
D4.2: Report on the Initial Toolset
Revision: v.1.0

Work package WP4

Task T4.1, T4.2, T4.3 and T4.4

Due date 30/June/2024

Submission date 30/June/2024

Deliverable lead Nobuko Yoshida (UOXF)

Version 1.0

Authors

Nobuko Yoshida (UOXF), Ping Hou (UOXF), Alceste Scalas (DTU), António
Ravara (NOVA), Carla Ferreira (NOVA), João Costa Seco (NOVA), Sebastian
Mödersheim (DTU), Simon Tobias Lund (DTU), Silvia Ghilezan (UNS), Ivan
Prokic (UNS), Simona Prokic (UNS)

Reviewers Roland Kuhn (Actyx), Sotirios Spantideas (NKUA)

Abstract

This document reports D4.2–the initial toolset for communication, data,
AI/ML, and security analyses is provided, describing the developed analyses
for a subset of the properties outlined in D4.1 across T4.1–T4.4. Additionally,
any changes to the identified set of properties in D4.1 are discussed, and
other new properties not covered in D4.1 are introduced.

Keywords tool sets, properties

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03

Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

1

TaRDIS | D4.1: Report on the desirable properties for analysis

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held responsible for
them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the
deliverable: to specify R, DEM, DEC, DATA, DMP, ETHICS, SECURITY, OTHER*

Dissemination Level

PU Public, fully open, e.g. web (Deliverables flagged as public will be
automatically published in CORDIS project’s page)

✔

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

Page 2 of 48 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D4.1: Report on the desirable properties for analysis

EXECUTIVE SUMMARY

The TaRDIS project aims to develop a distributed programming toolbox that simplifies the
development of decentralised applications across varied environments. Work Package 4
(WP4) is dedicated to pioneering formal analyses to assess the soundness, security, and
reliability of heterogeneous swarms. These analyses are specifically designed for TaRDIS
models, ensuring they meet the desired security, data integrity, AI coordination, and
communication properties, aligning with the TaRDIS use cases and requirements.

In Deliverable D4.1, the properties related to TaRDIS use cases requiring analysis and
verification were categorised, and both existing and advanced verification techniques for
validating these properties were explored.

In this report, the initial toolset for communication, data, AI/ML, and security analyses is
provided, describing the developed analyses for a subset of the properties outlined in D4.1
across T4.1 – T4.4. Additionally, any changes to the identified set of properties in D4.1 are
discussed, and other new properties not covered in D4.1 are introduced.

The main contributions of this report are outlined below:

● Descriptions of tools for communication behaviours analysis, data integrity, security
verification, and federated learning analysis, along with their developed analyses for
the properties described in D4.1.

● Modifications to properties identified in D4.1, tailored specifically to these tools, as
well as additional properties suited for analysis by these tools.

The following are some key highlights from the M18 report in terms of academic publications,
effectively addressing the challenges associated with formally analysing the soundness,
security, and reliability of heterogeneous swarms:

● UOXF
○ Nobuko Yoshida and Ping Hou: Less is More Revisited: Association with

Global Multiparty Session Types. To appear in The Practice of Formal
Methods: Essays in Honour of Cliff Jones, Part II, 2024.

○ Lorenzo Gheri and Nobuko Yoshida: Hybrid Multiparty Session Types:
Compositionality for Protocol Specification through Endpoint Projection. Proc.
ACM Program. Lang. 7(OOPSLA1): 112-142 (2023).

● DTU
○ Simon Tobias Lund and Sebastian Mödersheim, Dolev-Yao Information Flow,

submitted, 2024
○ Andreas Hess, Sebastian Mödersheim, Achim Brucker, and Anders

Schlichtkrull: PSPSP: A Tool for Automated Verification of Stateful Protocols in
Isabelle/HOL, submitted, 2024.

○ Sebastian Mödersheim and Siyu Chen: Accountable Banking Transactions,
Open Identity Summit 2024, to appear.

○ Jens Kanstrup Larsen, Roberto Guanciale, Philipp Haller, Alceste Scalas:
P4R-Type: A Verified API for P4 Control Plane Programs. Proc. ACM
Program. Lang. 7(OOPSLA2): 1935-1963 (2023)

○ Christian Bartolo Burlò, Adrian Francalanza, Alceste Scalas, Emilio Tuosto:
COTS: Connected OpenAPI Test Synthesis for RESTful Applications. In:
COORDINATION 2024. Lecture Notes in Computer Science, vol 14676.
Springer.

Page 3 of 48 © 2023-2025 TaRDIS Consortium

https://doi.org/10.48550/arXiv.2402.16741
https://doi.org/10.48550/arXiv.2402.16741
https://doi.org/10.1145/3586031
https://doi.org/10.1145/3586031
http://imm.dtu.dk/~samo/pspspj-preprint.pdf
http://imm.dtu.dk/~samo/pspspj-preprint.pdf
http://imm.dtu.dk/~samo/acc-bank.pdf
https://doi.org/10.1145/3622866
https://doi.org/10.1007/978-3-031-62697-5_5

TaRDIS | D4.1: Report on the desirable properties for analysis

● NOVA
○ Marco Giunti, Hervé Paulino, António Ravara: Anticipation of Method

Execution in Mixed Consistency Systems. SAC 2023: 1394-1401.
○ Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João

Matos, António Ravara: AtomiS: Data-Centric Synchronization Made Practical.
Proc. ACM Program. Lang. 7 (OOPSLA2): 116-145 (2023).

● UNS
○ Milos Simić, Jovana Dedeić, Milan Stojkov, Ivan Prokić: A Hierarchical

Namespace Approach for Multi-Tenancy in Distributed Clouds. IEEE Access
12: 32597-32617 (2024)

○ Simona Prokić: Probabilistic reasoning in computation and simple type theory.
PhD Thesis, University of Novi Sad (2024).

● ACT
○ Roland Kuhn, Hernán Melgratti, Emilio Tuosto: Behavioural Types for

Local-First Software. ECOOP 2023.

Page 4 of 48 © 2023-2025 TaRDIS Consortium

https://dl.acm.org/doi/10.1145/3555776.3577725
https://dl.acm.org/doi/10.1145/3555776.3577725
https://dl.acm.org/doi/10.1145/3622801
https://doi.org/10.1109/ACCESS.2024.3369031
https://doi.org/10.1109/ACCESS.2024.3369031
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

TaRDIS | D4.1: Report on the desirable properties for analysis

TABLE OF CONTENTS

Executive Summary..3
Table of Contents..5
Abbreviations.. 7
1. INTRODUCTION.. 8

1.1 Tool Specifications and Modified Properties... 8
1.2 Results Summary..9
1.3 Deliverable Structure.. 10

2. TOOLSET... 11
2.1 Communication Behaviours Analysis..11

2.1.1 WorkflowEditor & Actyx Middleware (Actyx)...11
2.1.2 Compositional Verification of Swarm Protocols (DTU and Actyx)...................... 13
2.1.3 Fair Join Pattern Matching (DTU).. 13
2.1.4 Verified APIs for Software-Defined Networking (DTU).......................................14
2.1.5 Model-Based Testing of Swarm Applications (DTU).. 15
2.1.6 Scribble (UOXF)...17
2.1.7 Java Typestate Checker (NOVA)... 19

2.2 Data Convergence and Integrity... 23
2.2.1 VeriFx (NOVA)..23
2.2.2 Ant (NOVA).. 23
2.2.3 AtomiS (NOVA).. 24

2.3 Security Verification.. 25
2.3.1 Channel Information Flow (DTU and NOVA)... 25
2.3.2 PSPSP (DTU).. 33
2.3.3 Cryptographic Interpretations of Choreographies (DTU)................................... 36

2.4 Orchestration, Verification and Regarding Properties Integrated with WP5 and WP637
2.4.1 Correct Orchestration of Federated Learning Algorithms (UNS, WP4 for WP5)37
2.4.2 Correct Hierarchical Namespaces (UNS, WP4 for WP6 T6.3).......................... 39

3. REVISIONS OF IDENTIFIED PROPERTIES IN D4.1.. 42
3.1 Properties for Communication Behaviours... 42

3.1.1 WorkflowEditor & Actyx Middleware.. 42
3.1.2 Compositional Verification of Swarm Protocols..43
3.1.3 Fair Join Pattern Matching... 43
3.1.4 Verified APIs for Software-Defined Networking..44
3.1.5 Model-Based Testing of Swarm Applications... 44
3.1.6 Java Typestate Checker...44

3.2 Properties for Data Management and Replication.. 44
3.3 Properties for Security.. 45

4. CONCLUSIONS... 46
5. Bibliography.. 47

Page 5 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

LIST OF FIGURES

Figure 1: Sample program using DTU's actor library with join pattern matching.........14
Figure 2: Sample P4 control program using the P4RType library....................................15
Figure 3: Sample test model for the COTS tool... 16
Figure 4: Top-down MPST methodology...17
Figure 5: Travel agency protocol as a sequence diagram.. 18
Figure 6: Travel agency protocol in Scribble... 18
Figure 7: EFSM for TravelAgency role A.. 18
Figure 8: Screenshot of the NuScr web interface, showing an adder protocol..............19
Figure 9: Snippet of JaTyC code... 20
Figure 10: An e-bank application of Ant... 24
Figure 11: AtomiS approach.. 24
Figure 12: Generated code of AtomiS...25
Figure 13: DCR choreography, modelling a fraction of purchase process....................26
Figure 14: Security lattice of purchase process.. 27
Figure 15: Security annotated DCR graph of purchase process..................................... 28
Figure 16: Security annotated DCR graph of purchase process without leaks..............29
Figure 17: Potential end-state after execution of program... 32
Figure 18: Example of namespaces resource graph...40
Figure 19: Example of application resource graph... 40
Figure 20: Creation of namespaces.. 41
Figure 21: Example of a DPO based direct graph transformation................................... 41

Page 6 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

ABBREVIATIONS

ML Machine Learning

FL Federated Learning

FLA(s) Federated Learning Algorithm(s)

PTB-FLA Python Testbed for Federated Learning Algorithms

ST Session Types

MPST Multiparty Session Types

FSM(s) Finite State Machine(s)

CFSM(s) Communicating Finite State Machine(s)

EFSM(s) Endpoint Finite State Machine(s)

API(s) Application Programming Interface(s)

IDE Integrated Development Environment

QoS Quality of Service

SDN Software-Defined Networking

SUT System-Under-Test

RDT(s) Replicated Data Type(s)

CRDT(s) Conflict-free Replicated Data Type(s)

DCCC Data Coupling and Control Coupling

IF Information Flow

IFC Information Flow Channel

DCR Dynamic Condition Response

TPM Trusted Platform Module

CSP Communicating Sequential Processes Calculus

PAT Process Analysis Toolkit

Page 7 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

1. INTRODUCTION

The main objective of Work Package 4 (WP4) is to develop novel formal analysis tools to
ensure that a heterogeneous swarm is sound, secure, and reliable. These tools will be
applied to the TaRDIS models to verify that key properties such as security, data integrity, AI
coordination, and communication are satisfied, with specific properties chosen based on
TaRDIS use cases and requirements. WP4 aims to enable the safe use of AI and data
primitives developed in WP5 and WP6, and the developed tools will be integrated into the
TaRDIS APIs, IDE, and AI optimisation framework.

