Trac which is short for "transactions". Each 
transaction is an atomic action of an honest agent, consisting of receiving some input 
messages, performing checks w.r.t. these inputs and the local state of the agent, then 
changing the state and sending outgoing messages. This is especially designed to model 
devices like a TPM (Trusted Platform Module) that offers an API to the outside (incoming 
messages as receiving a command, and outgoing messages as an answer).

In general, Isabelle/HOL is an interactive proof assistant, i.e., a human tries to prove a claim 
by breaking it down into smaller logical steps that are trivial or can be automatically proved 
by some heuristics. PSPSP in contrast can automatically verify a given protocol using 
abstract interpretation techniques. The idea is that agent memory is organised as sets of 
messages, e.g., a server may maintain a family valid(A) of sets for every agent A that contain 
the valid public keys of A. These sets can be changed by the transactions (e.g., new keys 
can be registered, and old keys discarded). The abstract interpretation abstracts by set 
membership: all data that belongs to the same sets is not distinguished. If the families of sets 
are finite, this will lead to a finite fixed point of abstract messages that the intruder can ever 
know. PSPSP computes this fixed point and then "convinces" Isabelle that everything that 
can happen in the concrete protocol is covered by the abstract fixed point. If a special symbol 
"attack" does not occur in the abstract fixed point, then also not in any reachable concrete 
state, and thus the security of the protocol is proved.

What can potentially go wrong is that the fixed point contains the symbol "attack". Then this 
either represents an actual way to attack the concrete protocol (and the designer has to fix 
the security flaws and try again) or it is introduced by the over-approximation inherent in the 
abstract interpretation. The latter means that the protocol may be fine, but the abstraction is 
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too coarse to prove it; in this case the modeller needs to review the specification to find 
maybe a different setup of the sets of messages used by the honest agents that leads to a 
finer abstraction. Note that any potential bug in the PSPSP tool does not bear the risk of 
accepting a flawed protocol: in the worst case, such a bug would lead to a failure to 
"convince'' Isabelle.

Utilisation of PSPSP in TaRDIS

The normal TaRDIS programmer should not be involved with cryptography and cryptographic 
protocols. Rather the TaRDIS API offers functions for the setup and use of channels, even 
more abstract in the concept of events as basically sending (generating events) and 
receiving (reacting upon events) messages over appropriate channels. That events or 
messages are not sent over channels of insufficient security level is part of the information 
flow analysis (see Channel IF tool). The implementation of the TaRDIS API with respect to 
cryptography, namely the setup and use of channels, uses cryptographic protocols, i.e., 
encryptions, digital signatures, challenge-response with random numbers, exchange of keys 
and certificates. These protocols shall be modelled and analysed with PSPSP. This is part of 
the implementation of the TaRDIS API, and thus a "project-internal" use of the tool. However, 
we also plan that in the future, advanced users may want to add custom cryptographic 
protocols to the TaRDIS API and verify them with PSPSP.

Extensions of PSPSP in TaRDIS

To aid this verification, both TaRDIS-internal and by TaRDIS power-users, we plan to make 
several extensions. First, we are developing a choreography language for cryptographic 
protocols to allow for a more high-level specification, as discussed in a section below.

Moreover, currently the tool is a bare-bones extension of Isabelle that does not give a user 
much support when the verification does not work: basically one can view the abstract fixed 
point (which is often substantially large) and which of the requirements were violated. We 
plan to improve this situation by a plugin tool that can analyse the fixed point and give hints 
as to whether the model indeed exhibits an attack (also on the concrete level) or where the 
model is possibly too coarse (leading to false positives - attacks on the abstract level that do 
not exist on the concrete level) and needs to be refined.

Finally, we are working on the question of accountability: that dishonest actors who break the 
rules or agreements run the risk that they can be identified and held accountable. This is an 
extension of the concept of non-repudiation, i.e., that an actor cannot deny certain 
transactions they have performed. Our model of this goes beyond pure non-repudiation. In 
fact, our model includes a legal framework, i.e., rules that participants are bound to uphold, 
and a judicial framework, i.e., how an impartial judge (or ombudsperson) can evaluate 
detected cases of rule violations. This can involve the request that certain information must 
be kept and can be subpoenaed by the judge; failure to comply with a subpoena is then also 
a rule violation. This allows for a system where rules are ensured by the fact that dishonest 
participants are discouraged to break the rules of the contract, because they run a 
substantial risk of being caught and having to pay a fine.

