
 

 

 
 
 
 
 
 
 

 

D5.2: Second report on Distributed 
AI and AI-based orchestration 

Revision: v.1.0 

 

Work package WP5 

Task T5.1, T5.2, T5.3 

Due date 31/12/2024 

Submission date 02/01/2025 

Deliverable lead Lidija Fodor (UNS), Dušan Jakovetić (UNS) 

Version 1.0 

Authors 

Dušan Jakovetić (UNS), Lidija Fodor (UNS), Milica Jankov (UNS), Nemanja 
Petrović (UNS), Nikola Simić (UNS), Stefan Komarica (UNS), Sotiris 
Spantideas (NKUA), Ilias Paralikas (NKUA), Anastasios Kaltakis (NKUA), 
Claudia Soares (NOVA), Frederico Metelo (NOVA), Miloš Simić (UNS), 
Miroslav Popovic (UNS), Ivan Kaštelan (UNS), Miodrag Djukic (UNS), Pavle 
Vasiljevic (UNS), Simona Prokić (UNS), Ivan Prokić (UNS), Silvia Ghilezan 
(UNS), Alceste Scalas (DTU), Dimitra Tsigkari (TID), Manuel Pio Silva (EDP), 
Giovanni Granato (GMV) 

Reviewers 
Carlos Coutinho (CMS) 

Filippo Vannella (TID) 

Abstract 

This document represents the second report on the advances in the AI/ML 
primitives in T5.1, in the AI-driven orchestration in T5.2 and in the lightweight 
energy efficient techniques in T5.3. The proposed tools are described in the 
context of the TaRDIS framework, defined in D2.3. This report also contains 
the descriptions of advances on ML modelling of the TaRDIS use cases, as 
well as a discussion on addressing the project objectives and important KPIs, 
regarding the preliminary validation approaches for the TaRDIS toolbox, 
defined in D7.2. 

Keywords 
decentralized machine learning and inference; AI/ML programming primitives, 
AI-driven planning, deployment and orchestration; lightweight and energy 
efficient ML techniques 

 
 

 
www.project-tardis.eu 

 
Grant Agreement No.: 101093006  Topic: HORIZON-CL4-2022-DATA-01-03  
Call: HORIZON-CL4-2022-DATA-01  Type of action: HORIZON- RIA 



TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration 

 
Document Revision History 

 

Version Date Description of change List of contributor(s) 

V0.1 11/10/2024 Table of contents draft released. UNS, NKUA, NOVA 

V1.0 09/12/2024 Document ready for internal review all authors 

V1.1 22/12/2024 Document reviewed internally CMS, TID 

DISCLAIMER 

  

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are 
however those of the author(s) only and do not necessarily reflect those of the European 
Union. Neither the European Union nor the granting authority can be held responsible for 
them. 

COPYRIGHT NOTICE 

© 2023 - 2025 TaRDIS Consortium 

Project funded by the European Commission in the Horizon Europe Programme 
Nature of the 
deliverable: R 

Dissemination Level 

PU Public, fully open, e.g. web (Deliverables flagged as public will be 
automatically published in CORDIS project’s page) ✔ 

SEN Sensitive, limited under the conditions of the Grant Agreement   
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444  
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444  
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444  

* R: Document, report (excluding the periodic and final reports)  

DEM: Demonstrator, pilot, prototype, plan designs  

DEC: Websites, patents filing, press & media actions, videos, etc. 

DATA: Data sets, microdata, etc. 

DMP: Data management plan 

ETHICS: Deliverables related to ethics issues.   

SECURITY: Deliverables related to security issues 

OTHER: Software, technical diagram, algorithms, models, etc.  

 

 

 Page 2 of 102 © 2023-2025 TaRDIS Consortium 

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444


TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration 

EXECUTIVE SUMMARY 

The objective of the TaRDIS project is to develop a distributed programming toolbox that 
makes the development of decentralized, heterogeneous swarm applications deployed in 
diverse settings simpler. The main goals of work package 5 (WP5) can be described in the 
context of the 3 tasks it consists of: Task 5.1 developing a framework supporting artificial 
intelligence/machine learning (AI/ML) programming primitives, Task 5.2 providing an 
AI-driven planning, deployment and orchestration framework and Task 5.3 creating a library 
of lightweight and energy efficient ML techniques. 

In Deliverable 5.1 (D5.1), an initial report on the development of distributed AI/ML primitives, 
lightweight ML techniques and AI-based orchestration was provided. The deliverable also 
contained an initial description of the positioning of the ML/AI tools in the TaRDIS framework 
as well as the first propositions on ML modelling approaches for the TaRDIS use cases. 

This document provides an overview of WP5 contributions, for the period after D5.1 
submission. It contains the descriptions of the advances on the different tasks within WP5. 
Regarding T5.1, the following contributions can be identified: the description and 
demonstration of the Flower-based federated learning (FL) tool that contains newly 
developed FL implementations; the introduction of split learning (SL) solutions; the illustration 
of advances on the Python Testbed for Federated Learning Algorithms (PTB-FLA) framework 
and the introduction of the MicroPython implementation of PTB-FLA (MPT-FLA) framework; 
and the presentation of the Fedra framework for advancing decentralised federated learning. 
The contributions within T5.2 include: the description of the advances on the PeersymGim 
environment for solving the task offloading problem with reinforcement learning; and the 
introduction of the Federated AI Network Orchestrator (FAuNO). The T5.3 contributions 
contain: the explanation of the advances on pruning, early exit and knowledge distillation 
lightweight ML  techniques; the introduction and detailed analysis of the Decentralised Early 
Exit Inference Tool (DEXIT); and the description of the Communication-efficient vertical 
federated learning via compressed error feedback. All these tools are placed within the 
TaRDIS toolbox, as described in D2.3. Therefore, this document also elaborates the 
positioning of AI/ML tools in the TaRDIS framework, while focusing on the collaborations with 
activities carried out in other work packages. The advances on ML modelling are also 
described for all TaRDIS use cases here. Finally, a discussion on the approaches for 
addressing TaRDIS and WP5 objectives, as well as important key performance indicators 
(KPIs) is also provided, with respect to the preliminary validation approaches for the TaRDIS 
toolbox, reported in D7.2. 
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INTRODUCTION 

1.1 OVERVIEW 

This document represents the second report regarding work package 5 (WP5) that is focused 
on the development of decentralised machine learning solutions. In D5.1 [1], an initial 
progress report was provided, aimed to comprehensively describe the ongoing work of the 3 
tasks under WP5: creating a decentralised learning and inference framework supporting 
AI/ML primitives (Task 5.1), developing an AI-driven planning, deployment and orchestration 
framework (Task 5.2) and providing a library of lightweight and energy efficient ML 
techniques (Task 5.3). Besides that, some initial relations with tasks from other work 
packages were identified, which enabled an early understanding of the positioning of WP5 in 
the TaRDIS framework. The incipient representation of the ML modelling of the TaRDIS use 
cases was also provided in D5.1. 

In this report, we endeavour to present the advances on each task within WP5 with respect 
to the reports from D5.1. At this stage, we are able to discuss the WP5 tools as components 
of the TaRDIS toolbox. We also provide a deeper explanation of the positioning of WP5 in the 
TaRDIS framework, by explaining the connections with different endeavours under various 
work packages. A more specific ML modelling of the TaRDIS use cases is also provided in 
this document, relying on the ideas from D5.1. We also discuss the main aspects of meeting 
the TaRDIS project objectives as well as the WP5 specific objectives. This document also 
contains an overview of the approaches to address the relevant Key Performance Indicators 
(KPIs). Finally, we provide some conclusions and ideas for next steps. 

1.2 RESULTS SUMMARY 

We first present the novel contributions within Task 5.1, that concerns developing AI/ML 
primitives. In D5.1, we reported two different directions regarding this task: the PTB-FLA 
framework and FL implementations in the Flower framework. We now provide details on the 
advances regarding these approaches, and we also introduce two additional directions here: 
split learning (SL) and the Fedra framework. Besides the already reported FL algorithms 
implemented in the Flower framework, we discuss additional FL Flower-based algorithms 
implementations. The implementations are shaped into the Flower-based FL TaRDIS tool. 
We also provide a demonstration of this tool. Further, we discuss how ChatGPT can be of 
use to ease FL applications creations with the PTB-FLA framework, and we also introduce 
MPT-FLA, a MicroPython implementation of PTB-FLA. Additionally, we discuss distributed 
applications on these frameworks and aspects of formal verification of FL PTB-FLA 
orchestration protocols. Finally, we introduce an FL framework, Fedra. It has been developed 
in TaRDIS with the aim to support FL in completely decentralised, peer-to-peer (P2P) swarm 
systems. We describe the architecture of the framework in detail in Section 2.4. 

The contributions within Task 5.2, concerning AI-driven planning, deployment and 
orchestration framework, include two directions. The first one is the PeersimGym 
environment, which is meant to address the task offloading problem by means of 
reinforcement learning (RL). This tool was already described in detail in D5.1. The second 
and novel direction is the development of the FAuNO tool. It represents a federated AI 
network orchestrator, developed for distributed AI systems coordination and operation 
enhancement. We describe the orchestration mechanism and discuss some preliminary 
results. 
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Within Task 5.3, concerning lightweight and energy efficient ML techniques, three directions 
were identified in D5.1: pruning, early exit of inference and knowledge distillation. These 
techniques were recognised and theoretically examined. Now, they have been developed 
and are discussed in this document. The implementations of these ML lightweight tools will 
be integrated in the TaRDIS toolbox. Furthermore, we introduce a new framework, the DEXIT 
(Decentralised Early Exit Inference Tool) framework, which aims to support the deployment of 
the trained Early Exit (EE) models in swarm nodes. We provide an overview of its 
architecture, components, workflow, as well as a description of its main features. Finally, we 
describe communication-efficient vertical federated learning via compressed error feedback. 
Beside the mentioned task specific contributions, we also present use-case specific 
advances in this document, as well as contributions to different aspects of TaRDIS through 
connections with other work packages. We also identify the relevant KPIs, while focusing on 
approaches to address them and provide some results for a subset of them. Finally, we 
discuss and identify future directions regarding TaRDIS and WP5 objectives. 

1.3 DELIVERABLE STRUCTURE  

The structure of this document is as follows. An introduction of the main results that 
represent the advances on the topics introduced in D5.1 is presented first, in Section 1. In 
Section 2, we present these advances regarding the framework supporting AI/ML modelling 
primitives with detailed progress descriptions of the following directions under T5.1: The 
Flower-base FL tool, split learning, the PTB-FLA and MPT-FLA frameworks and the Fedra: 
Advancing decentralised federated learning framework. In Section 3, we discuss the 
advances related to the AI-driven planning, deployment and orchestration framework, 
focusing on the thorough explanations of the improvements on the PeersymGim environment 
for solving the task offloading problem with reinforcement learning and the FAuNO: 
Federated AI network orchestrator tool. Section 4 is dedicated to progress description 
regarding lightweight, energy-efficient ML techniques, including pruning, early exit and 
knowledge distillation. This section also provides a detailed analysis of the DEXIT framework 
and finally, it describes a communication-efficient vertical federated learning via compressed 
error feedback. Section 5 presents the positioning of AI/ML tools in the TaRDIS framework, 
by examining the connections and collaborations with tasks from different work packages. 
Section 6 provides a detailed overview of the current state of the art regarding ML modelling 
of the four TaRDIS use cases, while Section 7 discusses the approaches to meet the project 
and work package specific objectives. Section 8 is dedicated for examining the contributions 
to relevant KPIs. Finally, Section 9 concludes this report, by summarizing the most important 
aspects. 
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2 ADVANCES ON FRAMEWORK SUPPORTING AI/ML MODELLING PRIMITIVES 

In this section, we describe the contributions made regarding the development of AI/ML 
programming primitives. In D5.1, we discussed two frameworks of interest: the Flower and 
the PTB-FLA frameworks. In this section, we also provide an overview of an ongoing work 
regarding split learning, by highlighting the planned activities and some preliminary 
considerations. In D5.1, we described the PTB-FLA development paradigm and presented an 
implementation example. Now, we expand the topic further here and discuss the usefulness 
of ChatGPT in creating PTB-FLA implementations and introduce a MycroPython 
implementation of the framework, MPT-FLA. We also list the relevant publications on these 
topics. Finally, we introduce a new framework, Fedra, for advancing decentralized FL, and 
describe the architecture and features of the Fedra framework in detail. We introduced 
personalised and clustered FL implementations in the Flower framework. We also describe 
the advances in the context of the Flower framework in this section, by introducing and 
demonstrating the Flower-based FL tool and discussing new Flower-based FL 
implementations, namely distributionally robust FL and anomaly detection. In addition to the 
above efforts presented ahead in detail in the current section, we also report here briefly on 
methodological T5.1 advances in the context of clustered and robust distributed learning [2],  
[3]. Namely,  theoretical advances related to clustered learning have been developed in [2], 
where we investigate the influence of centre initialization on performance of distributed 
gradient-based clustering algorithms. We demonstrate the resilience to initialization effects 
for these methods and propose a novel distributed centre initialization scheme. For more 
details on the results, we refer to [2]. In the context of robust learning, we also present recent 
theoretical advances on heavy-tailed noise in distributed estimation [3], where we introduce a 
distributed estimation algorithm in an environment with heavy-tailed observation and 
communication noises. We present results on convergence and asymptotic performance, as 
well as on trade-offs between system noises and the underlying network topology. For more 
details, we refer to [3]. The incorporation of methodologies developed in [2,3] in the 
Flower-based FL tool will be considered in the final year of the project.  