1.1 TOOL SPECIFICATIONS AND MODIFIED PROPERTIES

This document reports on the M18 delivery (D4.2), highlighting the development of analysis
tools for a subset of the properties delivered in D4.1, “Report on the Desirable Properties for
Analysis". Specifically, it focuses on tools developed for analysing communication
behaviours, ensuring data convergence and integrity requirements, verifying security and
privacy, and orchestrating federated learning for heterogeneous swarms. These
developments are outlined according to the four specified tasks below.

Communication Behaviours Analysis

● WorkflowEditor and Actyx Middleware (by Actyx): utilise Actyx middleware to formally
describe and analyse workflows between swarm participants.

● Compositional Verification of Swarm Protocols (by DTU and Actyx): verify the
well-formedness and deadlock-freedom of a composition of two given swarm
protocols, which are individually well-formed and deadlock-free.

● Fair Join Pattern Matching (by DTU): specify fair and deterministic join pattern
matching for actor-based systems.

● P4R-Type (by DTU): a verified P4Runtime API in Scala 3 to perform static checks on
programs controlling P4-based software-defined networks.

● COTS (by DTU): model-based testing of swarm applications.
● Scribble (by UOXF): a description language for application-level protocols among

communicating systems.
● JaTyC (by NOVA): a Java typestate checker for statically verifying memory-safety,

protocol compliance, and protocol completion.

Data Convergence and Integrity

● VeriFx (by NOVA): libraries for implementing and verifying Conflict-free Replicated
Data Types and operational transformation functions.

● Ant (by NOVA): an automated method to identify operations that can safely
commute, prioritising those that do not require inter-replica coordination, ensuring
data integrity and consistency.

● AtomiS (by NOVA): a DCCC approach to mandate specific types for parameters and
return values in interface definitions, as well as for fields in class definitions.

Security Verification

Page 8 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

● Channel Information Flow (by DTU and NOVA)
○ DCR Choreographies with IFC: a mechanism to prevent side channels by

considering the timing of events, ensuring data confidentiality.
○ Information Flow Channel: a framework for securely extending information

flow analysis to systems with communication over an untrusted network.
● PSPSP (by DTU): a low-level language for security protocols.
● Cryptographic Interpretations of Choreographies (by DTU): a cryptographic

choreography language emphasising the practical application of cryptographic
operations by agents.

Federated Learning Orchestration

● Correct Orchestration of Federated Learning Algorithms (by UNS): formal verification
of correctness of centralised and decentralised FL algorithms

● Correct Hierarchical Namespaces (by UNS): a hierarchical namespaces model
encouraging the organised and efficient distribution of resources.

Additionally, this document includes any modifications to the properties identified in D4.1.
The modified and new properties are detailed below for each tool.

● WorkflowEditor and Actyx Middleware: deadlock-freedom, resilience through
replication, liveness, eventual consensus, protocol conformance, perfect availability,
fault tolerance, and termination of failure.

● Compositional Verification of Swarm Protocols: compositional verification.
● Fair Join Pattern Matching: mailbox communication safety and fair join pattern

matching.
● P4R-Type: safety w.r.t. network configurations, deadlock-freedom, and liveness.
● COTS: test correctness and fault detection soundness.
● JaTyC: memory-safety, protocol compliance, and protocol completion.

1.2 RESULTS SUMMARY

Our key contributions are:

● We specify the analysis tools developed for the properties outlined in D3.1, spanning
T4.1–T4.4.

● We outline any revisions made to identified properties in D3.1, as well as newly
introduced properties, related to each tool.

Overall, we consolidate various analysis tools developed for the TaRDIS models to ensure
the satisfaction of desirable properties such as security, data integrity, AI coordination, and
communication. These tools will be integrated as a toolset into the TaRDIS APIs, IDE, and AI
optimisation framework.

Page 9 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

1.3 DELIVERABLE STRUCTURE

The report starts by presenting comprehensive specifications for the tools developed to
analyse the desirable properties outlined in D4.1 in Section 2. Subsequently, Section 3
specifies any modifications made to these properties and introduces newly identified ones for
each tool.

Page 10 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

2. TOOLSET

This section provides an in-depth exploration of tools designed to analyse communication
behaviours, enforce data convergence and integrity requirements, verify security and privacy,
and orchestrate federated learning across heterogeneous swarms.

2.1 COMMUNICATION BEHAVIOURS ANALYSIS

2.1.1 WorkflowEditor & Actyx Middleware (Actyx)

The aim of this work is to formally describe and analyse workflows between swarm
participants using the Actyx middleware. This peer-to-peer system lives completely in the
realm of edge computing and allows processes distributed across a swarm to reliably send
each other information updates in the form of durable event streams. Another important
feature of this middleware is that it uses a logical clock mechanism to assign each event a
timestamp that captures its causal dependencies with minimal effort and allows a total order
to be established between events that does not require any coordination. In summary, Actyx
aims for full availability, which implies that it tolerates weak consistency (it achieves eventual
consensus, a notion known from blockchains like Bitcoin).

While application developers are free to design any interaction or workflow they desire, not
all such workflows achieve eventual consensus when the access of participants to some
information (i.e. certain event types) is restricted. Eventual consensus is a very useful
property to have in a distributed system: its absence means that different swarm participants
may have diverging world views without ever reconciling them. Given that it is extremely
challenging to program a system with unbounded inconsistency, we deem eventual
consensus the least we need to offer in order to be successful — most programmers today
routinely use the much stronger notion of strict consensus, which is built into all traditional
relational databases. The basic problem we attacked is thus how to retain eventual
consensus in a swarm where not every participant is allowed to know everything.

For the full details we refer you to the ECOOP paper [1]. The main idea is to describe a
workflow as a state machine, starting out in its initial state and proceeding to new states via
transitions that are each labelled by a command name, the participant role that is allowed to
invoke the command, and the sequence of event types that are emitted by invoking the
command. This representation lends itself well to a diagrammatic visual representation, an
aspect that has been used by Actyx with its customers to great success. One important
aspect is that each role is assumed to be present within an execution of the workflow with an
arbitrary positive number of replicas; in other words, the computational model accommodates
the use of redundancy in real-world applications (such as in factories) to achieve operational
resilience in the face of hardware and software failures.

Once the workflow is designed from a global view as a swarm protocol, it is projected into
locally executable state machines, one for each participating role. These machines differ not
only in the commands offered for invocation in each state, they may also lack the input of
some of the event types that are present in the global swarm protocol — this filtering
mechanism is called the role’s subscription. Each swarm participant that partakes in the

Page 11 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

workflow picks one such role, instantiates the corresponding machine, and uses this as a
device to interpret the state of the workflow according to the event logs that are locally
available. These logs contain not only the locally emitted events but also the events emitted
on other swarm devices and disseminated across the swarm using the Actyx middleware’s
peer-to-peer protocols. Using the total event order we know that eventually the same log
sequence will be available to everyone, filtered locally by each role’s subscription.

It is easily visible that not all participants may come to the same overall conclusion — e.g.
regarding whether the workflow is still running or has completed — if too many events are
filtered out. We identified the following three well-formedness conditions to counter this issue:

1. causal consistency requires that a role must subscribe to at least one of the event
types emitted by each of the commands it is allowed to invoke, and that it must
subscribe to at least one event type emitted by the preceding command in the swarm
protocol; these constraints ensure that the local machine awaits its turn and then
moves on, preventing infinite command invocation

2. choice determinacy requires that a role that remains active later in the protocol must
subscribe to the first event type emitted after a choice (i.e. a branch in the diagram),
so as to follow along the general progress of the execution

3. confusion freeness requires that an event type that immediately follows a choice
cannot appear elsewhere in the protocol; otherwise that other appearance may
accidentally be confused with making a choice, leading some roles astray in their
understanding of the general progress of the execution

While these constraints are sufficient to establish eventual consensus, they are not
necessary. In other words, the constraints are stricter than they need to be; the reason is that
we have not yet been able to prove the effectiveness of weaker constraints. We are working
on such improvements and on the corresponding proofs to give protocol designers more
flexibility and in particular to allow more information to be hidden from participants while still
keeping their understanding of workflow progress intact.

Another angle that we’re following is that workflows in factories often turn out to require one
specific machine to perform some of the protocol steps: for example, once the material is on
a logistics robot, only that particular robot can deliver the material to its destination. Picking
out a single instance of a role and restricting some protocol transitions to that instance will
allow designers to more precisely model system behaviour and lead to more faithful
implementation of the local agents. On the other hand, adding such constraints makes the
system susceptible to the failure of exactly that machine. Hence we are also considering the
addition of timeouts and rollbacks whenever such restricted commands are being used. This
has also been corroborated by Actyx customers who would like to gain support from an
analysis tool to ensure that compensating actions are properly employed in all failure
cases — not only in those caused by Actyx’s weak consensus model but also those caused
by real-world problems.

Current state and next steps: The underlying Actyx middleware is an existing and
commercially used product that will receive some updates and new features based on WP6
work that is unrelated to the analytic capabilities of the WorkflowEditor. The well-formedness
checking (machine-check) of declared workflows for swarm protocols (machine-runner) is

Page 12 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

implemented and commercially used based on the ECOOP paper [1]. These will be
enhanced as described in the above two paragraphs within the second half of the TaRDIS
project. The visual editor does not yet exist and will be implemented later this year.

2.1.2 Compositional Verification of Swarm Protocols (DTU and Actyx)

DTU is currently working (in collaboration with Actyx) on the compositional verification of
swarm protocols — i.e., given two swarm protocols G and G’ which are individually
well-formed and deadlock-free, determine whether their parallel composition G|G’ is also a
well-formed and deadlock-free swarm protocol, without analysing the whole combined swarm
protocol “from scratch” - and without requiring changes to the actual implementations of the
swarm participants projected from G and G’. More specifically, DTU is researching sufficient
conditions that, given two correct swarm protocols G an G’, ensure the correctness of their
composition G|G’; it is also researching the necessary conditions for correct composition.
This would allow developers to maintain a library of well-formed swarm protocols and
participant implementations, that can then be combined without introducing deadlocks or
communication errors.

This research work will be implemented as a series verification routines that will be integrated
in the swarm design tool currently being implemented by Actyx (see previous section 2.1.1).

2.1.3 Fair Join Pattern Matching (DTU)

Join patterns provide a promising approach to the development of concurrent and distributed
applications where different components may need to interact using complex message
combinations and conditions. A join pattern (with conditional guard) is reminiscent of a clause
in a typical pattern matching construct: it has the form “J if γ ⇒ P” — where J is a message
pattern describing a combination of incoming messages and binding zero or more variables,
and γ is a guard, i.e., a boolean expression that may use the variables bound in J. A program
using join patterns can wait until a desired combination of messages arrives (in any order);
when some of the incoming messages are matched by the message pattern J and (their
payloads) satisfy the guard γ, the process P is executed.