Besides the immediate practical value of accountability, there is also a more fundamental 
interest in this kind of systems for TaRDIS: we do not necessarily describe here a protocol as 
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a sequence or choice of actions of participants, but rather allow them to do everything they 
are cryptographically able to, and rather have rules that certain messages have legal 
meaning. For instance a public key may be legally bound to a participant, and signing a 
message of a particular format using the corresponding private key, is a legal binding 
statement, e.g. ordering items from another participant. For accountability of such orders, 
however, the rest of the workflow of the participants is completely irrelevant (i.e., under which 
conditions a participant chooses to place an order). Leaving open most of the behaviour of 
the participants does not only lead to more efficient verification of accountability questions, 
but also makes it independent of changes in the workflows as long as the legal and judicial 
framework are not affected by the changes.

Compositionality

The initial focus of the PSPSP framework, even before the automated verification itself, is the 
secure composition of protocols [25]. Given that we have proven two protocols in isolation, 
can we infer that it is also secure to run them together on the network? The classic results in 
this area are that this indeed rather straightforward if the protocols do not share any 
cryptographic material; if they share cryptographic keys such as a public-key infrastructure 
used by both protocols, then it suffices that the messages of the protocols are made 
distinguishable, so that an intruder cannot abuse a message from one protocol to achieve 
something in the other. The composition in the PSPSP framework extends upon these 
classic results in two significant ways.

First, we do allow a set of shared secrets between the two protocols, and the declassification 
of such secrets. This allows us to have an overlap between the two protocols, e.g., if we have 
some general key certificates by a certificate authority, we can use these in both protocols. 
By default, all these messages in the overlap of the two protocols are secret, but they can be 
declassified, as it usually makes sense for key certificates.

Second, the participants can maintain a long-term state in terms of one or more sets of 
messages, e.g., a set of keys for a particular purpose, or on an application level, a set of 
orders that have been placed and need to be worked off. Crucially, we allow that the 
protocols share these sets. This is not meant as another way of communication, but rather as 
an interface between two protocols. For instance, a server may maintain a database of 
registered public keys of users, and may run several protocols independently on this 
database.

This stateful aspect allows us also to decompose a larger system into smaller components 
and verify them each in isolation. For instance, we may model a login protocol that transmits 
a user password over a channel established by the TLS protocol. This can be done 
compositionally as follows: clients and servers run the TLS protocol to negotiate a key, and 
the client enters the negotiated key into a set clientkey(A,B) and the server into a set 
serverkey(B) where A and B are the names of the client and server, respectively. Note that 
the server here cannot be sure who A is (in the standard setting where users have no key 
certificates), and hence their set is parameterized only over the name B of the server. The 
login protocol now can start from these keys: a client A can take (and delete) any key from 
clientkey(A,B) and encrypt a message to B containing the password of A. The server can 
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similarly check that this message decrypts with a key in serverkey(B) and authenticate A in 
this connection.

The interesting point of composition is now that we can for instance make updates to the TLS 
protocol (e.g. from version 1.2 to 1.3) and only need to verify that the new version satisfies 
the requirements of the composition and the interface that the login protocol is expecting, but 
not the login protocol. Similarly, we could replace the login protocol by a more complex 
single-sign-on solution with a trusted third party, without reproving anything about TLS.

Utilisation of Compositionality in TaRDIS

The main use of compositionality is the interfacing between channels and information flow 
analysis. While the Channel Information Flow tools ensure that the applications will obey the 
information flow policy, provided that we write messages only into channels that are 
sufficiently protected by cryptography, the result behind the channel information flow 
considers rather basic cryptographic implementations. Now compositionality allows us to 
replace such a basic implementation with a more complex one that gives at least the same 
security guarantees, without having to repeat the information flow analysis of the application.

The reason for more complex implementations can vary. Typically the basic implementation 
will assume a simple key infrastructure, e.g., every relevant group of participants have a 
shared key. Thus cryptographic mechanisms can be simply symmetric encryption or MACing 
with the respective group key for confidentiality and/or integrity. In contrast, in a 
heterogeneous landscape we may rely on a key-establishment using a trusted third party or 
certificates. Similarly other aspects that are independent of security itself (like availability of 
participants) may require more complex protocols and control flows. It is thus economical to 
verify the high-level application based on the (unrealistic) assumption of a simple channel, 
and then replace this channel by a realistic one. Compositionality here allows us to separate 
the verification tasks of application and channel.