2.1 THE FLOWER-BASED FL TOOL 

The Flower-based FL model training tool (T-WP5-01), the Data preparation for Flower-based 
FL model training tool (T-WP5-02) and the Flower-based FL model inference and evaluation 
tool (T-WP5-03) have been defined within the TaRDIS architecture definition in D2.3 [4], 
where the descriptions have been supported by a set of diagrams defining the tools 
architectures, workflows and behaviours. The tools provide federated machine learning 
solutions and enable model training. The envisioned functioning was presented by mock-ups 
in D3.2 [5]. We now present the Flower-based FL tool, that represents a synthesis of the 
mentioned 3 tools, as they are envisioned to work in synergy. During the previous period, we 
mainly focused on the development of the Flower-based FL model training tool (T-WP5-01), 
where we extended the list of FL model training algorithms. The list of these algorithms will 
be expanded further, according to the needs. Additionally, we developed some initial 
inference capabilities (T-WP5-03), that will be expanded in the upcoming period. We also 
plan to start working on the preprocessing approaches (T-WP5-02) during the finishing phase 
of the project. We now demonstrate the functioning and usage of the Flower-based FL tool, 
that supports the developer during the process of setting the training up, so that no FL 
expertise is needed in order to train a model. We also discuss the novel FL-based Flower 
implementations here, which expand the list of already reported algorithms, i.e., federated 
averaging, personalised and clustered FL. The algorithms that we consider here are 
distributionally robust FL and anomaly detection in the Flower framework. 
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2.1.1 THE FLOWER-BASED FL TOOL DEMONSTRATION 

One of our main focuses is the development of an application that uses the Flower 
framework for FL. This application enhances the accessibility and user-friendliness of FL 
techniques, particularly for non-expert users. This tool covers the Flower-based tools 
T-WP5-01,T-WP5-02 and T-WP5-03, introduced in D2.3 [4]. It meets a set of requirements 
(from D2.2 [6]), that, among others, include providing a list of FL algorithms and supporting 
diverse ML algorithms in decentralised frameworks.  

The primary innovation lies in the intuitive interface and streamlined workflow, which 
simplifies the complex process of distributed model training. It is in line with TaRDIS 
candidate applications 4.3 - 4.5 proposed in D3.2 [5] for the TaRDIS Toolbox. It provides both 
command-line usage, as well as a graphical user interface (GUI). 

The application offers flexibility in model selection and initialization. Users can either select a 
new model, such as a convolutional neural network, or load pre-existing models into the 
system. This feature allows for versatility in addressing various machine learning tasks based 
on the specific requirements of the user. 

Building on the flexibility of our application, we have implemented a comprehensive system 
for customising the learning process while applying FL. Users have the ability to tune training 
parameters, allowing for precise control over the learning environment. These parameters 
encompass various aspects of the FL setup, including the number of training rounds, the total 
client pool size, and the batch size for local computations. Additionally, users can specify the 
number of classes in their classification task, adjust the client participation rates for both 
model fitting and evaluation phases, and modify key hyperparameters of the optimization 
process. This level of customization extends to learning rate settings, momentum values for 
the optimizer, and the number of local epochs performed by each client. By providing this 
type of control over the training process, our application empowers users to optimise their FL 
models for diverse scenarios and dataset characteristics, facilitating more effective and 
efficient model development across a variety of use cases. 

As already mentioned, the user can interact with the tool by a command-line interface, or by 
using a GUI. We illustrate the usage of the GUI, as it is more convenient for most of the 
users. First, the user needs to select the tasks of interest, for instance prediction, forecasting, 
anomaly detection etc. Then, the dataset needs to be selected. The user can then choose 
between two options: training a completely new model or using an existing, pretrained model. 
Finally, the user can select the model, as Convolutional Neural Network (CNN) for example, 
and an FL algorithm, as Federated Averaging (FedAvg), Personalized Federated learning 
with Moreau envelopes (pFedMe), etc. The system guides the user through these steps, and 
provides a safe environment, as the available choices depend on the previous selections. 
This way, the tool will not allow the user to set up a training that does not apply for the 
selected options. We plan to work even further on the possibility of checking the applicability 
of the created setup before starting the training, in the future. The process of selecting the 
described options is presented in Figure 1. 
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Figure 1: Setting up the training in the Flower-based FL training tool. 

As the training proceeds, the tool produces results, in terms of loss and accuracy. However, 
when the training is finished, it offers graphical representations of the results. For instance, 
for the setup in Figure 1, the tool produces the outcomes shown in Figure 2. The graphs 
show the accuracy and loss plotted over the training rounds. The horizontal axis displays the 
training rounds and the vertical axis shows the accuracy, on the left, and the loss, on the 
right. These outcomes may differ for different training scenarios, as we may have different 
graphs to show, depending on the selected model and algorithm. 

 

Figure 2: An example of the output of training for the Flower-based FL model training tool. 

A key aspect of our implementation is its focus on ease of use. By abstracting away much of 
the complexity inherent in FL setups, our app makes the Flower framework more accessible 
to a broader audience. This approach eases access to FL technologies, enabling 
researchers and practitioners without deep expertise in distributed systems or machine 
learning to leverage these powerful tools. 
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2.1.2 DISTRIBUTIONALLY ROBUST FL 

The Flower-based FL model training tool (T-WP5-01) under the Flower-based FL tool aims to 
provide a list of implemented FL algorithms and support diverse ML algorithms in 
decentralised frameworks. Therefore, we propose a novel FL algorithm, named 
Distributionally Robust (DR) FL, that is meant to be implemented in the Flower framework. 
 
The aim of this approach is to find a common ML model that performs well on any client’s 
data set. This means that we formulate the problem so that we strive to find an ML model 
that performs well in the worst case over a “region” of data distributions.  
 
More formally, assume that each client  holds a local loss function . For 𝑖,  𝑖 = 1,..., 𝑁, 𝐹

𝑖
: 𝑅𝑑→𝑅

example,  may be the empirical loss associated with the client 's local data set sampled 𝐹
𝑖

𝑖
from a distribution . The distributionally robust FL aims to find a model (e.g., weights of a 𝐷

𝑖

neural network)  that performs well on the data coming from the distribution from any 𝑥 ϵ 𝑅𝑑

client or any convex combination of such distributions; see, e.g., [7]. A possible mathematical 
formulation to tackle this problem is the following: 

. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥ϵ𝑅𝑑 𝑚𝑎𝑥

λϵ∆
𝑖=1

𝑁

∑ λ
𝑖 
𝐹

𝑖
(𝑥)

Here,  is the N-dimensional probability simplex. It is ∆ = {λ ϵ 𝑅𝑁:  λ
𝑖
 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,  

𝑖=1

𝑁

∑ λ
𝑖

= 1}

possible to devise distributed and federated methods to tackle problems of the above form, 
e.g., [8,9]. However, a major computational challenge here is that the dimensionality of the 
uncertainty set  scales linearly with the number of clients. In order to tackle this challenge, ∆
we propose a method that simultaneously learns a model  and clusters clients into  groups 𝑥 𝐾
according to similarity of their data distributions, where  is a tuning parameter. It is 𝐾 << 𝑁
often reasonable to assume that the clients may be partitioned into groups such that their 
data distributions are mutually identical or similar. For example, the client groups may 
correspond to clients in  geographical proximity, or to devices of the same type. In our 
formulation, the clustering of clients, i.e., grouping of clients according to the similarity of their 
distributions, is assumed to be unknown beforehand.  

The algorithm can be described by the following pseudo-code: 
1. At a global round , the server broadcasts the global model  to 𝑡 = 0,  .  .  .,  𝑇 − 1 𝑥

𝑡
each client  𝑖

2. Each client calculates its local loss:  𝐹
𝑖
 : = 𝐹

𝑖
( 𝑥

𝑡 
)

3. Each client calculates a stochastic gradient  of function  at argument , e.g., by 𝑔
𝑖, 𝑡

𝐹
𝑖

𝑥
𝑡

by using a mini-batch of data available at client i 
4. Each clients sends the pair  to the server ( 𝐹

𝑖
 ,  𝑔

𝑖, 𝑡
 )

5. The server clusters the vectors  into  clusters   𝑔
1, 𝑡

 ,  .  .  .  ,  𝑔
𝑁, 𝑡

𝐾 𝐶
𝑘
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6. The server calculates  and finds , that is, the 𝑓
𝑘
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server finds the average cost across each cluster, and determines the cluster 
  that has the maximal cost value. Here,  denotes the cardinality 𝑗 *= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑘
 𝑓

𝑘
|𝐶

𝑘
|

of set . 𝐶
𝑘

 

 Page 19 of 102 © 2023-2025 TaRDIS Consortium 



TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration 

7. The server calculates , that is, the server calculates as its search 𝑔
𝑓𝑖𝑛𝑎𝑙,𝑡

= 1
|𝐶

𝑗*
| Σ

𝑗ϵ𝐶
𝑗*

 𝑔
𝑗,𝑡

direction the average of the gradients of all clients that belong to the “currently 
hardest” cluster, i.e., the cluster with the highest associated cost function 

8. The server updates the model as , where  is the step-size 𝑥
𝑡+1

= 𝑥
𝑡

− α
𝑡
 𝑔

𝑓𝑖𝑛𝑎𝑙,𝑡
α

𝑡
> 0

(learning rate). 
 
Intuitively, the algorithm above simultaneously learns the similarity of the data distributions 
across different clients and fits the model that is aimed to perform well on the data that 
comes from any client. Setting the parameter K (number of clusters) to one, the algorithm 
above reduces to the standard FedAvg method. On the other hand, setting K=N reduces to a 

(sub)gradient descent on the function . A more detailed performance  𝑚𝑎𝑥
λϵ∆

𝑖=1

𝑁

∑ λ
𝑖 
𝐹

𝑖
(𝑥)

evaluation of the algorithm, both analytical and numerical, is left for future work. 
 
The algorithm is being implemented in the Flower framework and is currently under testing. 
From the implementational perspective, there are some challenges that arise here. First, the 
aggregation of the results from the clients needs to be customised. This is necessary, as the 
default approaches do not fit the needs of the algorithm. By default, in the simplest case, the 
Flower framework expects to collect the local parameters from the clients and aggregate 
them using a predefined strategy. Flower provides an approach for this, called Strategy 
abstraction. There is a variety of provided built-in strategies available in Flower, for instance 
FedAvg. However, Flower enables building a custom Strategy, i.e., a custom FL algorithm on 
the server side. A strategy needs to define some methods, derived from the abstract base 
class Strategy. One of these methods is aggregate_fit, which is responsible for aggregating 
the results returned by the clients. Here, we can implement our clustering approach (see step 
5 in the algorithm above), by using the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) [10], for instance.  

However, the most challenging part of the implementation is to ensure that the clients send 
the weights, the losses and the gradients to the server. This seems straightforward, but when 
looking deeper into the way how Flower passes the results from the clients to the server, it 
can be seen that a custom approach needs to be built. By default, each client returns the 
updated parameters, or the gradients, as a list of arrays, by implementing the appropriate 
method for getting the parameters. The server receives a special type of object for each 
client, called FitRes. We define a way to serialise the parameters, the losses and the gradient 
to FitRes on the clients. We use the Client [11] class instead of the NumPy client, as it is 
highly customizable, so that we can apply our implemented mechanisms. Listing 1 shows the 
method for getting the parameters on the client. It gets the updated parameters, the loss and 
the gradient, and serializes them to the response object. 
 
    def get_parameters(self, ins: GetParametersIns) -> GetParametersRes: 
       print(f"[Client {self.cid}] get_parameters") 

       # Get parameters as a list of NumPy ndarray's 

       arrays: List[np.ndarray] = get_parameters(self.net) 

       #Get the gradient and the loss 

       gradient: np.ndarray = get_grad() 

       loss = get_loss() 

       # Serialize everything together, build and return response 

       parameters = ndarrays_to_parameters(arrays, gradient, loss) 

       status = Status(code=Code.OK, message="Success") 

       return GetParametersRes(status=status, parameters=parameters) 

Listing 1: The custom get_parameters method on clients. 
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The implementation of the DR FL algorithm is currently under testing. The next step is a 
detailed evaluation of the implementation, regarding accuracy. Also, the scalability is an 
aspect that will be evaluated by running simulations on a cluster environment. Finally, the 
algorithm could be possibly applied to some real-data scenarios. 

2.1.3 ANOMALY DETECTION 

The development of an algorithm for anomaly (outlier) detection was inspired by the Actyx 
(ACT) use case (see ahead Section 6). Since the ground truth labels are unavailable in the 
context of this use case, the most suitable approach for addressing the problem relies on 
unsupervised learning techniques. The implementation integrates two distinct yet 
complementary machine learning methodologies: clustering using the K-means algorithm 
and representational learning through autoencoders. When developing our method, we build 
upon the HUNOD (Hybrid UNsupervised Outlier Detection) method [12]. With respect to [12], 
we are working on providing several innovations. First, we aim to make the method robust to 
inexact or noisy label information–a scenario highly relevant for factory cases wherein labels 
may be obtained by automated methods subject to errors in the absence of a human labeller. 
Second, we aim to generalize the method to federated learning settings.   

The core of the developed anomaly detection method focuses on using an autoencoder for 
outlier detection. In our approach, the autoencoder is trained using a subset of instances 
from the dataset, selected based on predefined knowledge that they represent normal 
(non-anomalous) instances. A significant advantage of the developed model is its capability 
to perform outlier detection without requiring true positive values during training. 

In the developed method, the TensorFlow framework [13] is employed for training the 
autoencoder and enabling it to perform outlier detection inference. The entire procedure is 
detailed in Algorithm 2 of reference [12]. The autoencoder is constructed using the 
TensorFlow sequential neural network model, with the specified number of hidden layers 
added. The values for the regularisation hyperparameters are set to α = 0.8 and λ = 0.1, as 
proposed in the original implementation. The loss function is optimised using the Adam 
optimization algorithm [14] in a given number of epochs e and batch size b [12]. The default 
values of the autoencoder hyperparameters are e = 200 and b = 32. The activation function 
is set to ReLU, σ(x) = max(0, x) [12].       

All outliers detected by the autoencoder are then verified against those identified by K-means 
algorithms utilised in our approach. We used two different clustering approaches. First, we 
utilized the K-means clustering algorithm ([15], [16]), as proposed in the paper [12]. We relied 
on the K-means algorithm from the scikit-learn Python library [17].  