The theoretical foundation of join patterns was introduced in the join calculus [2], and
subsequent research extended the approach in multiple directions. DTU is developing a
novel specification of fair and deterministic join pattern matching for actor-based systems,
i.e., a formal definition of how an actor should perform join pattern matching to select
messages out of its mailbox, guaranteeing that older messages are always eventually
consumed if they can be matched. DTU has also developed a direct implementation of the
fair matching specification, and a novel stateful, tree-based join pattern matching algorithm
that is proven correct w.r.t. the fair matching specification above [3]. Such algorithms have
different performance characteristics, and DTU is evaluating their efficiency and suitability in
various settings. Both implementations are research prototypes, and will be further refined
and optimised during the rest of the project.

The two implementations above will be contributed (as a ready-to-use library for the Scala 3
programming language) to the TaRDIS toolbox: by construction, any program using the
provided join pattern libraries will enjoy the fair and deterministic join pattern matching
guarantees. The first intended use of such libraries in the TaRDIS toolbox will be a monitoring

Page 13 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

program for the Actyx use case: the program will observe the flow of messages describing
ongoing activity on a factory shop floor, and match some combinations of messages to
maintain statistics and report quality of service (QoS) issues. The program is outlined in
Figure 1 below.

Figure 1: Sample program using DTU's actor library with join pattern matching.

2.1.4 Verified APIs for Software-Defined Networking (DTU)

Many modern network switches and routers provide Software-Defined Networking (SDN)
capabilities, which allow for writing control programs that can define and alter the network’s
packet processing rules. The de facto standard for programming SDN devices is the P4
language. However, the flexibility and power of P4 (and SDN more generally) gives rise to
important risks: errors in SDN control programs can compromise the availability of networks,
leaving them in a non-functional state.

For this reason, DTU has developed P4R-Type [4], a novel verified P4Runtime API for Scala
3 that performs static checks for programs that control P4-based software-defined networks.
If a control program using P4R-Type can be compiled, then all its operations that may modify
the P4 network configuration are guaranteed to be compliant with the network specification
(i.e. all updates will respect the packet processing tables, allowed actions, and action
parameters).

Page 14 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Figure 2 shows a sample control program written in Scala 3 using P4R-Type. The program
connects to two different P4-enabled network routers with different configurations, by
instantiating the connections s1 and s2. Then, the program attempts to insert new packet
processing rules in both routers. The first insert operation is correct (no errors are reported),
whereas the second one is wrong: the red highlight on the rule “NoAction” means that the
rule is not valid for the selected packet processing table. The error is caught at compile-time
and reported via an IDE (in this case, Visual Studio Code).

Figure 2: Sample P4 control program using the P4RType library.

P4R-Type is currently being investigated as a possible component of the TaRDIS toolbox. A
possible application is to regulate swarm membership at the network level, using SDN: the
network may drop all packets sent by new swarm members, until they authenticate
themselves; the authentication packets, in turn, would be forwarded to a trusted service
(written using P4R-Type) that would update the network configuration only after a successful
authentication. By using P4R-Type, the authentication service is guaranteed to respect the
network configuration.

2.1.5 Model-Based Testing of Swarm Applications (DTU)

The development of a TaRDIS internal application (outlined in Deliverable D3.1) is based on
the specification of a global swarm protocol, which is then projected into local workflows,
which in turn act as “blueprints” for individual swarm components. This specification-based
approach provides a promising starting point for the study of model-based testing of swarm
applications.

Generally speaking, model-based testing [5] uses a model to automatically generate
randomised test cases conforming to the model itself; then, it uses suitable tooling to observe
whether the component-under-test behaves as expected by the test model. In the context of
TaRDIS, the test model could be based on either a swarm protocol specification, or on a

Page 15 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

projected workflow; then, a series of randomised test cases could emit and read events
according to the model (e.g. by simulating one or more components in the swarm), checking
whether the component-under-test reacts to its inputs by emitting the type of events expected
by the model. Model-based testing can provide a useful complement to static verification: if
some component of a swarm cannot be statically verified (e.g. because its implementation
cannot be inspected), then the behaviour of the component could be checked by performing
randomised model-based tests.

DTU has recently studied and developed a novel methodology for the model-based testing of
web applications, and a tool (called COTS) based on such a methodology [6]. In this line of
work, the system-under-test (SUT) provides a RESTful [7] API, and the test models are
session types augmented with assertions about the data being received and transmitted by
the SUT. For instance, a COTS test model can express that “if a warehouse item with id X is
created, and then deleted, then the id X must not appear in the result of subsequent queries”.

Figure 3 shows a simple example of the COTS test model (called S_shop) for an e-shop
application. The model says that the e-shop protocol expects the client to send an ‘addCust’
request (to add a customer to the e-shop), and then await for a response ‘C201’ (denoting
success) carrying the id of the newly-added customer (‘custId’). Then, the client can
recursively add information about the credit card or address of the newly-added customer,
retrieve the customer information, or delete the customer and terminate. The test model
contains assertions like ‘checkCustomer’ (line 9) to ensure the customer data retrieved from
the e-shop (c2) matches the data generated at the beginning of the interaction (c1 on line 1).
COTS can use this test model to generate random tests that simulate e-shop clients
interacting with an e-shop SUT; if the SUT does not respond according to the test model
(e.g., if it crashes or sends back invalid customer data), the fault is immediately detected and
reported.

Figure 3: Sample test model for the COTS tool.

DTU is evaluating whether COTS could be the basis for a similar tool for model-based testing
(to be included in the TaRDIS toolkit) that communicates through the TaRDIS toolkit, and
uses as test model a swarm protocol or workflow, possibly augmented with assertions about
the data being transmitted/received.

Page 16 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

2.1.6 Scribble (UOXF)

Scribble is a language to describe application-level protocols among communicating
systems. Building on the theory of Multiparty Session Types (MPST) [8], Scribble tackles the
challenges of adapting and implementing session types to meet real-world usage
requirements. Scribble and Swarm protocols serve different roles in managing distributed
systems. Scribble is used to specify and verify communication patterns between software
components, ensuring that messages are exchanged correctly between different parts of a
system. On the other hand, Swarm protocols focus on managing containerised applications
by defining how containers are deployed, networked, and maintained, ensuring the
applications run smoothly and efficiently. While Scribble ensures correct communication,
Swarm protocols ensure efficient operation and management of containerised applications.

Figure 4: Top-down MPST methodology.

Global Protocol Specification. Following the top-down MPST design methodology, as
illustrated in Figure 4, the Scribble framework starts from specifying a global protocol, a
description of the full protocol of interaction in a multiparty communication session from a
neutral perspective, i.e. all potential and necessary message exchanges between all
participants from the start of a session until completion.

Local Protocol Projection. Subsequently, Scribble syntactically projects a valid source
global protocol to a local protocol for each role. Projection essentially extracts the parts of the
global protocol in which the target role is directly involved, giving the localised behaviour
required of each role in order for a session to execute correctly as a whole. A further
validation step is performed on each projection of the source protocol for role-sensitive
properties, such as reachability of all relevant protocol states per role. The validation also
restricts recursive protocols to tail recursion. A valid global protocol with valid projections for
each role is a well-formed protocol.

Endpoint FSM. Building on a formal correspondence between syntactic local MPST and
communicating FSMs, Scribble can transform the projection of any well-formed protocol for
each of its roles to an equivalent Endpoint FSM (EFSM). The nodes in an EFSM delineate
the state space of the endpoint in the protocol, and the transitions the explicit I/O actions
between protocol states. The local type of an endpoint can be then used in the code
generation process, to generate APIs that are correct by construction.

Consider the following scenario, as shown in Figure 5, where an online travel agency
operates a “travelling with a friend” scheme. It starts when a traveller (B) suggests a trip
destination to their friend (A), who then queries the travel agency (S) if the trip is available. If

Page 17 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

so, the friends discuss among themselves whether to accept or reject the quoted price. If the
trip was unavailable, the friends start again with a new destination.

Figure 5: Travel agency protocol as a sequence diagram.

The travel agency protocol is specified in Scribble as shown in Figure 6:

Figure 6: Travel agency protocol in Scribble.

while the EFSM for role A is demonstrated in Figure 7:

Figure 7: EFSM for TravelAgency role A.

As further work, NuScr is a toolchain for multiparty protocols, designed to handle protocols
written in the Scribble language. NuScr implements the core part of the Scribble language,
with various extensions to the original MPST. This allows protocols written in the Scribble
description language to be accepted by NuScr and then converted into an MPST global type.

Page 18 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

From a global type, NuScr can project onto a specified participant to obtain their local type
and subsequently generate the corresponding communication finite state machine (CFSM),
which can be used for API generation. Additionally, NuScr can generate code for
implementing the participant in various programming languages from their local type or
CFSM. NuScr can be used either as a standalone command-line application or as an OCaml
library for manipulating multiparty protocols. NuScr also features a web interface, allowing
users to perform quick prototyping directly in their browsers without the need for installation.
See Figure 8 for a screenshot illustrating an Adder Protocol.

Figure 8: Screenshot of the NuScr web interface, showing an adder protocol.

In the context of TaRDIS, Scribble, NuScr, and their extensions can be used to specify, verify,
and validate communication protocols. Here is a specific application: to support the
configuration of application components at runtime, which is a primary focus of T6.3 in
TaRDIS, T4.4 introduces a model for hierarchical namespaces that promotes the proper
organisation and redistribution of resources [9]. All protocols presented for this model are
validated using the toolchain [10], an extension of Scribble with explicit connection actions to
support protocols with optional and dynamic participants.

2.1.7 Java Typestate Checker (NOVA)

The Java Typestate Checker (JaTyC) tool statically verifies that, by attaching a protocol
declaration to each class in the code, the developer gets:

- memory-safety: no null-pointer exceptions nor memory leaks;
- protocol compliance: client code executes respecting each object correct usage;
- protocol completion: all objects used until the end of their protocols (and released).

When a Java program runs: (i) sequences of method calls follow the object's protocols; (ii)
objects' protocols are completed; (iii) subclasses' instances respect the protocol of their
superclasses.

Page 19 of 48 © 2023-2025 TaRDIS Consortium

https://nuscr.dev/
https://github.com/jdmota/java-typestate-checker

TaRDIS | D4.1: Report on the desirable properties for analysis

With this, JaTyC assists developers in getting their object usage protocols correct, being able
to avoid some crashes before the code is executed. This is crucial for application soundness
in general and for cybersecurity in particular, since crashes may give unintended access to a
machine. For example, in some places, it is a common occurrence that ATMs show the
operating system’s desktop interface if the bank’s application crashes. Another application to
cybersecurity is to analyse systems where security clearance levels are needed in order to
execute operations: this can be enforced in JaTyC by e.g. requiring that each operation’s
execution is preceded by the successful verification of the operation’s security clearance.