2.3.3 Cryptographic Interpretations of Choreographies (DTU)

This projected tool is relevant for the description, implementation, and verification of the 
secure channels that TaRDIS offers. For starters, channels should be formalized and verified 
in PSPSP. PSPSP offers a low-level language for security protocols. It is well-known how to 
translate Alice-and-Bob notation (aka protocol narrations) to the low-level languages such as 
PSPSP, which is more user-friendly and has the advantage to show the "whole picture", i.e., 
how the different roles of the protocol are supposed to interact. However, Alice-and-Bob 
notation is also a bit limited: we have a linear execution of protocol steps without for instance 
non-deterministic choices or global mutable state of participants (such as a database or 
orders, or the key storage of a trusted device).

We are currently working on a cryptographic choreography language that fills that gap. The 
idea is that choreography languages are indeed providing extensions over Alice-and-Bob 
languages. For cryptographic protocols - in contrast to standard choreography languages - 
one must pay attention to how honest agents actually apply cryptographic operations. For 
instance, when a protocol is based on Diffie-Hellman, we consider exponentiation modulo a 
prime number p (or elliptic curves over a finite field); let us just write exp(g,X) for 
exponentiation modulo p with a secret X and a generator g where p and g are fixed public 
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values. Alice and Bob each generate a secret X and Y, respectively, and exchange exp(g,X) 
and exp(g,Y), respectively. This exchange needs to be authenticated, i.e., Bob must be sure 
that exp(g,X) really comes from Alice, and vice versa. The point of modular exponentiation is 
that it is computationally hard to get the X from exp(g,X). After the exchange Alice and Bob 
have the shared secret key exp(exp(g,X),Y). The choreography may thus prescribe that Alice 
shall encrypt some message with the key exp(exp(g,X),Y) and send it to Bob. Note that Alice 
will not know Bob's secret Y, but have only received some value GY that is supposed to be 
exp(g,Y). The key that Alice should generate from this is exp(GY,X) which, if Bob acted 
correctly, is exp(exp(g,Y),X)=exp(exp(g,X),Y).

This example illustrates how tricky it is to understand the protocol execution from just a 
specification of the messages that are supposed to be exchanged: we need to understand 
how agents can construct the outgoing messages from their knowledge, and how they are 
decomposing and checking the incoming messages. For Alice-and-Bob notation this problem 
has been solved on the semantic level: how to define the execution of each role from an 
Alice-and-Bob specification. Note that this definition still bears problems that are in general 
undecidable because they are based on an algebraic theory of operators (e.g. that 
exp(exp(A,B),C)=exp(exp(A,C),B) is the very least we need for Diffie-Hellman) and in general 
even the word problem is undecidable for a given set of algebraic equations. However, for 
many standard theories that are used in protocol verification we can give an effective 
procedure.

When applying this concept to choreographies we have, however, the problem of 
non-deterministic branching. As an example, we have a simple choreography where A can 
encrypt for B one of two kinds of messages - which one is a non-deterministic choice of A. A 
cannot however authenticate the message for B and can just use a Mac with a shared key 
with a trusted server s, and the server should sign the encrypted message for B:

A->s: [crypt(pk(B), m1)]sk(A,s). s->B: sign(inv(pk(s)),crypt(pk(B)),m1)

+ [crypt(pk(B), m2)]sk(A,s). s->B: sign(inv(pk(s)),crypt(pk(B)),m2)

Here pk(B) is the public key of B, sk(A,s) is the shared key of A with the server s, [M]K stands 
for sending the message M along with a Mac of M using key K, and inv(pk(s)) is the private 
key of the server. The server, not knowing B's private key actually cannot see which of the 
messages A is sending. That is however also not necessary, because the behaviour of B is 
uniform in this case. Our semantics of cryptographic choreographies understands this and 
gives for s the following local execution:

receive(M). if(checkMac(M,sk(A,s))) then snd(sign(inv(pk(s))),extract(M)) else error

2.4 ORCHESTRATION, VERIFICATION AND REGARDING PROPERTIES INTEGRATED 
WITH WP5 AND WP6

2.4.1 Correct Orchestration of Federated Learning Algorithms (UNS, WP4 for WP5)

The focus of our work so far has been on the correct orchestration of the federated learning 
algorithms. In 2023, Python Testbed for Federated Learning Algorithms (PTB-FLA) was 
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introduced [17]. PTB-FLA was developed with the primary intention to be used as a FL 
framework for developing federated learning algorithms (FLAs), or more precisely as a 
runtime environment for FLAs. PTB-FLA supports both centralised and decentralised FLAs. 
The former is defined as in [18] , whereas the latter are generalised such that each process 
(or node) alternatively takes server and client roles from [18] or more precisely, it switches 
roles from server to client and back to server. For the full details, we refer to [17].  