When the clustering is finished, the outlier detection can be done by observing small clusters 
that are distant from large ones. Further details on the base algorithm can be found in 
reference [12].  Additionally, we aimed to explore the use of non-fixed K values, which was 
not proposed in the original paper. Therefore, for all integers within the desired range, we 
applied the clustering algorithm and subsequently determined the optimal K using the 
Silhouette score. This adds an additional element for comparing the outlier detection 
approach by the autoencoder and by the K-means algorithms. The optimal clustering 
configuration was determined by using non-anomalous data by Silhouette score. We then 
obtained the distances of the test data points from the centroids, in order to mark the points 
that are significantly distant from all the centroids, as outliers. We used a threshold value for 
the distance, based on the 95th percentile of distances calculated from the training set.  
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This corresponds to a centralized learning approach, where an autoencoder model was used 
for anomaly detection in the ACT use case, as detailed in Section 6, where we show the 
results of the experiments. This centralized learning workflow has been consequently 
adapted into an DL paradigm using the Flower framework and the FedAvg algorithm. 

The distributed setup involves distributing the anomaly detection task across multiple clients, 
each simulating a decentralized node. The Flower framework is employed to coordinate the 
interactions between the clients and the server. Clients train their local autoencoder models 
on their respective datasets while ensuring that their data remains private throughout the 
process. Each client computes and updates its local anomaly detection threshold based on 
the training phase. This threshold is then stored locally and used in anomaly classification 
tasks. At the server, the model parameters are aggregated using the FedAvg algorithm to 
update the global model. Additionally, the server aggregates the local thresholds received 
from the clients to compute a global threshold for evaluation purposes. 

To assess the effectiveness of the FL approach, future evaluations will analyse performance 
using metrics such as accuracy, precision, recall, and F1 score. These evaluations will focus 
on both the global model using the aggregated thresholds and the aggregated metrics 
derived from local models and thresholds. Moreover, the results will be compared against the 
evaluation of the centralized autoencoder model to provide a comprehensive view of the 
performance trade-offs between centralized and FL approaches. 

2.2 SPLIT LEARNING 

In this section, we discuss a new direction of interest for research in the context of 
developing support for AI/ML primitives, named split learning (SL). SL represents an 
approach that allows different portions of an ML model to be collaboratively trained on 
different workers in a learning framework. In split federated learning, a model is partitioned 
into (at least) two segments: one that resides on the local device and another that is 
centralised. During training, only the intermediate activations (or gradients) between these 
split layers are transmitted between the device and the server. This process inherently 
involves communication costs, which include both the bandwidth required and the energy 
consumed during data transmission. 

To enhance energy efficiency and reduce transmission costs, we propose applying various 
quantization techniques between the split layers of the model. Specifically, we will investigate 
some of the following techniques: deterministic and stochastic binarization, 2-bit quantization, 
and Floating-point 8 (FP8) quantization methods. The impact of these techniques will be 
evaluated considering problems related to some of the following datasets: CIFAR-10 [18], 
Modified National Institute of Standards and Technology (MNIST) [19] and IMDB [20]. Our 
goal is to ensure that the approaches involving quantization maintain performance levels 
comparable to the full precision (32-bit) models while achieving significant reductions in 
transmission costs. To facilitate this research, we will utilise and extend an existing 
open-source codebase from the GitHub repository associated with the paper [21]. 
        
Currently, we conducted initial experiments on the CIFAR-10 dataset in the context of the 
generalized split federated learning setup, whose schema is presented in Figure 3. We 
considered 8 client devices and 4 groups (each communicating with two client devices) 
connected to the main server. On the client side, the model consists of two convolutional 
layers with 32 and 64 kernels, each of size 3×3, followed by a Max Pooling layer. The output 
of the Max Pooling layer is sent to the main server, where a linear layer with 128 nodes and 
the output layer are deployed. 
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Figure 3: Split federated learning schema. 

        
The comparison of classification accuracy between the full-precision 32-bit model and the 
FP8 model is presented in Figure 4.   

 
Figure 4: Performance of the full-precision and FP8 model. 

As expected, applying FP8 arithmetic to the output of the split layer provides performance 
comparable to the full-precision model. A possible scalar quantization solution with the 
highest compression ratio is binarization. However, deterministic binarization did not provide 
satisfactory performance, and the achieved classification accuracy was very low. This 
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motivated us to explore stochastic binarization. Initially, applying stochastic binarization to the 
split layer of the generalized split federated learning algorithm led to an accuracy of 76%. In 
the next phase of our research, we will further explore other averaging techniques at the 
federated server, as well as alternative quantization approaches. 

2.3 PTB-FLA AND MPT-FLA 

PTB-FLA, identified as T-WP5-04 in D2.3 [4], is a framework that comes to the rescue for 
developers of FL algorithms. Within the vast number of FL frameworks, it provides a 
development and test environment for the development of FL algorithms that is lightweight 
and easy to install and program by both nonprofessional programmers and Large Language 
Models (LLMs) like ChatGPT. The blog published on TaRDIS website explored how ChatGPT 
can help humans create federated learning apps on PTB-FLA [22]. 

In another blog post, the TaRDIS research team provided a brief overview of the MicroPython 
implementation MPT-FLA that aims to take what its predecessor did one step further – to the 
local network [23]. 

The video demonstration was made to show the validation of MPT-FLA [24]. In this video 
demonstration, the Centralised Averaging app runs on four nodes. A server node is on the 
PC. The client nodes are on two Raspberry Pi Pico W boards and a Hussarion ROSbot2 
PRO robot. 

In the beginning of the video, a node 0 (master node) is started on a PC. The two Raspberry 
Pi Pico W boards are then powered on and ROSbot sets its navigation goal. The node on 
ROSbot is started over the secure shell (SSH) communication. When the robot reaches its 
goal, the application terminates with the expected results. 

2.3.1 PUBLISHED RESULTS AND VIDEO DEMONSTRATION 

More details about the PTB-FLA (T-WP5-04) and MPT-FLA can be found in the following 
published manuscripts: 

● The paper that introduced the PTB-FLA system architecture and its validation on the 
first three examples (Federated Map, Centralised and Decentralised Data Averaging) 
was published in the proceedings of the ZINC 2023 conference [25]. 

● In the proceedings of the ECBS 2023 conference, a development paradigm was 
proposed for PTB-FLA that consists of four  steps: 1) the referent sequential code, 2) 
the federated sequential code, 3) the federated sequential code with callbacks, and 4) 
the PTB-FLA code [26]. 

● A formal verification of the correctness of two federated learning algorithms using 
Communicating Sequential Processes (CSP) was published in the proceedings of the 
ECBS 2023 conference [27]. 

● Developing code is lately supported by AI tools. The TaRDIS research team explored 
how ChatGPT can help implement  federated learning algorithms in PTB-FLA. The 
findings were  published in the proceedings of the TELFOR 2023 conference [28]. 

● An adaptation of the PTB-FLA development paradigm for ChatGPT was published in 
the Computer Science and Information Systems journal in September 2024 [29]. 

● A future paper will introduce the MicroPython implementation of PTB-FLA, named 
MPT-FLA. At the time of writing this report, the paper was available in preprint [30]. 

● Finally, a future paper will introduce a work in progress on formal verification of 
federated learning orchestration protocols on satellites. At the time of writing this 
report, the paper was available in preprint [31]. 
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2.3.2 PTB-FLA DEVELOPMENT PARADIGM ADAPTATION FOR CHATGPT 

In this section, we provide a short digest of the research that was published in the open 
access journal ComSIS [32], which comprises the problem formulation and its solution, as 
well as this research achievements. 

Problem Formulation and Its Solution. The problem that authors tried to solve, was how to 
adapt the PTB-FLA development paradigm used by humans for ChatGPT in order to (i) 
minimise the human labour by delegating a part of the job to ChatGPT, and at the same time 
to (ii) minimise the ChatGPT input by creating minimal contexts, because commercial AI 
services are charged according to the input they processed. 

The problem was solved experimentally by using the simple iterative development process: 
the authors used the text (guidelines) of the original development paradigm to create the 
initial ChatGPT context, and then in each iteration they used feedback from ChatGPT to 
manually modify the context i.e., to adapt the paradigm, aiming towards the minimal context 
without redundant parts. In each iteration, the current paradigm (given in the current context) 
was also validated, because it had to produce the output PTB-FLA code that is semantically 
equivalent to the input sequential code. The application code that was used for this purpose 
is the logistic regression case study. 

Research Achievements. As a continuation of [26] and [28], the authors firstly adapted the 
four-phases development paradigm originally devised for humans to guide ChatGPT to 
successfully develop the same algorithms as in [26]. Secondly, they adapted the four-phases 
paradigm into a two-phases development paradigm. As the first phase is always done by 
humans, the two-phases paradigm is rather close to the ideal solution where developers in 
the second phase immediately get the complete target PTB-FLA code. 

It should be emphasised that both adapted paradigms (the four-phases and the two-phase) 
are original contributions, and both should be treated unbiasedly as both have their own 
strengths and weaknesses. The four-phases paradigm requires more human labour but 
provides better traceability (somewhat like grey box testing), whereas the two-phase 
paradigm requires minimal (almost no) labour but is less traceable (being based on the black 
box approach) and therefore riskier. 

Both development paradigms were experimentally validated. In the experimental validation, 
the well-known GPT-3.5 model was used. Authors reported on the adapted development 
paradigms performance in terms of human labour and size of ChatGPT context needed to 
develop the logistic regression PTB-FLA code, see the results in section 8.2 of this 
document. For more details on this research see [32]. 

2.3.3 MPT-FLA DISTRIBUTED LAUNCHER 

As the validation of MPT-FLA expanded to include more devices, the process became 
increasingly time-consuming, prone to human error, and difficult to test repeatedly. To 
address these challenges, the Distributed Launcher was developed as a solution. 

The Distributed Launcher for MPT-FLA is a distributed application that simplifies and 
automates the execution of applications written utilising the MPT-FLA framework. In addition 
to this, it provides a way to reliably and repeatedly test and measure the execution time of 
federated learning applications without the need to manually start every instance. Execution 
time measurement results are exportable to Comma-Separated Value (CSV) format, which is 
convenient for further analysis. 
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The Distributed Launcher comprises three main components: a user-friendly GUI for ease of 
use, a master node that coordinates the application's internal processes, and several agent 
nodes that execute the actions dictated by the master node. The architecture of the MPT-FLA 
Distributed Launcher is shown in Figure 5. 

 

Figure 5: The MPT-FLA Distributed Launcher Architecture. 

Functionalities that the distributed launcher encompasses are the following: agent node 
discovery, starting of multiple MPT-FLA instances on n hosts from a single point, MPT-FLA 
application execution time measurement, and storage and analysis of measurement-related 
data. 

Agent discovery is facilitated through a simple multicast-based discovery protocol, while 
communication between nodes occurs over standard transmission control protocol (TCP), 
utilising JavaScript Object Notation (JSON) as the data format. To store and present 
measurement data in a more structured way, the subsequent behaviour modelling 
abstractions have been introduced: a session and a batch. Session is defined as executing 
an MPT-FLA based application, given the number of batches with varying application 
parameters, while the term batch corresponds to executing an MPT-FLA based application m 
times with the same application parameters. Previously mentioned abstractions improved 
data integrity and structure data in a way that is convenient for analysis. Another strength of 
the Distributed Launcher is its portability and lightweight nature of agent nodes, using only 
the abstractions provided in the Python standard library. The distributed launcher's GUI is 
implemented as a web application that communicates with the master node via Hypertext 
Transfer Protocol (HTTP), requiring only a web browser for access. It is split into three 
sections: launching, measurement, and analysis, reflective of their uses. 

Overall, the Distributed Launcher for MPT-FLA improves the developer experience, making 
testing and evaluation smoother and less mistake-prone, automating some of the labour 
required when testing MPT-FLA based FL applications on multiple devices. 

The Distributed Launcher for MPT-FLA was developed by Pavle Vasiljevic in his B.Sc. thesis 
(available in Serbian [33]), mentored by Miroslav Popovic, and is publicly available in the 
distributed Launcher GitHub repository [34], which is also accessible over a link in the “ptbfla” 
GitHub repository [35]. 
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2.3.4 MPT-FLA VALIDATION AND EVALUATION 

The MPT-FLA framework was experimentally validated on a WiFi network, consisting of one 
WiFi router Belkin F5D7234-4, two Raspberry Pi Pico W boards, and one PC, by using the 
four adapted algorithm examples originally developed for the PTB-FLA framework:  federated 
map, centralised data averaging, decentralised data averaging which were introduced in [25] 
and Orbit Determination and Time Synchronization (ODTS) introduced in [30]. 

The MPT-FLA successfully passed this experimental validation because, as expected, the 
adapted algorithms produced the same numerical results as the originals, and this was the 
sole goal of this experiment validation. However, two WiFi related issues appeared during the 
experiments that might compromise its validity: (1) repetitive WiFi connecting attempts by 
Pico boards were taking progressively more time, as remedy pauses were made between the 
individual sessions, and (2) under strong WiFi interferences, especially in case of overlapped 
networks, connections could be broken [30], therefore the experiments were conducted in the 
laboratory. 

The MPT-FLA framework was experimentally evaluated using the Distributed Launcher for 
MPT-FLA on the wired network, consisting of two D-LINK DGS-1016D routers and 18 PCs (i7 
6700, 16 GB), by measuring the mean execution time (mt) versus the number of nodes (n), 
for the same four adapted examples, as follows. For each example, a separate session was 
conducted. Each session comprises 5 batches of measurements, and each batch comprises 
30 measurements. For each packet, the independent variable n was assigned a subsequent 
value from the list [2, 6, 10, 14, 18]. Additionally, in the session for the ODTS simulator (the 
4th example), the number of blocks was fixed to 1 whereas the number of time slots (ts) was 
a dependent variable calculated as ts = n – 1. Finally, for each packet, the mean execution 
time and the relative standard deviation were calculated. 