Concretely, JaTyC helps developing sound code, providing means to specify and guarantee
correct API behaviour, preventing at the same time critical code vulnerabilities like CWE-306
(Missing Authentication for Critical Function), CWE-754 (Improper Check for Unusual or
Exceptional Conditions), or CWE-841 (Improper Enforcement of Behavioral Workflow).

To illustrate, consider the snippet of code in Figure 9, where the class File is supposed to be
used as described by the finite-state machine (aka typestate) below that declares available
transitions from a state are external choices (the circles) and internal choices on possible
method results (the diamonds):

File f = new File(); System.out.println(f.read());

Figure 9: Snippet of JaTyC code.

With JaTyC installed as an expansion of their IDE, the developer that wrote the code above
would get either when typing or at compile time the message ‘error: Cannot call [read] on
State{File, Init}’. The static typechecker detects the error: one must open before read.

If the developer uses the file with the code

switch (f.open()) {

 case OK:

 System.out.println(f.read());

 break;

Page 20 of 48 © 2023-2025 TaRDIS Consortium

https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/841.html
https://github.com/typestate-editor/typestate-editor.github.io

TaRDIS | D4.1: Report on the desirable properties for analysis

 case ERROR:

 break;

}

the error now is ’[f] did not complete its protocol’. In case OK, after reading the file one must
close it.

Resource leakage is also detected: the method close below needs to close the file.

public class LineReader {

 // error: [this.file] did not complete its protocol

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 file = new FileReader(filename);

 curr = file.read(); /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 }

 public boolean eof() { return curr == -1; }

 public void close() {}

 }

Even in the presence of polymorphic code, the guarantees stay valid: JaTyC supports
inheritance (paper to appear in ECOOP’24). Consider a class Bulb with the following
typestate

typestate Bulb {

 DISCONN = {

 boolean connect(): <true: CONN, false: DISCONN>,

 drop: end

 }

 CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): CONN

 }

}

and a subclass FunnyBulb ruled by

typestate FunnyBulb {

 DISCONN = {

 boolean connect(): <true: STD_CONN, false: DISCONN>,

Page 21 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

 drop: end

 }

 STD_CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): STD_CONN,

 Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

 void setColor(String): STD_CONN

 }

 RND_CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): RND_CONN,

 Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

 void randomColor(): RND_CONN

 }

}

Up/down casting is supported. The code below is well-typed.

public class ClientCode {

 public static void example() {

 FunnyBulb f = new FunnyBulb(); // DISCONN

 while (!f.connect()) {} // STD_CONN

 f.switchMode(); // STD_CONN | RND_CONN

 setBrightness(f);

 }

 private static void setBrightness(@Requires("CONN") Bulb b) {

 if (b instanceof FunnyBulb && ((FunnyBulb) b).switchMode() == Mode.RND) {

 ((FunnyBulb) b).randomColor(); // RND_CONN

 }

 b.setBrightness(10); // CONN

 b.disconnect(); // end

 }

}

The tool reached TRL 5 (it is thus ready to be used and will be added to the TaRDIS toolbox)
and received the Availability and Functional Badges at ECOOP’24. In the repository one
finds several examples and case studies used to validate the approach. In the context of
TaRDIS, the tool can be used to specify, verify, and validate any application developed in
Java that is API based.

Page 22 of 48 © 2023-2025 TaRDIS Consortium

https://2024.ecoop.org/
https://github.com/jdmota/java-typestate-checker

TaRDIS | D4.1: Report on the desirable properties for analysis

2.2 DATA CONVERGENCE AND INTEGRITY

Distributed applications (widely common these days) need to replicate data to make it
available. The problem is: how to keep replicated data (eventually) consistent in a scenario
where the communication topology is dynamic due to connectivity issues, devices (inherently
heterogeneous) come and go at any moment?

The correctness of an application results from the correctness of its operations Local views
on data should not diverge in an irreconcilable way, so, a certain degree of consistency is
necessary. Strong consistency in such a dynamic scenario is unattainable. Depending on the
nature of the swarm system, what makes sense is to ask for either eventual or causal
consistency.

Eventually, possible conflicts must be solved; how? set specific moments for each replica to
do so and coordinate operations only if correctness cannot be guaranteed otherwise. In the
context of TaRDIS, we have available two deductive approaches to develop correct
applications dealing with replicated data.

In short, conflict resolution mechanisms should guarantee (at least some) of these
requirements: (1) safety in sequential execution; (2) (causal and/or eventually) convergence;
and (3) the precondition of each operation should be stable under the effect of any other
concurrent operation. A typical example is a shared set:: inserts can always happen, as sets
do not have repeated elements (although the local view of the set may be outdated), but
removals require causal and/or eventual "coordination" (if one cannot remove a non-existing
value, as in some contexts, this can block or crash the device).

2.2.1 VeriFx (NOVA)

This tool [11] provides libraries for implementing and verifying Conflict-free Replicated Data
Types (CRDTs) and operational transformation functions. These libraries implement the
general execution model of those approaches and define their correctness properties. RDTs
verified with VeriFx can be transpiled to mainstream languages (currently Scala and
JavaScript).

2.2.2 Ant (NOVA)

The tool [12] provides an automatic approach to determine operations that can safely (from
the data integrity and consistency point of view) commute, allowing to execute first
operations not requiring inter-replica coordination. We develop a language-based static
analysis to extract information at compile-time that can be used by the run-time support to
decide on call anticipations of operations in replicas without compromising consistency. We
illustrate the formal analysis on several paradigmatic examples and briefly present a
proof-of-concept implementation in Java.

Consider that:

Locally permissible ops are immediately executed

Strongly consistent ops require coordination among replicated sites

An e-bank application could behave as in Figure 10, using our static analysis and runtime

Page 23 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

support.

Figure 10: An e-bank application of Ant.

To be usable by third-party developers, the tool needs further work that we will pursue in the
coming period. In the context of TaRDIS, a possible adaptation is to consider alternative
policies to strong consistency, as the approach can be made parametric.

2.2.3 AtomiS (NOVA)

To ensure data integrity in concurrent applications, we developed AtomiS [13], a new DCCC
approach that requires only qualifying types of parameters and return values in interface
definitions, and of fields in class definitions. The latter may also be abstracted away in type
parameters, rendering class implementations virtually annotation-free. From this high-level
specification, a static analysis infers the atomicity constraints that are local to each method,
considering valid only the method variants that are consistent with the specification, and
performs code generation for all valid variants of each method. The generated code is then
the target for automatic injection of concurrency control primitives that are responsible for
ensuring the absence of data-races, atomicity-violations, and deadlocks.

Basically, the idea is:

- mark resources which need to be accessed in mutual exclusion;
- a type-checking and inference system ensures race freedom.

Figure 11 describes the approach.

Figure 11: AtomiS approach.

We illustrate how the code looks like in Figure 12, with a simple yet widely used piece of
Java code: a concurrent list. The annotations identify the resources to be atomically
accessed. The static analysis checks the soundness of the code, produces automatically
variants of code and new annotations to guide the generation of concurrency control.

Page 24 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Figure 12: Generated code of AtomiS.

To be usable by third-party developers, the tool needs further work that we will pursue in the
coming period. In the context of TaRDIS, the tool can be used whenever developing
concurrent applications with Java. Moreover, the can be made parametric on the resource
control policy, and thus generalised to other data qualifications.

2.3 SECURITY VERIFICATION

2.3.1 Channel Information Flow (DTU and NOVA)

Information flow control is a language-based technique anchored on the property of
noninterference for detecting and preventing confidentiality breaches in target systems
through the systematic labelling and tracking of information. There are multiple models for
information flow control, with lattice-based models being the most common. These models
allow for the hierarchic compartmentalisation of information according to the security lattice, a
finite, lower and upper-bounded, partially ordered set of security levels. Information flow
policies are detailed in specifications defining the secrecy (security level) of a system's data
items and information receptacles (entities holding/receiving information like variables and
communication channels). The enforcement of information flow policies boils down to
preventing secret information from going to less secret receptacles and is achieved at
runtime or compile time through mechanisms such as information flow monitors or type
systems. The base model enjoys many improvements, such as value-dependent security
levels, which enhance the flexibility of the lattice and allow for finer-grained security policies.

2.3.1.1 DCR Choreographies with IFC

In software development, handling data confidentiality in systems implementing complex
business processes is challenging, even more so when considering distributed systems with
multiple interacting entities. Mainstream approaches to defining business processes do not
adequately address confidentiality properties, leaving room for potential information leaks.

We focus on data and time-aware declarative models for specifying interactions in business
processes [14]. We extend dynamic condition response (DCR) graphs, capturing
choreographies with data and time, developing a mechanism based on progress-sensitive,
time-sensitive noninterference to prevent side channels due to the early or late execution of
events, thus ensuring data confidentiality throughout the process.

Consider the DCR choreography depicted in Figure 13, modelling a fraction of a purchase
process where the buyer asks multiple sellers for quotes on a product and selects the best

Page 25 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

offer (at most one quote) among the (possibly empty) set of available quotes. The buyer must
always register the outcome of the process in its ledger: no quotes received, no quotes
selected, or the chosen quote. Also, sellers must not know about each other's offers.

Each node represents an event, a stateful entity whose state expresses if it is
included/excluded, pending/not pending, has executed, and its value and time steps since its
last execution (if previously executed). Event execution may entail the transmission of
messages between a sender (on top) and one or more receivers (on bottom). On the graph,
solid-line events are included, while dashed-line events are excluded, and events with a "!"
on the top left corner are pending events which have to execute for the process to stabilise.

Figure 13: DCR choreography, modelling a fraction of purchase process.

The edges of a DCR graph represent control-flow relations and specify the effect that the
execution of an event has on the state and enabledness (possibility of execution) of another.
For instance, green (red) arrows define inclusion (exclusion) relations and lead to the
inclusion (exclusion) of the event on the "+" ("%") end of the edge; the yellow arrows denote
condition relations and define that the execution of events on the headless end as a
requirement for the execution of events on the "❯⬤" end of the edge; finally, blue arrows
define response relations and make the events on the "❯" end of the edge pending execution
whe events on the "⬤" end of the edge execute. Condition and response relations can be

Page 26 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

associated with time, thus defining a delay and a deadline, respectively. In the example, once
the "Request Quotes" event executes, the timed condition relation prevents "Timeout" from
executing before seven days have passed, and the response relation forces "Timeout" to
execute within a seven-day window; "Timeout" executes in exactly seven days.

We refer the reader to other works [15] for a more comprehensive description of DCR graphs
semantics and these relations and others not mentioned in this document.

Given the example, we aim to detect confidentiality breaches leading to the unintentional
disclosure of sensitive information to unauthorised entities. To apply information flow control,
we start by defining the security lattice. Considering the requirements of the problem at hand,
we opt for a powerset lattice of value-dependent security labels, which allows both for precise
security policies and information sharing. The security lattice is depicted in Figure 14, where
the labels S(s0) and B(b0) define the security compartments seller s0 and buyer b0.

Figure 14: Security lattice of purchase process.

Depicted in Figure 15 is the security annotated DCR graph. The most strict label one can
apply to an event is the set containing the security level of each event participant; the
greatest lower bound. An event should not be above the security clearance of any of its
participants.