We have formally verified the correctness of two generic FL algorithms, a centralised and a 
decentralised one, by proving two properties:

● Deadlock-freedom (safety property): an algorithm will never reach a 
non-terminated state with no further move

● Successful FLA termination (liveness property): an algorithm always reaches the 
terminated state

We have used the Communicating Sequential Processes calculus (CSP) [19] and the 
Process Analysis Toolkit (PAT) [20] model checker, and proved the correctness of algorithms 
in two phases. In the first phase, we have constructed by hand CSP models of the generic 
centralised and decentralised FLAs as faithful representations of the real Python code.  
These models are constructed in a bottom-up fashion. In the second phase, we formulate 
desired system properties, namely deadlock freedom (safety property) and successful FLA 
termination (liveness property) and automatically prove formulated statements in PAT.

There are several directions of work we are following currently. First, we work on the 
automatic translation of the Python code into CSP, which will ensure that CSP models 
accurately represent the Python code. Second, in [21] we have used PAT to prove deadlock 
freedom and liveness property, but we also work on a different approach, where we will use 
Maude for the verification. Furthermore, during the discussion with members of WP5 we 
have identified several desirable  FL properties:

● FL Roles of agents: ensures that clients receive only the data they can process, This 
contributes to the efficiency of the model resulting in lower energy usage.

● FL Data privacy: ensures statically that only the model parameters can be sent by 
the clients and servers, actual data remains private.

● FL Message delivery: have large enough buffers of servers to support receiving 
messages from all clients, contributes to the liveness.

● FL Clients equality: clients should equally contribute to the algorithm, avoid the 
scenario where a single client sends multiple messages.

We work on the specification and verification of these properties.

For now, we have used CSP models only to specify FL algorithms introduced in [17]. We 
investigate other FL algorithms with the aim to specify and verify them as well. 

Another tool used to model distributed protocols is Multiparty Asynchronous Session Types 
(MPST), which is a class of behavioural types tailored for describing distributed protocols 
relying on asynchronous communications. Hu and Yoshida extended MPST in [10] with 
explicit connection actions to support protocols with optional and dynamic participants. 
Although these extended MPST enabled modelling and verification of some protocols in 
cloud-edge continuum [22], we could not use them to model the generic centralised and 
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decentralised FLAs, because we could not express arbitrary order of message arrivals that 
take place at an FLA instance. However, we work on the extension of MPST which will 
enable modelling algorithms introduced in [17].

2.4.2 Correct Hierarchical Namespaces (UNS, WP4 for WP6 T6.3)

One of the main focuses of Task 6.3 in the TaRDIS project is designing a solution for 
supporting the reconfiguration of application components at runtime. The first step should 
include designing a system for storing configuration data. Configurations can be versioned so 
that the changes can be traced over time. Applications live in different namespaces, allowing 
logical isolation and preventing naming conflicts. As a contribution for this task, a journal 
paper [9] has recently been published. The paper introduces a model for hierarchical 
namespaces that promotes the proper organisation and redistribution of resources. The 
namespaces prevent naming conflicts in the system and preserve logical isolation, thus 
creating a multi-tenant system. This model relies on the techniques developed in TaRDIS  
WP4 for the specification and verification. More specifically, WP4 has made the following 
contributions: 

1. the model in the paper relies on remote configuration management and builds upon 
four protocols, for which we have ensured correctness by employing an extension of 
asynchronous multiparty session types;

2. resource redistribution has been modelled via record-weighted directed acyclic 
graphs and accurate resource redistribution is guaranteed through graph 
transformations.

In the following, we give more detail on these WP4 contributions. 