Graphs that were acquired in the above-mentioned evaluation followed process showed a 
linear trajectory for all examples with decentralised data averaging having a somewhat longer 
startup time. Results also showed relative standard deviation decreased as the number of 
nodes increased. The graphs showing the mean execution time versus the number of nodes 
that were gained in this process are presented below in Figures 6, 7, 8 and 9. (To save 
space, graphs for the relative standard deviation are not shown here.) 
 

 
Figure 6: The federated map’s mean execution time. 
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Figure 7: The centralised data averaging mean execution time. 

 
Figure 8: The decentralised data averaging mean execution time. 
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Figure 9: The ODTS mean execution time. 

 

2.3.5 DISTRIBUTED APPLICATIONS FOR MNIST NN TRAINING AND 
TESTING/INFERENCE ON PTB-FLA AND MPT-FLA 

This section briefly presents the development of two distributed applications for Modified 
National Institute of Standards and Technology (MNIST) Neural Network (NN) training and 
testing/inference on PTB-FLA and MPT-FLA, respectively. Here the inference was conducted 
during the testing of the trained model. (However, generally, both PTB-FLA and MPT-FLA 
support developing distributed/decentralised swarm applications for both training and 
inference). 

The first application was developed using the four-phase PTB-FLA development parading 
for humans [26]. In the first phase, the referent sequential code was created by adapting the 
input code authored by Soham Parmer, a computer engineering student at the University of 
Waterloo, which is publicly available [36].  

The standard MNIST dataset comprises 28x28 pixel digit images, where pixel values are in 
range 0-255. The referent sequential code uses a copy of the MNIST dataset (publicly 
available [37]) that comprises 5000 samples, where the last 4000 samples are used for 
training the MNIST NN and the first 1000 samples are used for testing the trained model. As 
part of data preparation, the pixel values are transcoded to values in the range 0-1 (by 
dividing the original values with 255). 

For the standard MNIST dataset, the input NN layer has 784 neurons, which corresponds to 
the digit image size of 28x28 (28x28 = 784), whereas the output NN layer has 10 neurons, 
which corresponds to the number of digits (0-9). The hidden layer in the referent sequential 
code has 128 neurons. This NN is traditionally trained by executing a loop wherein the 
forward propagation, backward propagation, and NN parameters update (using the gradient 
descent approach) is performed a given number of times (here 100 times). Finally, the 
trained NN is traditionally tested (using the first 1000 samples) and evaluated by determining 
its accuracy, which is defined as a ratio of the number of correct predictions/inferences 
versus the test sample size (here 1000). 
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In the second, third, and fourth phase, the federated code, the federated code with callbacks, 
and the PTB-FLA code were developed. As expected, the NN produced in the second phase 
was slightly different from the NN produced in the first phase, but since this difference was 
negligible the former became the reference for the rest of the phases. Again, as expected, 
the third and the fourth phase indeed produced the same NNs as the second phase. The 
complete PTB-FLA code was successfully performed on the single PC (localhost). 

The second application was developed by adapting the first application to (1) the 
MicroPython (a trimmed down Python version running on small microcontrollers) and (2) the 
RPi Pico W board (a faithful representative of a platform for smart sensors and Internet of 
Things - IoTs). To adapt to MicroPython, the code was adapted to use the library uLab library 
instead of NumPy, because the latter is not supported on MicroPython and the former is a 
replacement for it. 

To adapt to RPi Pico W board memory resources, the size of the input images had to be 
reduced from 28x28 to 9x9. This optimization was a key to making the second application fit 
the RPi Pico W board memory footprint. Additionally, because it was not possible to conduct 
NN training with the large dataset as for the first application (which was done on a PC), the 
application was reorganised such as to first perform the initial training on the server (running 
on a PC) with the dataset of 1000 samples, and then to perform the incremental training on 
clients (one running also on the PC and the other running on the RPi Pico W board) with 
datasets of only 50 samples, which proved to be sufficient for faster and efficient training 
feasible for a small platform like the Pico W board. 

This approach, besides enabling efficient usage of limited Pico W board resources, as 
expected, also yielded the final aggregated NN whose accuracy was greater than the 
accuracy of the NN after the initial training on the server. 

The evaluation of the second application was conducted on the configuration comprising 
one PC (hosting the server and the first client) and one Pico W board (hosting the second 
client) which were connected over a WiFi router (or a mobile phone acting as an access 
point). The goal was to evaluate how the accuracy of the final NN depends on: (1) the 
server’s dataset size used in the initial NN training, and (2) the server’s number of iterations 
used in the initial NN training. The dataset size and the number of iterations on clients was 
fixed to 50 and 300, respectively. 

When the server’s number of iterations is fixed to 1000, as expected: (1) both the initial and 
the final NN accuracies steadily increase with the server’s dataset size (which is used in the 
initial NN training), and (2) the final accuracy in better that the initial accuracy, see Figure 10. 
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Figure 10: The initial and the final NN accuracy versus the server’s dataset size. 

 

When the server’s dataset size is fixed to 1000, as expected: (1) both the initial and the final 
NN accuracies rapidly increases with the server’s number of iterations (which is used in the 
initial NN training), and (2) the final accuracy in better that the initial accuracy, see Figure 11. 

 

 
Figure 11: The initial and the final NN accuracy versus the server’s number of iterations. 

 
These two distributed applications were developed by Marko Nikolovski in his B.Sc. thesis 
(available in Serbian [38]), mentored by Miroslav Popovic, and are publicly available in the 
“ptbfla” GitHub repository [35], see modules in the folder example2. 
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2.3.6 TOWARDS FORMAL VERIFICATION OF FEDERATED LEARNING ORCHESTRATION 
PROTOCOLS ON SATELLITES 

In this section, we provide a short digest of the research that is to be published by Institute of 
Electrical and Electronics Engineers (IEEE) Xplore in the Telfor 2024 proceedings, which is 
currently available as a preprint [31], which comprises the problem formulation and its 
solution, research achievements, and a highlight of the stochastic Timed Automata (TA) 
model and formal verification results. 

Problem Formulation and Its Solution: The PTB-FLA FL orchestration protocols were 
formally verified by using the process algebra CSP and the model checker Process Analysis 
Toolkit (PAT) [27]. The main limitation of [27] is that it is suitable for systems with stationary 
nodes, but cannot be applied to systems with moving nodes, such as constellations of 
spacecrafts, where physical timing needs to be considered, which is exactly the main 
motivation for this paper. 

To overcome this limitation, authors of [31] use celestial mechanics to model spacecraft 
movement, and TA and accompanying tool UPPAAL to formalise and verify the Centralised 
FL (CFL) orchestration protocol, in two phases. In the first phase, they created a 
conventional TA model to prove traditional properties, namely deadlock freeness and 
termination. In the second phase, they created a stochastic TA model to prove the timing 
correctness (the alignment of spacecraft movement and communication) and to estimate 
termination probability. 

Research Achievements are: (1) the model of a spacecraft movement in the form of the 
differential equation for the spacecraft’s true anomaly that directly follows from Kepler’s laws, 
(2) the conventional TA model of the CFL orchestration protocol, and (3) the stochastic TA 
model of the CFL orchestration protocol. To the best of the author's knowledge, this is the 
first paper that uses stochastic TA for formal verification of CFL orchestration protocols on 
constellations of spacecraft. 

Stochastic TA model and formal verification results: The stochastic TA model comprises 
the stochastic TA model of spacecraft (not shown here for brevity) and the stochastic TA 
model of the CFL orchestrion protocol in Figure 12. 
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Figure 12: The stochastic TA model of the CFL orchestration protocol (taken from [31]). 

The stochastic TA model has two main assumptions. Assumption 1: the CFL server instance 
resides in the Ground Station (GS), whereas fTA the two CFL client instances reside in two 
spacecrafts (or space vehicles, SVs) which fly on the same orbit with the initial true anomaly 
ν of π and 0, respectively. Assumption 2: each spacecraft should communicate with the 
ground station when it reaches the periapsis of its orbit. 

To check the alignment of spacecrafts’ movement and their communication with the ground 
station we created a simulation query that traces both true anomalies and current locations of 
the CFL server and the CFL clients. The simulation diagram plot by UPPAAL looks like a 
Gantt chart drawn atop a timing of analogue signals. The former comprises the three 
staircase-like lines showing location changes, see Figure 13. 

Obviously, the alignment is perfect, see how: (1) the first client (green line) reaches the 
location cphase2_t at the time point t = T/2, and the location cend at the time point t = 3T/2, 
(2) the second client (blue line) reaches the location cphase2_t at the time point t = T, and 
the location cend at the time point t = 2T, and (3) the server (pink line) reaches the location 
sphase2 at the time point t = T, and the location send at the time point t = 2T. Both nus[0] and 
nus[1] have the period T, and they start from π and 0 (see the ordinate at the time point t = 
0), respectively. 
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Figure 13: The UPPAAL tool simulation diagram (taken from [31]). 

For more details on this research see [31]. 

2.4 FEDRA: ADVANCING DECENTRALISED FEDERATED LEARNING 

Fedra, identified as tool T-WP5-04 in D2.3 [4], is an FL framework that has been developed 
in TaRDIS in order to support FL in completely decentralised, peer-to-peer swarm systems. 
In this context, Fedra can be used to train diverse ML models using the local data of each 
node, while enabling the direct exchange of model parameters amongst the participating 
peers.  

2.4.1 INTRODUCTION AND CONCEPTUAL FRAMEWORK 

FL has emerged as a revolutionary paradigm in machine learning, addressing the growing 
concerns of data privacy and the challenges of distributed datasets. Traditional FL 
approaches, while groundbreaking, often rely on centralised aggregators, creating potential 
bottlenecks and single points of failure. Fedra represents the next evolution in this field, 
pushing the boundaries of decentralisation, privacy, and efficiency. The general architectural 
considerations of decentralised federated learning are shown in Figure 14. 
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Figure 14: The general architectural considerations of decentralised federated learning: each 
node/client trains the model based on the local data and aggregates with the weights of other clients 

into a global model. 
 

Fedra is not just another FL framework; it's a reimagining of how collaborative machine 
learning can be achieved in a truly decentralised manner. By leveraging peer-to-peer (P2P) 
communication through libp2p, Fedra creates a robust, scalable network where each node is 
an equal participant in the learning process. 

2.4.1.1 Key Innovations: 

● True Decentralisation: Unlike systems that claim decentralisation but still rely on 
central coordinators, Fedra eliminates all central points of control. Each node in the 
Fedra network is fully autonomous, capable of training, aggregating, and contributing 
to the global model without centralised oversight. 

● Enhanced Privacy Guarantees: Fedra takes privacy a step further than traditional 
federated learning. Not only does raw data never leave local devices, but the 
peer-to-peer nature of communications means that even model updates are shared in 
a more private, directed manner. 

● Adaptive Learning Topology: The network in Fedra isn't static. It can dynamically 
adjust based on node availability, network conditions, and even the nature of the 
learning task at hand. This adaptivity ensures resilience and performance across 
various scenarios. 

● Model Agnosticism Redefined: While many frameworks claim model agnosticism, 
Fedra's architecture is designed from the ground up to accommodate not just different 
model architectures, but entirely different learning paradigms. From simple neural 
networks to complex Long Short-Term Memory (LSTM) models, Fedra's flexibility is 
unparalleled. 
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2.4.2 CONCEPTUAL ARCHITECTURE OF FEDRA 
 
Fedra's architecture is a carefully orchestrated symphony of components, each playing a 
crucial role in the decentralised learning process: 

1. P2P Communication Layer (P2PHandler): 
● Acts as the nervous system of the Fedra network. 
● Manages all inter-node communications, from initial peer discovery to ongoing 

model update exchanges. 
● Utilises libp2p to ensure secure, efficient, and anonymous peer-to-peer 

interactions. 
2. Data Management and Preprocessing (DataLoaderHandler): 

● Serves as the sensory input system, preparing and feeding data to the 
learning models. 

● Handles diverse data types and structures, ensuring compatibility across 
different learning tasks. 

● Implements advanced preprocessing techniques to optimise learning 
efficiency. 

3. Core Operations Module (Operations): 
● Functions as the brain of each node, performing critical computations. 
● Manages serialisation and deserialization of model updates, crucial for 

efficient network transmission. 
● Implements the decentralized federated averaging algorithm, the key to 

collaborative learning in a decentralised setting. 
4. Network State Management (NetworkState): 

● Acts as the collective memory of the network. 
● Keeps track of the status and contributions of all participating nodes. 
● Enables informed decision-making for adaptive learning strategies. 

5. Orchestration Engine (Main Script - fedra.py): 
● Serves as the conductor, coordinating all components to work in harmony. 
● Manages the lifecycle of the learning process, from initialization to 

convergence. 
● Implements high-level learning strategies and protocols. 

This architectural design ensures that Fedra is not just a tool for federated learning, but a 
comprehensive ecosystem for decentralised, collaborative AI development. 

2.4.3 LOW-LEVEL FEDRA'S ARCHITECTURE AND PROCESS - ARCHITECTURAL 
COMPONENTS IN DETAIL 
 

2.4.3.1 P2PHandler (handler.py) 

The P2PHandler is the cornerstone of Fedra's decentralised nature. It leverages libp2p to 
create a robust, secure, and efficient peer-to-peer network. The main task of the Fedra tool is 
shown in Figure 15. 
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Figure 15: The main task of Fedra tool, depicting the node.conf file, as well as the wait for peers’ 
workflow (in order to initiate the training process) and the training loop workflow (that performs the 

federated learning process). 
Key Features: 

● Dynamic Peer Discovery: Utilises libp2p's peer routing to dynamically discover and 
connect to other nodes in the network. 

● Publish-Subscribe System: Implements a sophisticated pub-sub mechanism for 
efficient broadcast of model updates and network states. 