We define a safety property over security annotated DCR graphs sufficient to ensure
time-sensitive, termination-sensitive noninterference. Simply put, our safety property states
that secret events cannot influence public events. Therefore, relations where the left-hand
side event has a security level not lower than the security level of the right-hand side event
are deemed illegal. Thus, DCR graphs exhibiting this property do not leak information, and
given that events are both data and computation, this is a sufficient condition to prevent both
explicit and implicit information leaks.

Page 27 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Figure 15: Security annotated DCR graph of purchase process.

A quick glance over the labelled DCR graph above reveals that a few relations between
events go against our safety property. For instance, the inclusion relations from "Quote"
influence the enabledness of "Reject" events, and "Select Quote" interferes with the less
secret events "Reject" and "Accept" through the exclusion relations, allowing for a seller to
know who made the accepted quote. By detecting the relations not conforming to our
statically verifiable safety property, we can correct the process to one without leaks, such as
the one shown in Figure 16.

Page 28 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Figure 16: Security annotated DCR graph of purchase process without leaks.

We replace the single selection event followed by acceptance and rejection events with
individual pairs of "Accept" and "Reject" for each quote. This graph leaves some
requirements unfulfilled. Namely, a seller can accept multiple quotes. This results from the
strictness of our progress-sensitive noninterference-ensuring property, which can be
overcome through a declassification mechanism or a less strict form of noninterference.

To transpose information flow control from DCR graphs to choreographies, we define a
well-formedness property for choreographies that ensures that as long as the underlying
graph is safe (does not have any relation whose left-hand side event has a label not lower
than the label of the right-hand side event), the choreography and its endpoint projection
exhibit time-sensitive, progress-sensitive noninterference. The well-formedness property is
quite reasonable, only requiring that the label of an event is lower or equal to the security
clearance of any of its participants.

In our analysis of information flow control in DCR choreographies, we base noninterference
on the indistinguishability of states during normal system execution. That is to say, without
explicit attacks on communications routes or data. Our results only ensure that

Page 29 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

choreographies are well formed and the regular users are not exposed to erroneous
behaviours embedded in the processes.

To broaden the scope of the analysis, DCR choreographies with IFC, which assumes trusted
communication, need to be extended with support for IFC using public channels. We still
assume that information leaks due to the analysis of message routing are admissible. Next,
we present an approach to use channel information flow as sound support for DCR
choreographies over public networks by means of encryption operations that help tunnel data
between trusted contexts via insecure media.

2.3.1.2 Information Flow Channel

Traditionally, information flow analyses are most concerned with what can happen in a
system that develops in good-faith adherence to specification. For example, one can check
that the code executed internally in one of the system’s machines does not violate the
security policy. This usually ignores a central attack vector: that of an intruder eavesdropping
or modifying messages sent over a public network. If the communication primitives used by
the programmer are not sufficiently secure or not used in the right way, such an intruder
might be able to derive confidential information from patterns in the network traffic or by
observing the behaviour of machines when sent unexpected messages by the intruder. We
introduce the IFChannel framework for extending an information flow analysis to systems
with communication over an untrusted network in a secure way. The main contribution is
theoretical: we are proving that if the communication is performed using appropriate
cryptography then the information flow analysis provides the very strong privacy guarantee of
static equivalence (basically, that the intruder learns nothing about confidential information).
This proof then tells us which requirements on the implementation of channels are sufficient
for them to be included in the TaRDIS information flow tool.

We first demonstrate some of the problems which may arise when combining an information
flow analysis and communication over a public network. Consider the following lines of code:

If bid or threshold is of any other label than ⊥ (i.e. public) this program will be illegal since an
intruder could infer information about the two variables from the observed network traffic.
Note that this is the case even if the prosumerChannel completely hides the content of
messages. To fix this, the program could be restructured to the following version which does
hide the truth-value of bid ≥ threshold.

Page 30 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Conversely, we might have situations where the traffic pattern itself reveals nothing, while the
content of messages does. Consider the following:

Even if the intruder does not have the keys necessary to decrypt the message, they will be
able to see whether the secret value is greater than 50 by checking if the two sent messages
are the same or not.

Another attack vector is the intruder sending a message out of context to make a machine
reveal something confidential. Consider the following two programs running on different
machines:

Seller:

Announcer:

The idea is that the first machine is starting an auction and the second machine is
responsible for announcing the (public) id of the seller. By chance we might have a third
machine running the following program:

Bidder:

Page 31 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

This introduces an attack on the secret price, since an intruder might capture the message
from the bidder and send it to the announcer. The announcer will then believe that the secret
price is a seller id and announce it to the public.

These examples demonstrate that we need the channels in the information flow analysis to
be called only in permitted contexts, introduce randomness, and use formats to avoid the
acceptance of out-of-context messages.

We then also want to prove that these requirements are sufficient. Soundness is proven with
regards to static equivalence [16], which has traditionally been used to show privacy
preservation of cryptographic protocols.

In the following, we briefly outline the soundness proof.

We represent a system state (from the perspective of a single program) as a mapping from
program variables to terms and a list of terms representing the messages sent to the
network. Figure 17 shows a program and potential end-state after executing the program:

Figure 17: Potential end-state after execution of program.

We then allow the intruder to construct recipes over the information they are allowed to
access in such states. A recipe consists of functions the intruder knows and references to
variables and network messages. An example is the following (given that key1 and key2 are
below the intruder’s paygrade):

A recipe, r, can be evaluated over a state, written S(r), by replacing the references with the
values stored in the state. The evaluation of a recipe only succeeds if there are only
references to information that the intruder is permitted to access (we assume the intruder can
be a participant in the system with a given security level).

Page 32 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

We can then define that two states, S and T, are statically equivalent if for any two recipes, r1
and r2, we have S(r1) = S(r2) if and only if T(r1) = T(r2).

The soundness proof then consists in showing that for a well-typed program and two
permissible starting states (permissible means, among other things, that they are statically
equivalent), we have that if the program is executed once from each starting state we will end
up in two statically equivalent states. The implication of this is that there is no experiment an
intruder can do to figure out which of the two states they are in. In other words, they have not
obtained any knowledge about information above their security level.

We have a full formalisation of this result in the proof assistant Isabelle/HOL.

2.3.2 PSPSP (DTU)

The PSPSP tool [23, 24] was developed by DTU before the TaRDIS project. It is based on a
protocol security framework we have developed in the proof assistant Isabelle/HOL. At the
basic level, protocols are modelled in this framework as a set of traces that consist of honest
agents sending and receiving messages on a public network, as well as changing their local
state. The network is completely controlled by an intruder, who cannot break the
cryptography (Dolev-Yao style intruder model), but who may have their own cryptographic
materials like keys and passwords to be able to engage in the protocol under their real name
like a normal participant. We can define certain attack events in the protocol and define
security as the impossibility to reach such an event.

The PSPSP tool has an input language called Trac which is short for "transactions". Each
transaction is an atomic action of an honest agent, consisting of receiving some input
messages, performing checks w.r.t. these inputs and the local state of the agent, then
changing the state and sending outgoing messages. This is especially designed to model
devices like a TPM (Trusted Platform Module) that offers an API to the outside (incoming
messages as receiving a command, and outgoing messages as an answer).

In general, Isabelle/HOL is an interactive proof assistant, i.e., a human tries to prove a claim
by breaking it down into smaller logical steps that are trivial or can be automatically proved
by some heuristics. PSPSP in contrast can automatically verify a given protocol using
abstract interpretation techniques. The idea is that agent memory is organised as sets of
messages, e.g., a server may maintain a family valid(A) of sets for every agent A that contain
the valid public keys of A. These sets can be changed by the transactions (e.g., new keys
can be registered, and old keys discarded). The abstract interpretation abstracts by set
membership: all data that belongs to the same sets is not distinguished. If the families of sets
are finite, this will lead to a finite fixed point of abstract messages that the intruder can ever
know. PSPSP computes this fixed point and then "convinces" Isabelle that everything that
can happen in the concrete protocol is covered by the abstract fixed point. If a special symbol
"attack" does not occur in the abstract fixed point, then also not in any reachable concrete
state, and thus the security of the protocol is proved.

What can potentially go wrong is that the fixed point contains the symbol "attack". Then this
either represents an actual way to attack the concrete protocol (and the designer has to fix
the security flaws and try again) or it is introduced by the over-approximation inherent in the
abstract interpretation. The latter means that the protocol may be fine, but the abstraction is

Page 33 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

too coarse to prove it; in this case the modeller needs to review the specification to find
maybe a different setup of the sets of messages used by the honest agents that leads to a
finer abstraction. Note that any potential bug in the PSPSP tool does not bear the risk of
accepting a flawed protocol: in the worst case, such a bug would lead to a failure to
"convince'' Isabelle.

Utilisation of PSPSP in TaRDIS

The normal TaRDIS programmer should not be involved with cryptography and cryptographic
protocols. Rather the TaRDIS API offers functions for the setup and use of channels, even
more abstract in the concept of events as basically sending (generating events) and
receiving (reacting upon events) messages over appropriate channels. That events or
messages are not sent over channels of insufficient security level is part of the information
flow analysis (see Channel IF tool). The implementation of the TaRDIS API with respect to
cryptography, namely the setup and use of channels, uses cryptographic protocols, i.e.,
encryptions, digital signatures, challenge-response with random numbers, exchange of keys
and certificates. These protocols shall be modelled and analysed with PSPSP. This is part of
the implementation of the TaRDIS API, and thus a "project-internal" use of the tool. However,
we also plan that in the future, advanced users may want to add custom cryptographic
protocols to the TaRDIS API and verify them with PSPSP.

Extensions of PSPSP in TaRDIS

To aid this verification, both TaRDIS-internal and by TaRDIS power-users, we plan to make
several extensions. First, we are developing a choreography language for cryptographic
protocols to allow for a more high-level specification, as discussed in a section below.

Moreover, currently the tool is a bare-bones extension of Isabelle that does not give a user
much support when the verification does not work: basically one can view the abstract fixed
point (which is often substantially large) and which of the requirements were violated. We
plan to improve this situation by a plugin tool that can analyse the fixed point and give hints
as to whether the model indeed exhibits an attack (also on the concrete level) or where the
model is possibly too coarse (leading to false positives - attacks on the abstract level that do
not exist on the concrete level) and needs to be refined.

Finally, we are working on the question of accountability: that dishonest actors who break the
rules or agreements run the risk that they can be identified and held accountable. This is an
extension of the concept of non-repudiation, i.e., that an actor cannot deny certain
transactions they have performed. Our model of this goes beyond pure non-repudiation. In
fact, our model includes a legal framework, i.e., rules that participants are bound to uphold,
and a judicial framework, i.e., how an impartial judge (or ombudsperson) can evaluate
detected cases of rule violations. This can involve the request that certain information must
be kept and can be subpoenaed by the judge; failure to comply with a subpoena is then also
a rule violation. This allows for a system where rules are ensured by the fact that dishonest
participants are discouraged to break the rules of the contract, because they run a
substantial risk of being caught and having to pay a fine.