The aforementioned protocols presented for the model are: (i) namespaces mutation 
protocol, used to rearrange resources, (ii) secure profile mutation protocol, used to create 
and push new secure computing mode (Seccomp) profiles to selected applications running in 
namespaces, (iii) context switch protocol, utilised by users for switching between active 
namespaces and/or distributed clouds, and (iv) upgraded cluster formation protocol, used to 
create a default namespace, that holds all resources for the newly created element and, 
accordingly a default security profile for that namespace. Following the top-down approach of 
asynchronous multiparty session types, all these protocols have been formally modelled 
using global types. For the complex communication combinations of the protocols, standard 
works of asynchronous multiparty session types were not suitable for the modelling. Instead, 
we have used an extended model [10], that allows specifying sending to different participants 
and the dynamic introduction of participants in the session. From the specification of global 
types, applying the projection function we obtained the local specifications of all participants, 
called local types.  All our protocols undergo validation using the toolchain presented in [10]. 
For full details see [9]. 

The resource redistribution modelled in the paper has been made through graphs and 
graph transformations. First, to give a faithful model for the hierarchical namespace 
organisation, we have developed a novel record-weighted directed graphs. There, each node 
in the graph represents a single namespace and directed edges represent parent-child 
connections between the namespaces. Weights assigned to nodes represent the resources 
of the namespace. For example, consider the graph shown in Figure 18. Namespace A has 
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two child namespaces B and C, that have been given some resources. Here, we consider 
three different resources that are allocated throughout the namespaces. The two values next 
to each resource represent the amount of resources available and utilised (by the 
applications) in the namespace. 

Figure 18: Example of namespaces resource graph. 

Applications running in the namespaces are modelled again through graphs. Figure 19 gives 
an example. The resources mentioned in the applications are the ones that are specified as 
utilised in the namespace.

Figure 19: Example of application resource graph.

The namespaces and their resource manipulation that the namespace mutation protocol 
relies on utilise the (record-weighted) graph representation of the namespaces and are 
based on the double-pushout (DPO) constructs of graph transformations. The DPO is 
constructed by defining the set of so-called production rules, which can be applied to an 
observed graph. We identified a set of four production rules: (i) creation of a child 
namespace, (ii) deletion of a namespace, (iii) resource allocation between child-parent 
namespaces, and (iv) transferring from available to utilised (and vice versa) resources in a 
single namespace. The first rule is given in Figure 20 below. It specifies that for a namespace 
P, we can create a child namespace C with resources Rc, provided the parent has enough 
resources since Rp - Rc has to be nonnegative by the definition of graphs.
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Figure 20: Creation of namespaces. 

Using the four production rules and a single node (a default namespace) as a starting graph, 
we obtain a graph transformation language. An instance of a direct graph transformation, 
applying the production rule (i), is given in Figure 21 below. 

Figure 21: Example of a DPO based direct graph transformation.

Besides giving clear specifications of the system described, these graphs and transformation 
rules also provide the property that resources used anywhere in the organisation of the 
namespaces are the ones that are provided. For full details on graphs and graph 
transformations modelling namespaces and resource manipulations see again [9].

 
 

Page 41 of 48 © 2023-2025 TaRDIS Consortium



TaRDIS | D4.1: Report on the desirable properties for analysis

3. REVISIONS OF IDENTIFIED PROPERTIES IN D4.1

This section delves into the modifications applied to properties identified in D4.1, as well as 
any newly introduced properties. These updated properties are aligned with and can be 
verified using the tools outlined in Section 2. Tools without revised or new properties 
compared to D4.1 will not be discussed.

3.1 PROPERTIES FOR COMMUNICATION BEHAVIOURS

3.1.1 WorkflowEditor & Actyx Middleware

Two tools featuring in the planned implementation of the use case of «highly resilient factory 
shop floor digitalization» were previously neglected in deliverable D4.1, namely the 
WorkflowEditor and the Actyx middleware (which will be improved as part of WP6 with 
TaRDIS results). The latter is not directly part of this report, but it is relevant in that it provides 
some of the underlying event dissemination guarantees required by the theory underlying the 
WorkflowEditor and its analytic capabilities. In the following we describe the guarantees 
afforded to end users building software applications using the WorkflowEditor, which include 
deadlock-freedom, liveness, eventual consensus, protocol conformance, fault tolerance 
(non-adversarial), and compositional verification. These guarantees are tailored to this tool 
and differ from the general properties and requirements identified in Deliverable D4.1. 
Additionally, new properties unique to this tool, such as resilience through replication, perfect 
availability, and termination of failure, are introduced compared to D4.1.