● Message Chunking: Handles large model updates by breaking them into 
manageable chunks, ensuring smooth transmission even in bandwidth-constrained 
environments. 

● State Synchronisation: Maintains network-wide consistency through periodic state 
broadcasts and reconciliation. 

2.4.3.2 DataLoaderHandler (process.py) 

This component is crucial for Fedra's ability to handle diverse datasets and model types. 

Key Features: 
● Adaptive Data Loading: Supports various data formats and structures, from simple 

CSV files to complex time-series data. 
● Preprocessing Pipeline: Implements a flexible preprocessing pipeline that can be 

customised based on the specific requirements of each learning task. 
● Batching Strategies: Offers advanced batching techniques to optimise memory 

usage and training efficiency. 
● Data Privacy Enhancements: Incorporates privacy-preserving techniques like 

differential privacy at the data preparation stage. 
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2.4.3.3 Operations (operations.py) 

The Operations class is the computational powerhouse of Fedra, handling critical tasks in the 
federated learning process. 

Key Features: 
● Efficient Serialisation: Utilises advanced serialisation techniques to minimise the 

size of transmitted model updates. 
● Federated Averaging: Implements a robust decentralized federated averaging 

algorithm [39] that can handle updates from multiple peers, potentially with varying 
contributions. In the current version of Fedra, we assume that all the clients in the 
federated framework exhibit peer2peer connections. 

● Weight Compression: Incorporates weight compression techniques to further reduce 
communication overhead. 

● Anomaly Detection: Includes mechanisms to detect and handle anomalous or 
malicious updates, enhancing the security of the learning process. 

 
2.4.3.4 NetworkState (state.py) 

This component maintains a comprehensive view of the network's state, crucial for informed 
decision-making in a decentralised environment. 

Key Features: 
● Peer Status Tracking: Maintains real-time status of all peers, including their training 

progress and contribution quality. There are several methods for sharing model 
weights in Decentralised FL (DFL) based on different protocols, e.g., pointing, gossip, 
or broadcast protocols. We assume here that each peer broadcasts its state to the 
rest of the peers through a Publish-Subscribe (Pub/Sub) system. 

● Weight Version Control: Implements a versioning system for model weights, 
allowing for rollback and conflict resolution. 

● Performance Metrics: Tracks and analyses network-wide performance metrics to 
guide adaptive learning strategies. 

● Fault Tolerance: Incorporates mechanisms to handle peer dropouts and rejoin 
scenarios seamlessly. 

The two asynchronous tasks that run in the background are shown in Figure 16. 
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Figure 16: The two asynchronous tasks that run in the background: the peers publish their status in 
the respective topic (left) and their model weights (right). 

2.4.4 THE FEDERATED LEARNING PROCESS IN FEDRA 

Fedra's learning process is a sophisticated dance of distributed computation and 
collaborative model improvement: 

1. Network Initialization: 
● Nodes join the P2P network using libp2p's peer discovery mechanisms. 
● Each node broadcasts its initial status and capabilities to the network. 
● The network collectively establishes initial parameters like learning rate and 

batch size based on the capabilities of participating nodes. 
2. Data Preparation and Local Training: 

● Nodes use the DataLoaderHandler to preprocess their local datasets. 
● Initial model architectures are either predefined or negotiated based on the 

collective dataset characteristics. 
● Each node performs local training, with the flexibility to use custom optimizers 

and loss functions suited to their data. 
3. Model Update Exchange: 

● Post-training, nodes serialise their model updates using the Operations class. 
● Updates are strategically disseminated through the network using a 

combination of direct peer connections and gossip protocols. 
● The P2PHandler manages the chunking and reassembly of large model 

updates to ensure reliable transmission. 
4. Decentralised Aggregation: 

● Nodes perform local aggregation of received model updates using the 
federated averaging algorithm in the Operations class. 

● The aggregation process is weighted based on factors like peer reputation 
and data quality, as tracked by the NetworkState. 
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● Anomaly detection mechanisms filter out potentially harmful or low-quality 
updates. 

5. Adaptive Learning and Convergence: 
● The process iterates, with each round potentially adapting parameters based 

on network performance. 
● Convergence is determined through a decentralised consensus mechanism, 

considering factors like model performance, update magnitude, and network 
stability. 

● The NetworkState component plays a crucial role in coordinating this 
decentralised decision-making process. 

6. Continuous Evaluation and Refinement: 
● Throughout the process, nodes continuously evaluate the global model on 

their local validation sets. 
● Feedback loops allow for dynamic adjustment of learning rates, batch sizes, 

and even model architectures. 
● The network can seamlessly handle the joining of new peers or the departure 

of existing ones, ensuring robustness and scalability. 

The federated learning workflow and the shared objects among the peers participating in the 
FL process are shown in Figure 17 and 18. 

 

Figure 17: The federated learning workflow, 
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Figure 18: The shared objects (status and weights) among the peers participating in the FL process. 
 
2.4.5 ADVANCED FEATURES AND FUTURE DIRECTIONS 

Fedra's architecture is designed with extensibility in mind, paving the way for advanced 
features and future enhancements: 

● Differential Privacy Integration: Plans to incorporate more advanced differential 
privacy techniques at both the data and model levels. 

● Heterogeneous Hardware Support: Developing capabilities to optimally utilise diverse 
hardware configurations across the network, from edge devices to high-performance 
clusters. 

● Multi-Task Learning: Extending the framework to support simultaneous training of 
multiple, possibly related models across the network. 

● Blockchain Integration: Exploring the integration of blockchain technology for 
immutable record-keeping of model updates and peer contributions. 

● AI-Driven Network Optimization: Implementing AI algorithms to dynamically optimise 
the network topology and learning parameters for maximum efficiency. 

 
Fedra represents not just a step, but a leap forward in the field of federated learning. By 
reimagining the very architecture of collaborative learning, Fedra opens up new possibilities 
for privacy-preserving, efficient, and truly decentralised AI development. As the framework 
continues to evolve, it promises to push the boundaries of what's possible in distributed 
machine learning, paving the way for a new era of collaborative AI that respects privacy, 
embraces diversity, and harnesses the true power of decentralised computation. 
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3 ADVANCES ON AI-DRIVEN PLANNING, DEPLOYMENT AND ORCHESTRATION 
FRAMEWORK 

3.1 PEERSYMGIM: AN ENVIRONMENT FOR SOLVING THE TASK OFFLOADING 
PROBLEM WITH REINFORCEMENT LEARNING 

PeersimGym is a simulation environment designed to address the task offloading problem 
using Reinforcement Learning (RL). Task offloading refers to the process of transferring 
computationally intensive tasks from resource-constrained devices to less-strained devices. 
As described in [40], it allows for the evaluation and optimization of RL algorithms under 
dynamic network conditions, facilitating efficient task distribution and resource utilisation. The 
framework integrates various RL strategies to solve complex offloading scenarios, promoting 
better performance in network management and operations. [40]. 

The benefit of RL is that it enables learning optimal offloading strategies through iterative 
interactions. However, it requires access to rich datasets and custom-tailored, realistic 
training environments. Figure 19 shows the general overview as follows: The interaction 
cycle of an RL agent with its environment is structured around a continuous loop where, at 
each timestep t = 1, ..., T, the agent observes the system state st, executes an action at 
based on this observation, and receives feedback in the form of a reward rt. This feedback 
reflects the effectiveness of the action, taking into account both its immediate impact and its 
influence on future states. Through this iterative process, the agent refines its policy - a set of 
rules determining its actions in various states - to maximize cumulative rewards, thereby 
aligning with the goal of optimizing task offloading decisions. In Figure 19.a we have the 
common RL interaction cycle, obeyed by the controller agents. The cycle begins with the 
controller observing a state, as represented in Figure 19.b, containing information about the 
part of the environment observed by the controller including its own properties and gathered 
information on its neighbourhood. The controllers then make an offloading decision, the 
actions taken and the inherent dynamics of the environment produce a state transition and 
the cycle repeats itself. In the multi-agent setting all the agent’s would have a similar 
interaction loop at the same time, resulting in a joint-action. 

PeersimGym is an open-source, customizable simulation environment, with the purpose of 
developing and optimising task offloading strategies. It supports a wide range of network 
topologies and various constraints. It also integrates a PettingZoo-based interface for RL 
agent deployment in solo and multi-agent setups. It has been extensively discussed in D5.1 
and presented in the ECML paper [40]. In the last period, there were several code fixes 
motivated by tool usage outside of TaRDIS. 
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Figure 19: General and problem-specific RL state action overview. 

3.2 FAUNO: FEDERATED AI NETWORK ORCHESTRATOR 

FAuNO, identified as tool T-WP5-05 in D2.3 [4], represents a federated AI network 
orchestrator that enhances the coordination and operation of distributed AI systems. 
Leveraging FL principles, FAuNO ensures privacy-preserving collaboration across multiple 
nodes while maintaining high performance and scalability. This orchestrator is designed to 
manage AI workloads efficiently, balancing computational demands and ensuring optimal 
resource use across the network.  

The objective of this tool is to learn to orchestrate the network in a federated way. It is 
designed to optimise computer network orchestration through Federated Reinforcement 
Learning (FRL). The main goals are to enhance efficiency and performance of distributed 
network systems and to provide a robust and scalable solution for managing and optimising 
network operations across decentralised nodes. It addresses challenges as latency, 
bandwidth constraints and data privacy concerns. Therefore, the main benefits can be 
identified as the following: 

● The nodes learn and adapt locally while contributing to a global model 
● Data privacy is ensured. 
● The need for extensive data transfer is reduced. 
● The latency and bandwidth usages are minimised. 

The FAuNO tool interactions with other network entities can be displayed as in Figure 20 (for 
more details, see D2.3). 
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Figure 20: FAuNO tool interaction diagram. 

1.  

3.2.1 FAuNO Overview 
FAuNO as a Federated solution utilises a Client/Server architecture to have the participants 
in the federation cooperate in training a global model utilising their local individually learned 
experiences. The global model is handled by a FAuNO node that is capable of hosting a 
component to manage the receival of updates and their aggregation into the global model, 
we call this as the Global Model Host FAuNO Node, or just global model host. The global 
model host other than the module that manages the global model is just like any other 
FAuNO node, having its own separate local model to learn locally how to best orchestrate the 
node’s workload. The functions of a worker node are to process the tasks that arrive on the 
node, share their own state information with their immediate neighbours, collect information 
about their neighbourhood and make task offloading decisions based on the collected 
information. In Figure 21 we can observe a diagram with the components that make up each 
of the FAuNO node types, which include four components. Three of which are hosted by all 
the nodes. These are the data processing layer responsible for execution of the tasks 
assigned to the node. The data collection layer, responsible for communicating with the 
node’s neighbours and managing the collected information. And the FRL Client that is 
responsible for the independent orchestration of the node with a task offloading mechanism. 
The last component is hosted by a single agent in the network and is the FRL Server that 
manages the federation of FRL Clients, when training a model that can solve a global 
objective considering the experiences of all the members of the federation. 

 
We focus on the orchestration mechanism leaving the data collection and task processing 
generic to accommodate varied scenarios.  
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Figure 21: FAuNO Node vs FAuNO Global Manager. 

3.2.2 FAuNO orchestration mechanism 

Following common client\server federated algorithms we divide the FAuNO orchestration into 
two components: the global training and the local training. We utilise Proximal Policy 
Optimization (PPO) [41] for the local training component. PPO is an algorithm from the 
Actor-Critic family of RL algorithms where two components exist, an actor that learns a 
mapping from observations of the state directly to a distribution over the possible actions that 
can be taken. And, a Critic component, that is responsible for evaluating the Actor’s choices. 
In particular the PPO algorithm looks to improve the reliability and stability of the training by 
limiting the size of the updates that can be taken during learning. We utilise function 
approximators for both the actor and the critic. 
 
For the global training, where we wish to utilise the federated agent’s learned knowledge to 
cooperate in training a global model. To do so we simplified and built upon the FedBuff 
solution [42], as demonstrated in Figure 22. 
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a) Beginning of a round. All nodes                             b) First updates arrive. 
download the same model                                              

 
  c)  When multiple updates of  one   agent            d) When k updates from distinct agents  
   arrive, the old one is swapped.                             arrive, the Global model is updated. 

Figure 22: Modified FedBuff solution.         
          

The federated buffering solution used is a buffered asynchronous method where the global 
server waits for the first K-updates instead of all the participants before the collected local 
updates are aggregated and used to update the global model. In our setting, we extend the 
mechanism to accommodate continuous control and have the agents continue training, and 
sending updates to the global model, these updates replace the last update sent and are 
weighted more when aggregating. When enough updates are received, we consider a 
FedAvg [43] like aggregation of the updates to update the global model. All the participants 
then download the global model. This process is illustrated in Figure 22. 
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3.2.3 Preliminary Results 

We have tested our solution on the PeersimGym environment pursuing two preliminary 
research questions while doing Binary Task offloading. 

3.2.3.1 Baselines 

We compare the FAuNO orchestration mechanism to a set of baselines including heuristic 
algorithms: 

● Least Queues: Tasks are always sent to the nodes with the smaller percentual queue 
● Random: Tasks are Randomly offloaded 
● No offloading: (Always local in plots) Tasks are only processed locally 

And a set of Reinforcement Learning algorithms used in a Multi-Agent setting: 
● Double Deep Q-Network [44] 
● Advantage Actor Critic [45] 
● Proximal Policy Optimization [41] 

3.2.3.2 Metrics 

We consider three commonly used metrics. The number of times a node exhausted their 
resources and was left without room for more tasks, we call this state being overloaded. The 
number of tasks dropped. And the average time needed from task request until results 
receival. 

3.2.3.3 Testing scenarios 

We observe these metrics on two testing scenarios, we consider a scenario with an 
increasing number of clusters of nodes as generated by the ether tool integrated with 
PeersimGym[46], and a fixed task arrival rate at each node. We also compare our algorithm 
on a scenario with a fixed topology and an increasing task arrival rate. The topologies with 
two clusters can be observed in Figure 23. An in-depth explanation of the PeersimGym 
visualization tool used to obtain Figure 23 is available on the PeersimGym’s repository. 
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Figure 23: Topology with 2 clusters of nodes as generated by Ether. 