Besides the immediate practical value of accountability, there is also a more fundamental
interest in this kind of systems for TaRDIS: we do not necessarily describe here a protocol as

Page 34 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

a sequence or choice of actions of participants, but rather allow them to do everything they
are cryptographically able to, and rather have rules that certain messages have legal
meaning. For instance a public key may be legally bound to a participant, and signing a
message of a particular format using the corresponding private key, is a legal binding
statement, e.g. ordering items from another participant. For accountability of such orders,
however, the rest of the workflow of the participants is completely irrelevant (i.e., under which
conditions a participant chooses to place an order). Leaving open most of the behaviour of
the participants does not only lead to more efficient verification of accountability questions,
but also makes it independent of changes in the workflows as long as the legal and judicial
framework are not affected by the changes.

Compositionality

The initial focus of the PSPSP framework, even before the automated verification itself, is the
secure composition of protocols [25]. Given that we have proven two protocols in isolation,
can we infer that it is also secure to run them together on the network? The classic results in
this area are that this indeed rather straightforward if the protocols do not share any
cryptographic material; if they share cryptographic keys such as a public-key infrastructure
used by both protocols, then it suffices that the messages of the protocols are made
distinguishable, so that an intruder cannot abuse a message from one protocol to achieve
something in the other. The composition in the PSPSP framework extends upon these
classic results in two significant ways.

First, we do allow a set of shared secrets between the two protocols, and the declassification
of such secrets. This allows us to have an overlap between the two protocols, e.g., if we have
some general key certificates by a certificate authority, we can use these in both protocols.
By default, all these messages in the overlap of the two protocols are secret, but they can be
declassified, as it usually makes sense for key certificates.

Second, the participants can maintain a long-term state in terms of one or more sets of
messages, e.g., a set of keys for a particular purpose, or on an application level, a set of
orders that have been placed and need to be worked off. Crucially, we allow that the
protocols share these sets. This is not meant as another way of communication, but rather as
an interface between two protocols. For instance, a server may maintain a database of
registered public keys of users, and may run several protocols independently on this
database.

This stateful aspect allows us also to decompose a larger system into smaller components
and verify them each in isolation. For instance, we may model a login protocol that transmits
a user password over a channel established by the TLS protocol. This can be done
compositionally as follows: clients and servers run the TLS protocol to negotiate a key, and
the client enters the negotiated key into a set clientkey(A,B) and the server into a set
serverkey(B) where A and B are the names of the client and server, respectively. Note that
the server here cannot be sure who A is (in the standard setting where users have no key
certificates), and hence their set is parameterized only over the name B of the server. The
login protocol now can start from these keys: a client A can take (and delete) any key from
clientkey(A,B) and encrypt a message to B containing the password of A. The server can

Page 35 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

similarly check that this message decrypts with a key in serverkey(B) and authenticate A in
this connection.

The interesting point of composition is now that we can for instance make updates to the TLS
protocol (e.g. from version 1.2 to 1.3) and only need to verify that the new version satisfies
the requirements of the composition and the interface that the login protocol is expecting, but
not the login protocol. Similarly, we could replace the login protocol by a more complex
single-sign-on solution with a trusted third party, without reproving anything about TLS.

Utilisation of Compositionality in TaRDIS

The main use of compositionality is the interfacing between channels and information flow
analysis. While the Channel Information Flow tools ensure that the applications will obey the
information flow policy, provided that we write messages only into channels that are
sufficiently protected by cryptography, the result behind the channel information flow
considers rather basic cryptographic implementations. Now compositionality allows us to
replace such a basic implementation with a more complex one that gives at least the same
security guarantees, without having to repeat the information flow analysis of the application.

The reason for more complex implementations can vary. Typically the basic implementation
will assume a simple key infrastructure, e.g., every relevant group of participants have a
shared key. Thus cryptographic mechanisms can be simply symmetric encryption or MACing
with the respective group key for confidentiality and/or integrity. In contrast, in a
heterogeneous landscape we may rely on a key-establishment using a trusted third party or
certificates. Similarly other aspects that are independent of security itself (like availability of
participants) may require more complex protocols and control flows. It is thus economical to
verify the high-level application based on the (unrealistic) assumption of a simple channel,
and then replace this channel by a realistic one. Compositionality here allows us to separate
the verification tasks of application and channel.

2.3.3 Cryptographic Interpretations of Choreographies (DTU)

This projected tool is relevant for the description, implementation, and verification of the
secure channels that TaRDIS offers. For starters, channels should be formalized and verified
in PSPSP. PSPSP offers a low-level language for security protocols. It is well-known how to
translate Alice-and-Bob notation (aka protocol narrations) to the low-level languages such as
PSPSP, which is more user-friendly and has the advantage to show the "whole picture", i.e.,
how the different roles of the protocol are supposed to interact. However, Alice-and-Bob
notation is also a bit limited: we have a linear execution of protocol steps without for instance
non-deterministic choices or global mutable state of participants (such as a database or
orders, or the key storage of a trusted device).

We are currently working on a cryptographic choreography language that fills that gap. The
idea is that choreography languages are indeed providing extensions over Alice-and-Bob
languages. For cryptographic protocols - in contrast to standard choreography languages -
one must pay attention to how honest agents actually apply cryptographic operations. For
instance, when a protocol is based on Diffie-Hellman, we consider exponentiation modulo a
prime number p (or elliptic curves over a finite field); let us just write exp(g,X) for
exponentiation modulo p with a secret X and a generator g where p and g are fixed public

Page 36 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

values. Alice and Bob each generate a secret X and Y, respectively, and exchange exp(g,X)
and exp(g,Y), respectively. This exchange needs to be authenticated, i.e., Bob must be sure
that exp(g,X) really comes from Alice, and vice versa. The point of modular exponentiation is
that it is computationally hard to get the X from exp(g,X). After the exchange Alice and Bob
have the shared secret key exp(exp(g,X),Y). The choreography may thus prescribe that Alice
shall encrypt some message with the key exp(exp(g,X),Y) and send it to Bob. Note that Alice
will not know Bob's secret Y, but have only received some value GY that is supposed to be
exp(g,Y). The key that Alice should generate from this is exp(GY,X) which, if Bob acted
correctly, is exp(exp(g,Y),X)=exp(exp(g,X),Y).

This example illustrates how tricky it is to understand the protocol execution from just a
specification of the messages that are supposed to be exchanged: we need to understand
how agents can construct the outgoing messages from their knowledge, and how they are
decomposing and checking the incoming messages. For Alice-and-Bob notation this problem
has been solved on the semantic level: how to define the execution of each role from an
Alice-and-Bob specification. Note that this definition still bears problems that are in general
undecidable because they are based on an algebraic theory of operators (e.g. that
exp(exp(A,B),C)=exp(exp(A,C),B) is the very least we need for Diffie-Hellman) and in general
even the word problem is undecidable for a given set of algebraic equations. However, for
many standard theories that are used in protocol verification we can give an effective
procedure.

When applying this concept to choreographies we have, however, the problem of
non-deterministic branching. As an example, we have a simple choreography where A can
encrypt for B one of two kinds of messages - which one is a non-deterministic choice of A. A
cannot however authenticate the message for B and can just use a Mac with a shared key
with a trusted server s, and the server should sign the encrypted message for B:

A->s: [crypt(pk(B), m1)]sk(A,s). s->B: sign(inv(pk(s)),crypt(pk(B)),m1)

+ [crypt(pk(B), m2)]sk(A,s). s->B: sign(inv(pk(s)),crypt(pk(B)),m2)

Here pk(B) is the public key of B, sk(A,s) is the shared key of A with the server s, [M]K stands
for sending the message M along with a Mac of M using key K, and inv(pk(s)) is the private
key of the server. The server, not knowing B's private key actually cannot see which of the
messages A is sending. That is however also not necessary, because the behaviour of B is
uniform in this case. Our semantics of cryptographic choreographies understands this and
gives for s the following local execution:

receive(M). if(checkMac(M,sk(A,s))) then snd(sign(inv(pk(s))),extract(M)) else error

2.4 ORCHESTRATION, VERIFICATION AND REGARDING PROPERTIES INTEGRATED
WITH WP5 AND WP6

2.4.1 Correct Orchestration of Federated Learning Algorithms (UNS, WP4 for WP5)

The focus of our work so far has been on the correct orchestration of the federated learning
algorithms. In 2023, Python Testbed for Federated Learning Algorithms (PTB-FLA) was

Page 37 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

introduced [17]. PTB-FLA was developed with the primary intention to be used as a FL
framework for developing federated learning algorithms (FLAs), or more precisely as a
runtime environment for FLAs. PTB-FLA supports both centralised and decentralised FLAs.
The former is defined as in [18] , whereas the latter are generalised such that each process
(or node) alternatively takes server and client roles from [18] or more precisely, it switches
roles from server to client and back to server. For the full details, we refer to [17].

We have formally verified the correctness of two generic FL algorithms, a centralised and a
decentralised one, by proving two properties:

● Deadlock-freedom (safety property): an algorithm will never reach a
non-terminated state with no further move

● Successful FLA termination (liveness property): an algorithm always reaches the
terminated state

We have used the Communicating Sequential Processes calculus (CSP) [19] and the
Process Analysis Toolkit (PAT) [20] model checker, and proved the correctness of algorithms
in two phases. In the first phase, we have constructed by hand CSP models of the generic
centralised and decentralised FLAs as faithful representations of the real Python code.
These models are constructed in a bottom-up fashion. In the second phase, we formulate
desired system properties, namely deadlock freedom (safety property) and successful FLA
termination (liveness property) and automatically prove formulated statements in PAT.

There are several directions of work we are following currently. First, we work on the
automatic translation of the Python code into CSP, which will ensure that CSP models
accurately represent the Python code. Second, in [21] we have used PAT to prove deadlock
freedom and liveness property, but we also work on a different approach, where we will use
Maude for the verification. Furthermore, during the discussion with members of WP5 we
have identified several desirable FL properties:

● FL Roles of agents: ensures that clients receive only the data they can process, This
contributes to the efficiency of the model resulting in lower energy usage.

● FL Data privacy: ensures statically that only the model parameters can be sent by
the clients and servers, actual data remains private.

● FL Message delivery: have large enough buffers of servers to support receiving
messages from all clients, contributes to the liveness.

● FL Clients equality: clients should equally contribute to the algorithm, avoid the
scenario where a single client sends multiple messages.

We work on the specification and verification of these properties.

For now, we have used CSP models only to specify FL algorithms introduced in [17]. We
investigate other FL algorithms with the aim to specify and verify them as well.

Another tool used to model distributed protocols is Multiparty Asynchronous Session Types
(MPST), which is a class of behavioural types tailored for describing distributed protocols
relying on asynchronous communications. Hu and Yoshida extended MPST in [10] with
explicit connection actions to support protocols with optional and dynamic participants.
Although these extended MPST enabled modelling and verification of some protocols in
cloud-edge continuum [22], we could not use them to model the generic centralised and

Page 38 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

decentralised FLAs, because we could not express arbitrary order of message arrivals that
take place at an FLA instance. However, we work on the extension of MPST which will
enable modelling algorithms introduced in [17].