Deadlock-freedom. Assuming at least one live replica per role in the swarm protocol, the 
workflow will eventually make progress — more precisely progress will only depend on 
information transport from the previously active role to some replica playing a role that can 
act next.

Resilience through replication. The system will remain deadlock free as long as it is 
properly maintained. This implies that a role may be played by multiple replicas so that the 
real system can employ redundancy and thus ensure that the precondition of deadlock 
freedom is always met.

Liveness. All live replicas of roles that may act according to their current knowledge of the 
workflow’s progress can perform an allowed action without further restrictions. In particular, 
the ability to act does not depend on the availability of any other replica or the ability to 
communicate.

Eventual consensus. The system guarantees that once all events up to a certain (logical) 
timestamp have been disseminated to all live nodes, these nodes will agree on the path of 
execution of the workflow up to the point indicated by this prefix of the event log. This 
agreement is reflected in the workflow state being presented to the application, and it is 
achieved without any further coordination (as is implied by the liveness property above and 
the availability demanded below). This is not strict consensus because the moment in time 
after which this agreement holds is not known to any of the replicas, and replicas will typically 
present invalid intermediate workflow states to the application while event dissemination is 
still ongoing.
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Protocol conformance. The sequence of actions recorded as events in the federated event 
log adheres to the workflow as designed using the WorkflowEditor. Note that the availability 
and liveness requirements imply that some events may be emitted and later ignored due to 
conflict resolution. The goal of this requirement is that the execution settled upon by eventual 
consensus can intuitively be understood by considering only the global workflow design, 
specified under the assumption of instantaneous and reliable event dissemination.

Perfect availability. The application can obtain the local view on the workflow state at any 
time without depending on the communication with other replicas. Whenever that state 
permits the local role to act, such action can be taken also without depending on the 
communication with other replicas, and taking the action will update the local view on the 
workflow state.

Fault tolerance (non-adversarial). Failure of replicas (crash stop) or transient 
communication outages do not affect the other guarantees. Note that this does not cover 
malicious behaviour like falsifying events in the log. Fault tolerance relies heavily on 
resilience through replication.

Termination or failure. Assuming that no workflow branch is taken for an unbounded 
number of times (in case of cyclic workflows) and that there always is at least one live replica 
for each role, any well-formed workflow will eventually reach either a designed terminal state 
or a failure state.

Compositional verification (in collaboration with DTU). Workflows can be composed from 
smaller workflows in a black box fashion: the understanding and analysis of the composed 
system does not require an understanding of the internal structure of the included workflows, 
it only requires them to be well-formed.

3.1.2 Compositional Verification of Swarm Protocols 

The focus of compositional verification in swarm protocols lies in identifying sufficient 
conditions to ensure that when two correct swarm protocols, G and G’, which are well-formed 
and deadlock-free, are composed (G|G’), the resulting composition remains correct. 
Additionally, the exploration of the necessary conditions for such compositions aims to 
enable developers to maintain a library comprising well-formed swarm protocols and 
participant implementations such that these protocols and implementations can be combined 
without introducing deadlocks or communication errors.

3.1.3 Fair Join Pattern Matching

The join pattern matching library adheres to all communication behaviour properties outlined 
in D4.1, while also inherently providing the following new properties. 

Mailbox communication safety. Messages and mailboxes are strongly-typed, and all 
message exchanges are type-safe.

Fair join pattern matching. Any message in a mailbox that can be potentially consumed by 
a join pattern will be eventually consumed.
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3.1.4 Verified APIs for Software-Defined Networking

The verified APIs for Software-Defined Networking in P4 modify the safety, 
deadlock-freedom, and liveness properties, diverging from those described in D4.1.

Safety w.r.t. network configurations. Control programs attempting invalid updates w.r.t. the 
P4 tables of a P4-defined network do not type-check.

Deadlock-freedom, liveness. A typed program that attempts a network update will always 
succeed (i.e., enjoys progress).

3.1.5 Model-Based Testing of Swarm Applications

The model-based testing tool COTS introduces the following new properties compared to 
D4.1. (Currently, the tool utilises a test model based on session types, with potential future 
extensions to incorporate a test model based on swarm protocols.)