 
As can be seen in Figure 24 andFigure 25, the FAuNO orchestration matched the baselines 
in the scenarios considered on both number of overloads and dropped tasks and 
outperformed the baselines when considering the response time. 
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Figure 24: Results of Scenario with increasing number of clusters. 

 

 
 

 
Figure 25: Results of Scenario with increasing task arrival rates. 
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4 ADVANCES ON LIGHTWEIGHT, ENERGY-EFFICIENT ML TECHNIQUES 

In the previous deliverables, we had provided a theoretical overview of the main neural 
network compression techniques and reviewed some of the literature. In the meantime, we 
developed some initial code for applying those techniques in real problems. Therefore, during 
the second year of the activity, the focus was on the implementation of the ML lightweight 
tools that will be integrated in the TaRDIS toolbox. The lightweight ML tools were identified in 
the TaRDIS architecture in D2.3 [4] as T-WP5-06 (early exit), T-WP5-07 (knowledge 
distillation) and T-WP5-08 (pruning). We also published some results regarding theoretical 
and practical advances that can be of relevance regarding lightweight, energy-efficient ML 
techniques. We considered an Over-the-Air Computation scheme for fast data aggregation in 
[47]. Additionally, we proposed a joint adoption of FL principles and the utilization of the 
Over-the-Air computation wireless transmission framework [48]. We also published 
lightweight inference by neural network pruning [49], where the application of neural 
networks in resource constrained edge-devices was addressed. We proposed an 
IoT-Edge-Cloud computing system, designed for multiple smart homes in [50], and a two-fold 
FL scheme for improving privacy, EE and communication-efficiency of future 6G maritime 
networks in [51]. 

4.1 PRUNING 

The development of the Pruning method (T-WP5-08) and its application on sample datasets 
was conducted during this period. In the initial stage of the TaRDIS project, we had 
developed a wrapper function for applying pruning on PyTorch models, using the Neural 
Network intelligence (NNI) Microsoft library. While this yielded results, there were some 
disadvantages, such as the fact that this library does not support pruning of LSTM models.  

For that reason, we also explored the usage of TensorFlow lite, a very popular library for 
lightweight neural networks, and applied pruning to an LSTM model for energy consumption, 
for a variety of pruning rates.  The results were satisfactory, as there was a reduction in file 
size and inference time, with a minimal effect on the Mean Squared Error (MSE). In some 
cases, such as the 40 % pruning rate, we see an improvement, whereas the memory 
required for inference can be reduced without increasing significantly the mean squared 
error. The results of the pruning process are shown in Figure 26 and 27. 

 

Figure 26: Results of the pruning process: size of the zipped model (left), mean inference time (right) 
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Figure 27: Results of the pruning process:  mean squared error wrt the pruning rate. 

4.2 EARLY EXIT OF INFERENCE 

During the second year of the TaRDIS activity, the development of the early-exit technique 
was conducted in a tool that will be included in the TaRDIS toolbox (T-WP5-06) and its 
implementation on sample datasets. Furthermore, a tool for the deployment of the several 
parts of the early exit models was designed and developed, named decentralized exit or 
D-exit, as reported in the following section.  

Developing an early exit framework was more challenging, as there are no libraries that can 
be used out of the box to split a network into sub models. The first thing the user has to do is 
separate the model into sub-modules that are contained in a nn.Sequential container. The 
created class infers the output shape at the end of each Module and creates an Artificial 
Neural Network that serves as the exit at each. 

Three Functions to train the network have been created: 

One that trains the network as a whole (all the exits together). It has been noticed that the 
exits closer to the first layers get trained more, when the whole network is trained together. 
This can be due to some effect of the vanishing gradient problem. As the first exit is close to 
the input layers, the loss function gets multiplied less times than the ones further away, 
leading to a smaller gradient and thus a smaller effect on the training of the model. 
Additionally, the loss function from two exits could either cancel each other out, or make the 
loss overshoot its actual target.  

For those reasons, the two other functions were designed to train a) just the exits and b) only 
one exit at a time. These functions can be very useful, as they can be applied to a pretrained 
model, without messing with its training.  

We tested the CIFAR-10 [52] dataset with a pretrained visual geometry group (vgg) type 
model and the best results were observed using the third method of training each exit 
independently. 

Here we can see the accuracy of each exit, if all samples were to take that specific exit. 
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Curiously enough, when a combination of the exits was used, the overall accuracy reached 
88% in the classification problem. The histogram showing the number of times that the model 
exits on different exits is presented in Figure 28. 

 

Figure 28: Histogram depicting the number of times that the model exits on exit 1 (approx 1000), exit 2 
(approx 5000) and final exit 3 (approx 4000). 

 
Finally, a function to split that entire model to smaller ones has been developed, in order for 
one to be able to deploy each sub model independently. This functionality will be paired with 
the DEXIT development (see following sections below).  

Most of the above functionalities have been abstracted from the user. That being said, one 
has to train the model themselves, as it is impossible to know beforehand the correct 
combination of loss function, optimizer learning rate and other hyperparameters, for each and 
every problem.  

This means that, at least for now, a basic understanding of machine learning is required for 
someone to use the early-exit functionality of the TaRDIS toolkit. 

4.3 KNOWLEDGE DISTILLATION 

Similarly to the previous two methods, the development of the knowledge distillation 
technique (T-WP5-07) was conducted during this reporting period, along with the initial 
testing on sample datasets. As for now, our knowledge distillation development consists of a 
function, that imitates a normal PyTorch training loop, but instead of calculation the loss 
function, between the output of the student model and the actual labels, it is a combination of 
the labels and the outputs of the teacher model, filtered through a softmax temperature 
function.  

Apart from the usual hyperparameters that one has to select, in Knowledge distillation two 
extra variables are present: (i) the percentage which the teacher takes into account. While 
training, a combination of the actual labels and that produced by the teacher can be used; (ii) 
additionally, the temperature in the softmax temperature function, which determines how 
sharp the teachers’ outputs will be.  

As a proof of concept, we trained a small model for CIFAR-10 classification. The first column 
depicts the model that was trained the conventional way and the other models trained with 
different temperature values. The teacher that was used was a pretrained model found on 
github, with 89% accuracy. The results of the knowledge distillation process are displayed in 
Figure 29. 
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As we can see the optimal value for this specific configuration is 3, that outperforms the 
original model, by a small margin. Future modifications to the distillation training loop could 
be a conditional usage of the teacher, if it correctly classified the sample, so that it does not 
misguide the student.  

 

Figure 29: Results of the knowledge distillation process: accuracy of the student model compared to 
the original teacher model for different temperatures. 

Regarding the measured efficiency of the Knowledge Distillation (KD) and the EE methods, 
most papers measure the success of their methods by compression rate, usually expressed 
as a percentage of weights removed from the original model. But measuring compression 
this way, leaves us with a big question. What if, instead of training a bigger model and then 
compressing it, we instead created and trained a small model from the start. That is the 
comparative analysis that we demonstrate here. The models are first separated in what is 
called iteration. Each iteration has 10% less weights than the previous one. In Figure 30, we 
can see that time it took for each model to run on the CIFAR-10 dataset. 

  

Figure 30: Measurement of execution time for different iterations (more lightweight in terms of model 
size) of the DNN models. 

 

 Page 53 of 102 © 2023-2025 TaRDIS Consortium 



TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration 

For all the models, the Central Processing Unit (CPU) and Compute Unified Device 
Architecture (CUDA) time are measured using PyTorch’s native method called profiler while 
the elapsed time is the total time that it took to run, using pythons time package. We can see 
that the CUDA time, which is the GPU that performs the operations fall-off logarithmically, 
just like the number of weights and thus floating-point operations. The total and CPU time 
involve additional procedures such as data loading, which are not tied to the size of the 
model and thus can’t be reduced by compressing the model. 

Now we will differentiate the models, not only by size (the iteration) but by training method as 
well. We have 4 different variants. 

● The baselines are the models that were initialized the “compressed” size and trained 
from scratch  

● The knowledge distillation models were produced using KD 
● The pruning using pruning, from our own trained model 
● The pruned from pre-trained also used pruning, but they were pruned from a 

pre-trained model found on the internet. 

The comparison between the four different variants of the resulting model accuracy when 
utilizing different iterations is shown in Figure 31. 

  

Figure 31: Comparison between the four different variants of the resulting model accuracy when 
utilizing different iterations. 

 
As it is evident, if a pretrained model is available, it should be used as a basis for our 
compression methods, both having a better performance and saving us the time to train our 
own. If not, we still are better off training a bigger model and compressing it, rather than 
training a small one to begin with. 
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4.4 DEXIT FRAMEWORK: A COMPREHENSIVE ANALYSIS 

As aforementioned, a particular tool named DEXIT (Decentralised Early Exit Inference Tool) 
was developed to support the deployment of the trained EE models in swarm nodes. DEXIT 
represents a cutting-edge approach to distributed inference in the realm of edge computing 
and artificial intelligence. By leveraging the power of early exit strategies and decentralised 
computing, DEXIT addresses several critical challenges in modern AI deployment, 
particularly in resource-constrained and latency-sensitive environments. 

4.4.1 THE PROBLEM SPACE 

In the era of Internet of Things (IoT) and edge computing, traditional centralised cloud-based 
inference models face several limitations: 

1. Latency: The round-trip time for sending data to a centralised cloud and receiving 
results can be prohibitively high for real-time applications. 

2. Bandwidth Constraints: Transmitting large amounts of data from edge devices to 
the cloud can overwhelm network capacities. 

3. Privacy Concerns: Sending sensitive data to centralised servers raises security and 
privacy issues. 

4. Resource Utilisation: Cloud-only models often underutilize the computational 
capabilities of edge devices. 

5. Scalability: As the number of edge devices grows, centralised models struggle to 
keep up with the increased load. 

DEXIT addresses these challenges through a novel combination of distributed computing, 
early exit strategies, and peer-to-peer networking: 

1. Distributed Inference: By distributing the inference process across edge and cloud 
nodes, DEXIT reduces the burden on any single point in the network. 

2. Early Exit: Implementing early exit strategies allows simpler inferences to be 
completed at the edge, reducing latency and bandwidth usage. 

3. P2P Communication: Utilising libp2p for peer-to-peer networking enables efficient, 
decentralised data exchange between nodes. 

4. Adaptive Computation: The framework adapts to the complexity of inputs, allocating 
more resources only when necessary. 

5. Scalability: The decentralised nature of DEXIT allows for easy addition or removal of 
nodes, enabling the network to scale dynamically. 

4.4.2 DEXIT HIGH-LEVEL ARCHITECTURE 

The DEXIT architecture is designed to be flexible, scalable, and efficient. It comprises 
several key components that work in concert to enable distributed early exit inference. The 
workflow of the Dexit process is shown in Figure 32. 
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Figure 32: Workflow of the DEXIT process, illustrating the user (first part of the model), the edge 

device (mid part of the model) and the server (final part of the model). 

4.4.3 DEXIT CORE ARCHITECTURAL COMPONENTS 
4.4.3.1 Edge Device 

The Edge Device serves as the entry point for inference requests. It is typically a 
resource-constrained device (e.g., smartphone, IoT sensor) that initiates the inference 
process. 

Key responsibilities: 
● Initial processing of input data 
● Making early exit decisions based on confidence thresholds 
● Forwarding complex cases to Cloud1 Node 

4.4.3.2 Cloud1 Node 

The Cloud1 Node acts as an intermediate processing unit with more computational power 
than the Edge Device. 

Key responsibilities: 
● Processing more complex inference tasks 
● Implementing its own early exit strategy 
● Forwarding the most challenging cases to Cloud2 Node 

4.4.3.3 Cloud2 Node 

The Cloud2 Node represents the final and most powerful computational resource in the 
DEXIT network. 
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Key responsibilities: 
● Handling the most complex inference tasks 
● Providing high-accuracy results for challenging inputs 
● Supporting the overall network by processing overflow from other nodes 

4.4.3.4 Network layer (libp2p) 

The P2P Network Layer, implemented using libp2p, forms the communication backbone of 
DEXIT. 

Key features: 
● Decentralised peer discovery 
● Efficient message routing between nodes 
● Support for various transport protocols 
● Network Address Translation (NAT) traversal capabilities 

4.4.3.5 Network state management 

The Network State Management component keeps track of the overall system state, 
including peer statuses, inference requests, and results. 

Key responsibilities: 
● Maintaining a real-time view of the network topology 
● Tracking the status of ongoing inference tasks 
● Managing the distribution of workload across nodes 

 

The interconnection of these software components is demonstrated in the following 
schematic, where the decentralized nodes (edge device, cloud1 and cloud2 nodes) are 
linked between them through the libp2p protocol and the network state management entity 
keeps track of the overall system state. 

[Edge Device] <---> [Cloud1 Node] <---> [Cloud2 Node] 
       ^               ^                ^ 
       |               |                | 
       v               v                v 
[P2P Network Layer (libp2p)] 
       ^ 
       | 
       v 
[Network State Management] 

4.4.4 DEXIT KEY SOFTWARE COMPONENTS 

4.4.4.1 P2PHandler (network/handler.py) 

The P2PHandler is responsible for managing all P2P network operations within DEXIT. 

Key functionalities: 
● Network initialization and peer discovery 
● Message publishing and subscription 
● Direct messaging between peers 
● Handling of inference requests and results 

Implementation highlights: 
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class P2PHandler: 
    def __init__(self, bootnodes, key_path, topic, models, packet_size=1024, 
device='cpu', role=None): 
        # Initialize P2P network parameters 
         
    async def init_network(self): 
        # Initialize the P2P network 
         
    async def publish_status(self, peer_status: PeerStatus): 
        # Publish peer status to the network 
         
    async def send_inference_request(self, peer_id: str, inference_request: 
InferenceRequest): 
        # Send inference request to a specific peer 
         
    async def send_inference_result(self, peer_id: str, inference_result: 
InferenceResult): 
        # Send inference result to a specific peer 

 

4.4.4.2 NetworkState (utils/state.py) 

The NetworkState class manages the overall state of the DEXIT network. 