2.4.2 Correct Hierarchical Namespaces (UNS, WP4 for WP6 T6.3)

One of the main focuses of Task 6.3 in the TaRDIS project is designing a solution for
supporting the reconfiguration of application components at runtime. The first step should
include designing a system for storing configuration data. Configurations can be versioned so
that the changes can be traced over time. Applications live in different namespaces, allowing
logical isolation and preventing naming conflicts. As a contribution for this task, a journal
paper [9] has recently been published. The paper introduces a model for hierarchical
namespaces that promotes the proper organisation and redistribution of resources. The
namespaces prevent naming conflicts in the system and preserve logical isolation, thus
creating a multi-tenant system. This model relies on the techniques developed in TaRDIS
WP4 for the specification and verification. More specifically, WP4 has made the following
contributions:

1. the model in the paper relies on remote configuration management and builds upon
four protocols, for which we have ensured correctness by employing an extension of
asynchronous multiparty session types;

2. resource redistribution has been modelled via record-weighted directed acyclic
graphs and accurate resource redistribution is guaranteed through graph
transformations.

In the following, we give more detail on these WP4 contributions.

The aforementioned protocols presented for the model are: (i) namespaces mutation
protocol, used to rearrange resources, (ii) secure profile mutation protocol, used to create
and push new secure computing mode (Seccomp) profiles to selected applications running in
namespaces, (iii) context switch protocol, utilised by users for switching between active
namespaces and/or distributed clouds, and (iv) upgraded cluster formation protocol, used to
create a default namespace, that holds all resources for the newly created element and,
accordingly a default security profile for that namespace. Following the top-down approach of
asynchronous multiparty session types, all these protocols have been formally modelled
using global types. For the complex communication combinations of the protocols, standard
works of asynchronous multiparty session types were not suitable for the modelling. Instead,
we have used an extended model [10], that allows specifying sending to different participants
and the dynamic introduction of participants in the session. From the specification of global
types, applying the projection function we obtained the local specifications of all participants,
called local types. All our protocols undergo validation using the toolchain presented in [10].
For full details see [9].

The resource redistribution modelled in the paper has been made through graphs and
graph transformations. First, to give a faithful model for the hierarchical namespace
organisation, we have developed a novel record-weighted directed graphs. There, each node
in the graph represents a single namespace and directed edges represent parent-child
connections between the namespaces. Weights assigned to nodes represent the resources
of the namespace. For example, consider the graph shown in Figure 18. Namespace A has

Page 39 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

two child namespaces B and C, that have been given some resources. Here, we consider
three different resources that are allocated throughout the namespaces. The two values next
to each resource represent the amount of resources available and utilised (by the
applications) in the namespace.

Figure 18: Example of namespaces resource graph.

Applications running in the namespaces are modelled again through graphs. Figure 19 gives
an example. The resources mentioned in the applications are the ones that are specified as
utilised in the namespace.

Figure 19: Example of application resource graph.

The namespaces and their resource manipulation that the namespace mutation protocol
relies on utilise the (record-weighted) graph representation of the namespaces and are
based on the double-pushout (DPO) constructs of graph transformations. The DPO is
constructed by defining the set of so-called production rules, which can be applied to an
observed graph. We identified a set of four production rules: (i) creation of a child
namespace, (ii) deletion of a namespace, (iii) resource allocation between child-parent
namespaces, and (iv) transferring from available to utilised (and vice versa) resources in a
single namespace. The first rule is given in Figure 20 below. It specifies that for a namespace
P, we can create a child namespace C with resources Rc, provided the parent has enough
resources since Rp - Rc has to be nonnegative by the definition of graphs.

Page 40 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Figure 20: Creation of namespaces.

Using the four production rules and a single node (a default namespace) as a starting graph,
we obtain a graph transformation language. An instance of a direct graph transformation,
applying the production rule (i), is given in Figure 21 below.

Figure 21: Example of a DPO based direct graph transformation.

Besides giving clear specifications of the system described, these graphs and transformation
rules also provide the property that resources used anywhere in the organisation of the
namespaces are the ones that are provided. For full details on graphs and graph
transformations modelling namespaces and resource manipulations see again [9].

Page 41 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

3. REVISIONS OF IDENTIFIED PROPERTIES IN D4.1

This section delves into the modifications applied to properties identified in D4.1, as well as
any newly introduced properties. These updated properties are aligned with and can be
verified using the tools outlined in Section 2. Tools without revised or new properties
compared to D4.1 will not be discussed.

3.1 PROPERTIES FOR COMMUNICATION BEHAVIOURS

3.1.1 WorkflowEditor & Actyx Middleware

Two tools featuring in the planned implementation of the use case of «highly resilient factory
shop floor digitalization» were previously neglected in deliverable D4.1, namely the
WorkflowEditor and the Actyx middleware (which will be improved as part of WP6 with
TaRDIS results). The latter is not directly part of this report, but it is relevant in that it provides
some of the underlying event dissemination guarantees required by the theory underlying the
WorkflowEditor and its analytic capabilities. In the following we describe the guarantees
afforded to end users building software applications using the WorkflowEditor, which include
deadlock-freedom, liveness, eventual consensus, protocol conformance, fault tolerance
(non-adversarial), and compositional verification. These guarantees are tailored to this tool
and differ from the general properties and requirements identified in Deliverable D4.1.
Additionally, new properties unique to this tool, such as resilience through replication, perfect
availability, and termination of failure, are introduced compared to D4.1.

Deadlock-freedom. Assuming at least one live replica per role in the swarm protocol, the
workflow will eventually make progress — more precisely progress will only depend on
information transport from the previously active role to some replica playing a role that can
act next.

Resilience through replication. The system will remain deadlock free as long as it is
properly maintained. This implies that a role may be played by multiple replicas so that the
real system can employ redundancy and thus ensure that the precondition of deadlock
freedom is always met.

Liveness. All live replicas of roles that may act according to their current knowledge of the
workflow’s progress can perform an allowed action without further restrictions. In particular,
the ability to act does not depend on the availability of any other replica or the ability to
communicate.

Eventual consensus. The system guarantees that once all events up to a certain (logical)
timestamp have been disseminated to all live nodes, these nodes will agree on the path of
execution of the workflow up to the point indicated by this prefix of the event log. This
agreement is reflected in the workflow state being presented to the application, and it is
achieved without any further coordination (as is implied by the liveness property above and
the availability demanded below). This is not strict consensus because the moment in time
after which this agreement holds is not known to any of the replicas, and replicas will typically
present invalid intermediate workflow states to the application while event dissemination is
still ongoing.

Page 42 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Protocol conformance. The sequence of actions recorded as events in the federated event
log adheres to the workflow as designed using the WorkflowEditor. Note that the availability
and liveness requirements imply that some events may be emitted and later ignored due to
conflict resolution. The goal of this requirement is that the execution settled upon by eventual
consensus can intuitively be understood by considering only the global workflow design,
specified under the assumption of instantaneous and reliable event dissemination.

Perfect availability. The application can obtain the local view on the workflow state at any
time without depending on the communication with other replicas. Whenever that state
permits the local role to act, such action can be taken also without depending on the
communication with other replicas, and taking the action will update the local view on the
workflow state.

Fault tolerance (non-adversarial). Failure of replicas (crash stop) or transient
communication outages do not affect the other guarantees. Note that this does not cover
malicious behaviour like falsifying events in the log. Fault tolerance relies heavily on
resilience through replication.

Termination or failure. Assuming that no workflow branch is taken for an unbounded
number of times (in case of cyclic workflows) and that there always is at least one live replica
for each role, any well-formed workflow will eventually reach either a designed terminal state
or a failure state.

Compositional verification (in collaboration with DTU). Workflows can be composed from
smaller workflows in a black box fashion: the understanding and analysis of the composed
system does not require an understanding of the internal structure of the included workflows,
it only requires them to be well-formed.

3.1.2 Compositional Verification of Swarm Protocols

The focus of compositional verification in swarm protocols lies in identifying sufficient
conditions to ensure that when two correct swarm protocols, G and G’, which are well-formed
and deadlock-free, are composed (G|G’), the resulting composition remains correct.
Additionally, the exploration of the necessary conditions for such compositions aims to
enable developers to maintain a library comprising well-formed swarm protocols and
participant implementations such that these protocols and implementations can be combined
without introducing deadlocks or communication errors.

3.1.3 Fair Join Pattern Matching

The join pattern matching library adheres to all communication behaviour properties outlined
in D4.1, while also inherently providing the following new properties.

Mailbox communication safety. Messages and mailboxes are strongly-typed, and all
message exchanges are type-safe.

Fair join pattern matching. Any message in a mailbox that can be potentially consumed by
a join pattern will be eventually consumed.

Page 43 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

3.1.4 Verified APIs for Software-Defined Networking

The verified APIs for Software-Defined Networking in P4 modify the safety,
deadlock-freedom, and liveness properties, diverging from those described in D4.1.

Safety w.r.t. network configurations. Control programs attempting invalid updates w.r.t. the
P4 tables of a P4-defined network do not type-check.

Deadlock-freedom, liveness. A typed program that attempts a network update will always
succeed (i.e., enjoys progress).

3.1.5 Model-Based Testing of Swarm Applications

The model-based testing tool COTS introduces the following new properties compared to
D4.1. (Currently, the tool utilises a test model based on session types, with potential future
extensions to incorporate a test model based on swarm protocols.)

Test correctness. Each autogenerated test run represents a valid execution that conforms
to the test model.

Fault detection soundness. Each failing test corresponds to a case where the
system-under-test violates the test model.

3.1.6 Java Typestate Checker

The Java typestate checker adheres to all communication behaviour properties identified in
D4.1, while also inherently providing the following new properties.

Memory-safety. programs that statically type-check respect the typestate protocols of all
objects and thus no method call will ever raise a null-pointer exception. Moreover, given that
programs are free of races because the access to objects is linearly controlled, there will be
no memory leaks (the linear discipline implies that objects are fully used - according to their
protocol - and disposed).

Protocol compliance. Client code executes respecting each object correct usage, which
means that no method is called when the protocol does not allow it.

Protocol completion. All objects are used until the end of their protocols (and released).

3.2 PROPERTIES FOR DATA MANAGEMENT AND REPLICATION

The properties for data management and replication identified in D4.1 remain unchanged; the
assertions made therein retain their validity. The tools developed at NOVA are
Language-based Data Consistency Approaches, eventually avoiding data conflicts
(consistency) and ensuring safe concurrent updates (convergency).

We are looking for opportunities to work with TaRDIS partners, using idealised core versions
of the use cases. Concretely, we foresee the following collaborations:

Page 44 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

Actyx - develop a setting for “elevating” eventual consensus to consensus, without
sacrificing availability.

EDP - statically ensure policy compliance for all (client) scenarios.

Telefonica - statically ensure safe concurrent data updates.