Test correctness. Each autogenerated test run represents a valid execution that conforms 
to the test model.

Fault detection soundness. Each failing test corresponds to a case where the 
system-under-test violates the test model.

3.1.6 Java Typestate Checker

The Java typestate checker adheres to all communication behaviour properties identified in 
D4.1, while also inherently providing the following new properties.

Memory-safety. programs that statically type-check respect the typestate protocols of all 
objects and thus no method call will ever raise a null-pointer exception. Moreover, given that 
programs are free of races because the access to objects is linearly controlled, there will be 
no memory leaks (the linear discipline implies that objects are fully used - according to their 
protocol - and disposed).

Protocol compliance. Client code executes respecting each object correct usage, which 
means that no method is called when the protocol does not allow it.

Protocol completion. All objects are used until the end of their protocols (and released).

3.2 PROPERTIES FOR DATA MANAGEMENT AND REPLICATION

The properties for data management and replication identified in D4.1 remain unchanged; the 
assertions made therein retain their validity. The tools developed at NOVA are 
Language-based Data Consistency Approaches, eventually avoiding data conflicts 
(consistency) and ensuring safe concurrent updates (convergency).

We are looking for opportunities to work with TaRDIS partners, using idealised core versions 
of the use cases. Concretely, we foresee the following collaborations:
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Actyx - develop a setting for “elevating” eventual consensus to consensus, without 
sacrificing availability.

EDP - statically ensure policy compliance for all (client) scenarios.

Telefonica - statically ensure safe concurrent data updates.

3.3 PROPERTIES FOR SECURITY

With respect to D4.1, there are only minor changes to the security properties we want to 
verify. Recall that we are going to employ two basic approaches: Firstly, the verification of 
communication protocols that use cryptographic means to protect communication from 
leaking information, tampering with information and unauthorised access. Secondly, we will 
use information flow control techniques applied to event-based languages to analyse 
systems for illegal flows that are introduced by programming mistakes. This aims to prevent 
classified information from being “leaked” into public places and to prevent untrusted 
information from “leaking” into a trusted information base.  

Transmission Security Properties

This is one of the core verification tasks: verifying security properties (confidentiality and 
integrity) of given transmission protocols with the PSPSP tool. This will be an internal use of 
the tool for verifying security of the TaRDIS API.

Information Flow Properties

This is the main aim of the verification tool for DCR graphs, relying on secure channels. We 
may need to make one revision here in practice: The transmission over channels is in 
general observable by an attacker, who cannot open encrypted messages, but who can see 
that messages are being sent and link messages that belong together, possibly even link 
them to particular entities. This in general breaks the strong guarantees of non-interference, 
unless one starts with anonymization techniques like onion routing (which is in most cases 
not desirable as an additional layer). Thus, we have to make some concessions in terms of 
so-called implicit information flow: the attacker may learn some information about conditions 
being true or on the relation between messages. We are currently investigating how to limit 
the exposure and how to allow for clear feedback for developers to allow them to make 
conscious decisions about what information is fine to release and what needs further 
protection.

Privacy-type Properties

In general, the information flow would ensure privacy properties, but due to the compromises 
we have to make in information flow when transmissions are observable, the privacy 
properties are similarly affected, at least with respect to an attacker who can do long-term 
surveillance of the entire communication medium. However, we will at every point aim for the 
maximally achievable privacy. 
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4. CONCLUSIONS

The primary goal of the TaRDIS development environment is to assist developers in 
constructing correct systems by automatically analysing interactions between various 
components within a distributed system. This approach ensures that applications are 
inherently designed for correctness, taking into account both application invariants and the 
specifics of the execution environment. By integrating these elements, TaRDIS promotes the 
development of robust and reliable distributed systems.

To tackle these challenges, this document introduces an initial toolset consisting of tools 
tailored for application to the TaRDIS models. These tools ensure the fulfilment of desirable 
properties that align with the specific TaRDIS use cases and requirements outlined in 
Deliverable D4.1. Additionally, to facilitate calibration, this document outlines any adjustments 
to the properties detailed in D4.1, as well as any new properties that can be addressed by 
the tools specified herein. This ensures a more comprehensive application of the toolset 
within the TaRDIS models.

As future work for the subsequent deliverable of this work package, the team will explore the 
integration of the developed analyses and tools into the APIs and IDE developed as part of 
work package 3 (WP3).
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