Key functionalities: 
● Tracking peer statuses 
● Managing inference requests and results 
● Providing network state summaries 

Implementation highlights: 

class NetworkState: 
    def __init__(self): 
        self.peer_statuses = {} 
        self.inference_results = {} 
        self.inference_requests = [] 
         
    def update_peer_status(self, peer_status_info: PeerStatus): 
        # Update the status of a peer 
         
    def get_peer_by_role(self, role: str) -> str: 
        # Get a peer ID based on its role 
         
    def update_inference_result(self, result: InferenceResult): 
        # Update an inference result 

 

4.4.4.3 CIFARDataLoader (data/dataloaders.py) 

The CIFARDataLoader handles data loading and preprocessing for the CIFAR-10 dataset, 
which is used for testing and demonstration purposes in DEXIT. 

Key functionalities: 
● Loading and preprocessing CIFAR-10 dataset 
● Creating DataLoaders for efficient batch processing 
● Supporting customizable sample sizes for testing 

Implementation highlights: 
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class CIFARDataLoader: 
    def __init__(self, batch_size: int = 4, root_dir: str = './shared/data', 
num_samples: int = None): 
        # Initialize data loader parameters 
         
    def _create_transform(self) -> transforms.Compose: 
        # Create image transformation pipeline 
         
    def _load_dataset(self, train: bool) -> torchvision.datasets.CIFAR10: 
        # Load CIFAR-10 dataset 
         
    def get_test_loader(self) -> DataLoader: 
        # Get DataLoader for test dataset 

 

4.4.4.4 Early Exit Models (early_exit/) 

The early exit models are custom neural network architectures that support multiple exit 
points for inference. 

Key features: 
● Multiple intermediate classifiers (exit points) 
● Confidence thresholds for early termination 
● Adaptive computation based on input complexity 

The main workflow loop of the DEXIT tool and the published alerts to the subscribed topics of 
the involved entities are shown in Figure 33. 
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Figure 33: The main workflow loop of the DEXIT tool (top) and the published alerts to the subscribed 
topics of the involved entities (bottom). 
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The configuration file that can be modified from the user includes three objects: (i) a network 
object, containing the configurations related to the network in the decentralized architecture, 
(ii) a model object, containing parameters setting related to the early exit models and (iii) a 
data object, that handles the inference data. As depicted in Figure 33, only the network 
object is needed to initiate the wait for peers loop, i.e., each peer waits until the required 
number of decentralized nodes/peers (configurable by the user) has joined the Dexit 
framework and the inference process can start. The rest of the inference workflow is 
described below. 

4.4.5 DEXIT WORKFLOW 

The DEXIT workflow demonstrates how the system processes inference requests across the 
distributed network: 

1. Inference Initiation: 
● An inference request is initiated at the Edge Device. 
● The Edge Device performs initial processing on the input data. 

2. Edge Device Early Exit: 
● If the confidence threshold is met at the Edge Device, the inference terminates 

here. 
● The result is returned immediately, minimising latency. 

3. Forwarding to Cloud1: 
● If the Edge Device cannot meet the confidence threshold, the intermediate 

result is forwarded to the Cloud1 Node. 
● The P2P network layer handles the efficient transfer of data. 

4. Cloud1 Node Processing: 
● The Cloud1 Node receives the intermediate result and continues processing. 
● It applies its own early exit strategy based on confidence thresholds. 

5. Cloud1 Early Exit or Forward: 
● If Cloud1 meets the confidence threshold, it terminates the inference and 

returns the result. 
● If further processing is needed, the intermediate result is forwarded to the 

Cloud2 Node. 
6. Cloud2 Node Final Processing: 

● The Cloud2 Node receives the most complex cases. 
● It performs the final inference steps and returns the result. 

7. Result Propagation: 
● The final inference result is propagated back through the network to the 

originating Edge Device. 
● The Network State is updated with the completed inference result. 

The inference loop of the DEXIT tool and the send2server functionality when the confidence 
level has not been reached in the early exits are shown in Figure 34. 
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Figure 34: Inference loop of the DEXIT tool (left) and the send2server functionality (right) when the 
confidence level has not been reached in the early exits. 

4.4.6 KEY FEATURES AND ADVANTAGES 

4.4.6.1 Adaptive Computation 

DEXIT's early exit strategy allows for adaptive computation based on input complexity. This 
results in: 

● Reduced overall computational load 
● Lower latency for simpler inputs 
● Efficient utilisation of resources across the network 

4.4.6.2 Decentralised Architecture 

The use of a P2P network powered by libp2p provides: 

● Improved scalability and resilience 
● Reduced dependency on centralised infrastructure 
● Dynamic adaptation to network conditions and node availability 

4.4.6.3 Flexibility and Heterogeneity 

DEXIT accommodates a wide range of devices with varying computational capabilities: 

● Leverages both edge and cloud resources effectively 
● Adapts to different hardware configurations and constraints 
● Supports seamless integration of new devices into the network 
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4.4.6.4 Reduced Latency and Bandwidth Usage 

By processing data closer to the source, when possible, DEXIT achieves: 

● Lower end-to-end latency for time-sensitive applications 
● Reduced bandwidth consumption, especially beneficial in constrained network 

environments 
● Improved real-time decision-making capabilities 

4.4.6.5 Enhanced Privacy and Security 

The distributed nature of DEXIT offers inherent privacy and security benefits: 

● Sensitive data can be processed locally, reducing exposure 
● Decentralised architecture minimises single points of failure 
● Potential for implementing federated learning approaches 

4.4.7 CHALLENGES AND FUTURE DIRECTIONS 

While DEXIT presents a promising approach to distributed inference, several challenges and 
areas for future research remain: 

4.4.7.1 Dynamic Load Balancing 

Developing sophisticated algorithms for real-time load balancing across heterogeneous 
nodes is crucial for optimal performance. 

4.4.7.2 Model Consistency and Updates 

Ensuring consistency of model versions across distributed nodes and implementing efficient 
update mechanisms are important challenges to address. 

4.4.7.3 Privacy-Preserving Techniques 

Integrating advanced privacy-preserving methods, such as differential privacy or secure 
multi-party computation, could enhance DEXIT's applicability in sensitive domains. 

4.4.7.4 Fault Tolerance and Recovery 

Implementing robust fault tolerance mechanisms and recovery strategies is essential for 
maintaining system reliability in dynamic edge environments. 

4.4.7.5 Standardisation and Interoperability 

Developing standards for decentralised early exit inference and ensuring compatibility with 
existing edge computing platforms will be crucial for widespread adoption. 

4.4.8 CONCLUSION 

DEXIT represents a significant advancement in the field of distributed inference for edge 
computing. By combining early exit strategies with decentralised computing, it addresses 
critical challenges in latency, bandwidth utilisation, and scalability. As edge computing and 
IoT continue to evolve, frameworks like DEXIT will play a crucial role in enabling efficient, 
real-time AI inference across distributed networks of heterogeneous devices. 
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The modular and extensible nature of DEXIT opens up numerous possibilities for future 
enhancements and adaptations to diverse use cases, from smart cities and autonomous 
vehicles to industrial IoT and beyond. As research in this area progresses, DEXIT stands as 
a promising foundation for the next generation of distributed AI systems. 

4.5 COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED 
ERROR FEEDBACK 

This section explores innovative approaches to vertical federated learning, focusing on 
communication efficiency through compressed error feedback [53]. The proposed techniques 
aim to minimise communication overhead while preserving model accuracy and convergence 
speed, thus promoting energy-efficient learning processes. The methodology involves 
compressing the error feedback in federated learning scenarios, thereby reducing data 
transfer requirements without compromising learning efficacy.  

As a natural application of [53], the NOVA group in WP5 is testing the viability of [53] in the 
space domain. In recent years, vertical federated learning (VFL), which allows different 
entities to collaboratively train models using their unique feature sets, has emerged as a 
promising framework for enhancing data-driven applications in Lower Earth Orbit (LEO). 
Despite this, the communication overhead in VFL remains a significant bottleneck, especially 
in satellite-based networks. As seen in FedSpace [54], the challenges of connectivity and 
aggregation in federated learning systems can significantly slow down training processes. 
More efficient communication and aggregation algorithms are needed, such as those 
proposed in EFVFL [53]. This work aims to explore the application of VFL in LEO satellite 
constellations, utilizing state-of-the-art algorithms to address the unique challenges posed by 
such distributed networks. 
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5 POSITIONING OF ML/AI TOOLS IN TARDIS 

5.1 OVERVIEW AND RELATION WITH TARDIS REQUIREMENTS  

TaRDIS WP2 aims to analyse and review the end-user needs and determine the functional 
requirements of the TaRDIS development environment. D2.2 [6] synthesised the functional 
requirements for TaRDIS, where WP5 contributed to D2.2 [6] by identifying the requirements 
regarding WP5 (as reported in D5.1 [1]). In D2.3 [4], the precise meaning of heterogeneous 
swarm systems for TaRDIS was defined. It also revealed the details about the necessary 
structure of the toolbox including the requirements to be fulfilled by each kind of tool included. 
WP5 contributed to this deliverable, by the definitions of the WP5 tools and the links with the 
appropriate requirements. 
 
In D2.3 [4] the TaRDIS toolbox architecture was introduced, as shown in Figure 35. The tools 
on higher levels are built on or use guarantees of tools on lower levels. The positioning of 
WP5 within this architecture can be identified through 3 units, coloured blue: Intelligent 
orchestrator, ML inference agents and Federated ML training. The contributions of different 
tasks in WP5 fit into these architectural units. The tools that belong to each unit are listed in 
brackets and described in D2.3 [4] in detail, including also their linkages with the TaRDIS 
requirements, defined in D2.2 [6]. 

 
Figure 35: The TaRDIS toolbox architecture overview (from D2.3 [4]). 

 
The Federated ML Training unit includes a set of tools offering solutions for federated 
learning training: Flower-based FL model training (T-WP5-01), PTB-FLA and MPT-FLA 
(T-WP5-04), Decentralised Federated Learning Framework - Fedra (T-WP5-09), as well as a 
tool for data preparation for Flower-based FL model training (T-WP5-02). It also includes two 
lightweight ML technique tools: Knowledge distillation(T-WP5-07) and Pruning (T-WP5-08). 
On a higher architectural level, ML inference agents rely on the outputs from the Federate 
ML Training. Here, we can identify three relevant tools: Flower-based FL model inference 
and evaluation (T-WP5-03), PTB-FLA and MPT-FLA (T-WP5-04) and Early exit (T-WP5-06). 
On the same level, under Intelligent orchestrator, the Federated AI Network Orchestrator - 
FAuNO (T-WP5-05) is defined. This architectural view pervades the results of the different 
WP5 tasks. 

 

 Page 65 of 102 © 2023-2025 TaRDIS Consortium 

https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=bd0msl8e5qjn
https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=bd0msl8e5qjn


TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration 

5.2 INTERACTION WITH TARDIS PROGRAMMING ABSTRACTIONS 

TaRDIS WP3 aims to specify the programming model and the APIs (Application Programmer 
Interfaces) that can be offered to programmers by the TaRDIS toolbox.  WP3 is also focusing 
on integrating a set of tools on an IDE (Integrated Development Environment) that simplifies 
the development of decentralised applications deployed in diverse settings. A first outline of 
the TaRDIS programming model and APIs is provided in D3.1 [55] (led by WP3), where WP5 
has contributed to D3.1 [55] by providing initial definitions of WP5 APIs (as reported in D5.1 
[1]). D3.2 [5] provided a detailed evaluation of the TaRDIS IDE platform, where WP5 created 
descriptions of its proposed candidate applications, supported by mock-ups, screenshots and 
detailed explanations. D3.3 [56] presents the second revision of the TaRDIS programming 
models and TaRDIS toolkit APIs, and WP5 contributed to this deliverable by providing 
updates on WP5 APIs defined in D3.1 [55]. Also, the TaRDIS models and APIs 
documentation is currently available under the TaRDIS wiki, where WP5 provided an 
overview of its APIs. The WP5-related Application Programmer Interfaces (API) definitions 
are aligned with the proposed WP5 tools. The proposed WP5 tools will be integrated in the 
TaRDIS IDE platform during the last year of the project, as drafted in D3.2. 

5.3 INTERACTION WITH TARDIS PROPERTY VERIFICATION TOOLS 

The work of WP4 is focused on developing formal analyses to establish the soundness, 
security, and reliability of a heterogeneous swarm. The first step was to identify desirable 
properties for analysis, which were reported in D4.1 [57]. In this stage, WP5 and WP4 have 
worked together on identifying several desirable FL properties (FL roles of agents, FL data 
privacy, FL message delivery, and FL clients’ equality). In D4.2 [58], WP4 has reported 
results on formal verification of the correctness of centralised and decentralised FL 
algorithms developed in the PTB-FLA tool (T-WP5-04). The correctness of two generic FL 
algorithms was verified by proving two properties: deadlock freedom and successful 
Federated Learning Algorithm (FLA) termination. The properties have been formalised in 
communicating sequential processes calculus (CSP) and verified in the Process Analysis 
Toolkit (PAT) [59]. In addition, a systematic approach to translating Python code that follows a 
restricted actor-based programming model to a corresponding CSP model is developed. In 
future work, this approach should serve as a basis for developing a tool for the automatic 
translation of certain classes of Python code to CSP models.  

5.4 INTERACTION WITH TARDIS DATA MANAGEMENT AND DISTRIBUTION PRIMITIVES 

TaRDIS WP6 aims to provide communication, membership and data management primitives. 
As stated in D5.1 [1], the connection between WP5 and WP6 aims to provide the ability to 
combine ML with decision making regarding resource availability. 