3.3 PROPERTIES FOR SECURITY

With respect to D4.1, there are only minor changes to the security properties we want to
verify. Recall that we are going to employ two basic approaches: Firstly, the verification of
communication protocols that use cryptographic means to protect communication from
leaking information, tampering with information and unauthorised access. Secondly, we will
use information flow control techniques applied to event-based languages to analyse
systems for illegal flows that are introduced by programming mistakes. This aims to prevent
classified information from being “leaked” into public places and to prevent untrusted
information from “leaking” into a trusted information base.

Transmission Security Properties

This is one of the core verification tasks: verifying security properties (confidentiality and
integrity) of given transmission protocols with the PSPSP tool. This will be an internal use of
the tool for verifying security of the TaRDIS API.

Information Flow Properties

This is the main aim of the verification tool for DCR graphs, relying on secure channels. We
may need to make one revision here in practice: The transmission over channels is in
general observable by an attacker, who cannot open encrypted messages, but who can see
that messages are being sent and link messages that belong together, possibly even link
them to particular entities. This in general breaks the strong guarantees of non-interference,
unless one starts with anonymization techniques like onion routing (which is in most cases
not desirable as an additional layer). Thus, we have to make some concessions in terms of
so-called implicit information flow: the attacker may learn some information about conditions
being true or on the relation between messages. We are currently investigating how to limit
the exposure and how to allow for clear feedback for developers to allow them to make
conscious decisions about what information is fine to release and what needs further
protection.

Privacy-type Properties

In general, the information flow would ensure privacy properties, but due to the compromises
we have to make in information flow when transmissions are observable, the privacy
properties are similarly affected, at least with respect to an attacker who can do long-term
surveillance of the entire communication medium. However, we will at every point aim for the
maximally achievable privacy.

Page 45 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

4. CONCLUSIONS

The primary goal of the TaRDIS development environment is to assist developers in
constructing correct systems by automatically analysing interactions between various
components within a distributed system. This approach ensures that applications are
inherently designed for correctness, taking into account both application invariants and the
specifics of the execution environment. By integrating these elements, TaRDIS promotes the
development of robust and reliable distributed systems.

To tackle these challenges, this document introduces an initial toolset consisting of tools
tailored for application to the TaRDIS models. These tools ensure the fulfilment of desirable
properties that align with the specific TaRDIS use cases and requirements outlined in
Deliverable D4.1. Additionally, to facilitate calibration, this document outlines any adjustments
to the properties detailed in D4.1, as well as any new properties that can be addressed by
the tools specified herein. This ensures a more comprehensive application of the toolset
within the TaRDIS models.

As future work for the subsequent deliverable of this work package, the team will explore the
integration of the developed analyses and tools into the APIs and IDE developed as part of
work package 3 (WP3).

Page 46 of 48 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

5. BIBLIOGRAPHY

[1] Roland Kuhn, Hernán Melgratti, and Emilio Tuosto. (2023). Behavioural Types for Local-First
Software. ECOOP 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

[2] Cédric Fournet and Georges Gonthier. (1996). The reflexive CHAM and the join-calculus. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL '96). Association for Computing Machinery, New York, NY, USA, 372–385.
https://doi.org/10.1145/237721.237805

[3] Philipp Haller, Ayman Hussein, Hernan Melgratti, Alceste Scalas, Antoine Sébert, and Emilio
Tuosto. A New Take on Join Patterns. NWPT 2023 (34th Nordic Workshop on Programming
Theory).
https://conf.researchr.org/details/nwpt-2023/nwpt-2023-papers/16/A-New-Take-on-Join-Patterns

[4] Jens Kanstrup Larsen, Roberto Guanciale, Philipp Haller, and Alceste Scalas. 2023. P4R-Type: A
Verified API for P4 Control Plane Programs. Proc. ACM Program. Lang. 7, OOPSLA2, Article 290
(October 2023), 29 pages. https://doi.org/10.1145/3622866

[5] Utting, M., Pretschner, A. and Legeard, B. (2012). A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab., 22: 297-312. https://doi.org/10.1002/stvr.456

[6] Christian Bartolo Burlò, Adrian Francalanza, Emilio Tuosto, and Alceste Scalas. COTS:
Connected OpenAPI Test Synthesis for RESTful Applications. COORDINATION 2024.
https://doi.org/10.1007/978-3-031-62697-5_5

[7] Fielding, R.T. and Taylor, R.N. (2000) Architectural Styles and the Design of Network-Based
Software Architectures. Ph.D. thesis, University of California, Irvine.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. (2016). Multiparty Asynchronous Session
Types. J. ACM 63(1): 9:1-9:67 (2016). https://dl.acm.org/doi/10.1145/2827695

[9] Milos Simic, Jovana Dedeic, Milan Stojkov, and Ivan Prokic. (2024). A Hierarchical Namespace
Approach for Multi-Tenancy in Distributed Clouds. IEEE Access 12: 32597-32617 (2024).
https://doi.org/10.1109/ACCESS.2024.3369031

[10]Raymond Hu and Nobuko Yoshida. (2017). Explicit connection actions in multiparty session types.
In FASE 2017, Proceedings. Lecture Notes in Computer Science, vol. 10202, pp. 116-133.
Springer (2017). https://doi.org/10.1007/978-3-662-54494-5_7

[11] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. (2023). VeriFx: Correct Replicated Data
Types for the Masses. ECOOP 2023. https://doi.org/10.4230/LIPIcs.ECOOP.2023.9

[12]Marco Giunti, Hervé Paulino, and António Ravara. (2023). Anticipation of Method Execution in
Mixed Consistency Systems. ACM SAC 2023. https://doi.org/10.1145/3555776.3577725

[13]Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João Matos, and António
Ravara. (2023). AtomiS: Data-Centric Synchronization Made Practical. OOPSLA 2023.
https://doi.org/10.1145/3622801

[14]Eduardo Geraldo, João Costa Seco, and Thomas Hildebrandt. (2024). Declarative
Choreographies with Data, Time and Information Flow Security. Under submission.

[15]Thomas T. Hildebrandt, Hugo-Andrés López-Acosta, and Tijs Slaats. (2023). Declarative
choreographies with time and data. Proc. 21st Int. Conf. of Business Process Management,
490:73–89. https://doi.org/10.1007/978-3-031-41623-1_5

[16]Stéphanie Delaune and Lucca Hirschi. (2017). A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols. J. Log. Algebraic Methods Program. 87:
127-144 (2017). https://doi.org/10.1016/j.jlamp.2016.10.005

[17]M. Popovic, M. Popovic, I. Kastelan, M. Djukic, and S. Ghilezan. (2023). A Simple Python Testbed
for Federated Learning Algorithms. Zooming Innovation in Consumer Technologies Conference
(ZINC), Novi Sad, Serbia, 2023, pp. 148-153, https://doi.org/10.1109/ZINC58345.2023.10173859

[18]McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B.A. (2017).
Communication-efficient learning of deep networks from decentralized data. AISTATS 2017.
Proceedings of Machine Learning Research, vol. 54, pp. 1273-1282. PMLR (2017).
http://proceedings.mlr.press/v54/mcmahan17a.html

[19]Hoare, C.A.R. (1985). Communicating Sequential Processes. Prentice Hall (1985).
[20]Sun, J., Liu, Y., and Dong, J.S. (2009). PAT: Towards flexible verification under fairness. CAV

2009. Lecture Notes in Computer Science, vol. 5643, pp. 709-714.
https://doi.org/10.1007/978-3-642-02658-4_59

Page 47 of 48 © 2023-2025 TaRDIS Consortium

https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://doi.org/10.1145/237721.237805
https://conf.researchr.org/profile/nwpt-2023/philipphaller
https://conf.researchr.org/profile/nwpt-2023/aymanhussein
https://conf.researchr.org/profile/nwpt-2023/hernanmelgratti
https://conf.researchr.org/profile/nwpt-2023/alcestescalas
https://conf.researchr.org/profile/nwpt-2023/antoinesebert
https://conf.researchr.org/profile/nwpt-2023/emiliotuosto1
https://conf.researchr.org/profile/nwpt-2023/emiliotuosto1
https://conf.researchr.org/details/nwpt-2023/nwpt-2023-papers/16/A-New-Take-on-Join-Patterns
https://doi.org/10.1145/3622866
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/978-3-031-62697-5_5
https://dl.acm.org/doi/10.1145/2827695
https://dblp.org/pid/206/9263.html
https://dblp.org/pid/167/4231.html
https://dblp.org/pid/188/4409.html
https://dblp.org/db/journals/access/access12.html#SimicDSP24
https://doi.org/10.1109/ACCESS.2024.3369031
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.1145/3555776.3577725
https://doi.org/10.1145/3622801
https://doi.org/10.1007/978-3-031-41623-1_5
https://doi.org/10.1016/j.jlamp.2016.10.005
https://doi.org/10.1109/ZINC58345.2023.10173859
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1007/978-3-642-02658-4_59

TaRDIS | D4.1: Report on the desirable properties for analysis

[21] Ivan Prokic, Silvia Ghilezan, Simona Kasterovic, Miroslav Popovic, Marko Popovic, Ivan Kastelan.
(2023). Correct Orchestration of Federated Learning Generic Algorithms: Formalisation and
Verification in CSP. ECBS 2023: 274-288. https://doi.org/10.1007/978-3-031-49252-5_25

[22]Simic, M., Prokic, I., Dedeic, J., Sladic, and G., Milosavljevic, B. (2021). Towards edge computing
as a service: Dynamic formation of the micro data-centers. IEEE Access 9, 114468-114484
(2021). https://doi.org/10.1109/ACCESS.2021.3104475

[23]Andreas V. Hess, Sebastian Mödersheim, Achim D. Brucker, and Anders Schlichtkrull. (2021).
Performing Security Proofs of Stateful Protocols. CSF 2021.
https://doi.org/10.1109/CSF51468.2021.00006

[24]Andreas Hess, Sebastian Mödersheim, Achim Brucker, and Anders Schlichtkrull. (2024). PSPSP:
A Tool for Automated Verification of Stateful Protocols in Isabelle/HOL. Submitted, 2024.
Manuscript

[25]Andreas Hess, Sebastian Mödersheim, and Achim Brucker. (2023). Stateful Protocol Composition
in Isabelle/HOL. ACM Transactions on Privacy and Security, 2023.
https://doi.org/10.1145/3577020

Page 48 of 48 © 2023-2025 TaRDIS Consortium

https://dblp.org/pid/202/7664.html
https://dblp.org/pid/g/SilviaGhilezan.html
https://dblp.org/pid/211/4648.html
https://dblp.org/pid/86/4467.html
https://dblp.org/pid/67/8012.html
https://dblp.org/db/conf/ecbseerc/ecbs2023.html#ProkicGKPPK23
https://doi.org/10.1007/978-3-031-49252-5_25
https://doi.org/10.1109/ACCESS.2021.3104475
https://doi.org/10.1109/CSF51468.2021.00006
http://imm.dtu.dk/~samo/pspspj-preprint.pdf
https://doi.org/10.1145/3577020