The results accomplished within WP6 provide that designed services are able to collect, 
aggregate, transform and store diverse monitoring-related data from heterogeneous sources 
and with respect to resource availability. The metrics are collected from a few places: (i) node 
metrics, (ii) applications (in containers) metrics, and (3) other places in the toolbox that 
provide metrics such as distributed protocols and probing mechanisms. All metrics are 
stored, and therefore available for others in OpenMetrics format. A unified interface of the 
system and application state progression over time is accessible to users. This will allow for 
informed decision making. The toolbox also offers an API for machine learning models to be 
both trained on and put in the role of decision makers, which provides the automation of the 
decision process. The telemetry data is being stored by the toolbox in time series manner 
(i.e. data points with time). The telemetry data means, for instance, CPU load, disk usage, 
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memory usage, network properties... This data is accessible by ML models through a 
specifically designed API directed towards their needs. An agent that requires data from the 
platform for training, simply needs to send a point in time when the last contact occurred. If 
the agent for whatever reason misses to get data in e.g., regular intervals, there is an 
interface to get metrics in a specific period between two dates. This ensures that machine 
learning models can be trained at their own pace. Even if an agent crashes, or goes offline 
for some period of time, newly added data points cannot be missed or skipped. 

Task 5.2 (from WP5) is responsible for automated analysis and planning, while WP6 will 
perform execution and monitoring, according to the framework: Monitor, Analyse, Plan, 
Execute, and Knowledge (MAPE-K) [60]. The list of federated ML algorithms that need to be 
provided by the TaRDIS toolkit, in the context of WP6 needs include three categories:  

● supervised learning algorithms, for regression and classification tasks, as well as for 
time-series forecasting, for instance 

● unsupervised learning algorithms, as anomaly detection tasks and  
● reinforcement learning algorithms, e.g., decision-making for resource optimization.  

The most important link with WP6 is the capture of network and node usage metrics to be fed 
to the orchestration RL agent (or agents), and the communication between agents in the 
deployment phase (the details are available in the requirements Deliverable D2.2[6]). 

5.5 INTERACTION WITH TARDIS IMPLEMENTATION AND EVALUATION 

TaRDIS WP7 is focused on evaluation activities concerning the technical achievements of 
the project. D7.2 [61] represents a report on preliminary validation of the toolbox. WP5 
contributed to D7.2 [61], by providing descriptions for the WP5 tools and connecting them to 
evaluations on TaRDIS use cases, as well as to the relevant KPIs. In specific, sample ML 
modelling applications have been designed and developed for each use case separately, 
showcasing the implementation of different ML algorithms for the diverse requirements of the 
TaRDIS use cases (analysed in Section 6). Apart from the ML application analysis, WP7 has 
identified the particular tools developed in the framework WP5 that will be used for 
demonstration and validation purposes: 

● Distributed navigation concepts for LEO satellites constellations: For the GMV use 
case, the ML tools from WP5 that will be utilized in the demonstration for performing 
the federated learning of at least two ML models (one model based on supervised 
learning and one model based on reinforcement learning) are the T-WP5-04 
PTB-FLA, T-WP5-09 Fedra or T-WP5-01 Flower-based tool and T-WP5-05 FAuNO. In 
addition, the tools offering lightweight functionalities in the inference process will be 
used, i.e., T-WP5-07 Knowledge Distillation or T-WP5-08 Pruning tools, to save 
computational resources. 

● Multi-Level Grid Balancing: For the EDP use case, the T-WP5-09 Fedra tool (or the 
T-WP5-01 Flower-based tool) will be utilized to perform the FL training of two types of 
ML models (based on supervised learning and reinforcement learning). Moreover, the 
functionalities offered by the T-WP5-08 Pruning tool will be utilized to provide more 
lightweight ML model inference at the edge devices, without significant degradation of 
their accuracy. 

● Privacy-Preserving Learning Through Decentralized Training in Smart Homes: The 
TID use case inherently uses the T-WP5-10 Federated Learning as a Service 
(FLaaS) tool in order to demonstrate the privacy-preserving federated learning 
framework in a decentralized configuration. Furthermore, this use case will also utilize 
the energy-efficient APIs provided by WP5 at the level of the FLaaS app and 
specifically the ones adopted for FL clients. In specific, at least one of the lightweight 
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functionalities for inference will be demonstrated upon compatibility, i.e., T-WP5-06 
Early-Exit, T-WP5-07 Knowledge Distillation or T-WP5-08 Pruning.  

● Highly resilient factory shop floor digitalisation: For the ACT use case demonstration, 
WP5 tools will be involved in the Machine app, the Transport app, the Manager app 
and the Event Archive App. In this context, Flower-based tool T-WP5-03 will be 
utilized for inference of ML models, as well as evaluation of their accuracy. In 
addition, the models will be trained using the T-WP5-01 Flower-based tool, while the 
T-WP5-02 Data preparation for Flower-based FL model training tool will be used to 
pre-process the dataset and overcome potential irregularities. 

5.6 INTERACTION WITH TARDIS DISSEMINATION, EXPLOITATION AND 
STANDARDISATION 

TaRDIS WP8 aims to monitor and collect the project results and outcomes. The Energy use 
case has received a strong contribution from WP5 regarding Renewable Energy generation 
and Energy consumption forecasts using Federated Learning Model, developed by University 
of Athens and has been already included in the use case’s swarm code. Additionally, a 
poster titled “Collaborative Intelligence Sharing in Energy Communities via Federated 
Learning” was recently accepted for the ETSI Artificial Intelligence Conference - How 
Standardization is Shaping the Future of AI [62]. 
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6 ML MODELLING OF TARDIS USE CASES 

6.1 ACT USE CASE       

The initial Machine Learning model for the ACT use case, as well as the underlying use case 
scenario description, is provided in D5.1 [1]. The implementation utilises unsupervised 
learning approaches (due to the lack of ground-truth labels for this use case). It represents 
an integration of two ML methodologies: K-means clustering algorithm and representational 
learning through autoencoders. In this section, we provide experimental results described 
ahead; further innovations regarding the machine learning modeling of the use case were 
detailed in Section 2.1.3 of this deliverable. 

6.1.1 AUTOENCODER-BASED OUTLIER DETECTION AND K-MEANS    

We train the autoencoder (using the TensorFlow framework) on a subset of a dataset, where 
the instances are non-anomalous. The classification of the test data is relying on a threshold 
value that is dependent on the dataset structure. Following the training phase, the test data is 
classified as either normal or anomalous based on a threshold value that depends on the 
structure of the testing dataset. In our experiments, the testing dataset includes normal and 
anomalous data, as in Experiment 1, and additionally comprises pseudo-normal and 
pseudo-anomalous data, as described in Experiment 2. In the first experiment, an instance in 
the testing dataset is classified as an outlier if its reconstruction error exceeds a predefined 
threshold, determined as the maximum reconstruction error observed during the training 
phase. In the second experiment, the threshold is set based on the 95th percentile of the 
reconstruction error values from the training data, also established during the training phase. 

The outliers detected by the autoencoder are then verified against those identified by the two 
K-means algorithms utilised in our approach. We refer to these approaches as Algorithm 1 
and Algorithm 2, for simplicity. 

6.1.1.1 Algorithm 1        

The hybrid outlier detection method utilises the K-means clustering algorithm ([15], [16]) to 
identify a wide range of potential outliers in the dataset. After K-means identifies clusters, we 
analyse these clusters to detect outliers. As already explained, typically, potential outliers are 
found in small clusters that are significantly distant from large clusters. Our implementation 
utilises the K-means algorithm from the scikit-learn Python library [17]. 

6.1.1.2 Algorithm 2        

Due to the need for a detailed comparison between outliers detected by the autoencoder and 
those detected by the K-means algorithm, we introduced another algorithm into the 
comparison phase. This algorithm is designed to flag a data point as an outlier if it is 
significantly distant from all centroids. Initially, we identified the optimal clustering 
configuration using only non-anomalous data, as dictated by the structure of our training 
dataset. The optimal number of clusters was identified using the Silhouette score. 
Subsequently, we introduced points from the testing set, and for each added point, we 
computed its distance from the centroids. Each point in the test set was evaluated to 
determine whether its distance exceeded the threshold, thereby designating it as an outlier, 
or if its distance was lower, assigning it to one of the existing clusters. This threshold value 
was established based on the 95th percentile of distances calculated from the training set. 
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6.1.2 THE EXPERIMENTAL DATASET 

Due to the current unavailability of real data provided by the use case provider, we carried 
out a significant study for identification of a suitable publicly available dataset. This task 
proved to be quite challenging. Most datasets accessible online are either insufficiently large 
or not designed for use in anomaly detection or classification tasks. After extensive research, 
we selected the MetroPT-3 Dataset [63] for its relevance and comprehensive data collection, 
which aligns well with our anomaly detection objective. 

The dataset, known as the MetroPT-3 Dataset, was gathered from a metro train in an 
operational environment. It includes measurements of pressure, temperature, motor current, 
and air intake valves from a compressor's Air Production Unit (APU). This dataset addresses 
real-world predictive maintenance challenges and is applicable for tasks such as failure 
prediction and anomaly detection. It contains multivariate time series data from various 
analogue and digital sensors on a train's compressor. These data recorded the temporal 
behaviour and fault events of the industrial equipment over a period of seven months. Further 
details on the data collection process and potential compressor system failures are provided 
in the accompanying papers [64, 65]. 

6.1.3 RESULTS AND DISCUSSION 

This section presents the results of two experiments conducted on a subset of the original 
dataset. The subset consists of 6000 instances and 14 features. The nature of the original 
dataset is such that, even though the data is not labelled, there is a guideline ([63]), that 
indicates the time intervals during which "Air Leak" occurs, thus identifying 1.975% of the 
data as anomalies. This method yields a subset of the dataset with 29,960 instances 
representing anomalies. All remaining data is classified as normal, resulting in a dataset with 
1,516,948 instances of non-anomalous data. 

6.1.3.1 Results on Experiment 1 

The dataset used for the first experiment consists of 4800 instances with 14 features in the 
training set and 1200 instances with 14 features in the test set. The test set contains 600 
outliers, representing 50 % of the total data points inside the test set. 

Upon applying the autoencoder to these training and test sets, and cross-checking its results 
with K-means, 531 final anomalies are detected, which constitutes 88.5% of the total 
anomalies, as shown in Table 1. When comparing these results with the ground truth 
(Table 2), the precision achieved is 99.81%, recall is 88.33%, accuracy is 94.08%, and the F1 
score is 93.72%. The first image below (Figure 36), shows the training loss across epochs, 
while the second image (Figure 37) presents the training time relative to the number of data 
points used for training the autoencoder. 

Table 1: Final results on Experiment 1, for anomaly detection 

Outliers total Outliers detected [% od anomalies] 

600 531 88.5000 

Table 2: Final results on Experiment 1 versus Ground truth, for anomaly detection 

Precision Recall Accuracy F1 score 

0.9981 0.8833 0.9408 0.9372 
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Figure 36: Training Loss of AE over Epochs. 

               

Figure 37: Training Time of AE versus Number of Data Points.    

      

6.1.3.2 Results on Experiment 2 

In the next experiment, we introduced label flipping, by randomly selecting instances within a 
subset of the dataset: a certain percent of the known non-anomalous data was relabelled as 
anomalies, and similarly, the same percent of the anomalous data points were relabelled as 
normal (non-anomalies). We then repeated the testing on using the autoencoder and 
different versions of the K-means algorithm. In our evaluation, we tested both the incorrect 
(flipped labels) and correct (true ground truth) datasets. Our aim was to show how robust this 
method is against errors in labelling. 

In this experiment, we maintained the same training and test set proportions as in the first 
experiment: 80 % for training and 20 % for testing. To make the task more challenging for our 
method, 10% of the training data were mislabelled as non-anomalies (when they were 
actually anomalies), and the test set included 600 true anomalies along with 10% 
inaccurately labelled as anomalies (non-anomalous data falsely presented as anomalous 
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data). Despite these challenges, the method performed robustly, achieving slightly lower but 
still high-performance metrics compared to the true labels. In this case, after applying the 
autoencoder to the training and test sets, and cross-verifying its results with K-means, a total 
of 551 anomalies were detected, representing 91.8% of all identified anomalies, as presented 
in Table 3. In comparison with the ground truth (Table 4), the model achieved a precision of 
96.19%, recall of 73.61%, accuracy of 82.41%, and an F1 score of 83.40%. 

Table 3: Final results on Experiment 2, for anomaly detection 

Outliers total Outliers detected [% of anomalies] 

600 551 91.8333 

Table 4: Final results versus Ground Truth, for anomaly detection 

Precision Recall Accuracy F1 score 

0.9619 0.7361 0.8241 0.8340 

To further validate the method's robustness, we increased the proportion of inaccurate labels 
from 20% to 90% in increments. The relative deterioration of the F1 score correspondingly 
increased with the percentage of inaccuracies, reaching a maximum of 0.23 when 90% of the 
labels were flipped in the training dataset, as shown in Figure 38. This experiment 
demonstrates that the method is robust when applied in real-world scenarios where training 
data may be affected by label noise, which can result from imperfect labeling processes or 
the presence of anomalies in the training dataset. 

6.1.3.3 Scalability and computational aspects 

The method employed is beneficial for larger datasets despite their computational demands. 
The provided Figure (Figure 39) illustrates the linear increase in execution time relative to the 
dataset size.  

Additionally, in the case of using a larger number of features, it is suggested to employ an 
efficient method for dimensionality reduction that utilises the variational autoencoder 
approach, as described in [66]. In our ongoing efforts to achieve even better results, we 
intend to investigate the potential of transformer models for anomaly detection, as proposed 
in [67]. 
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Figure 38: Relative deterioration in F1 score with varying number of inaccurate labels. 
 

 

Figure 39: Scalability of the Autoencoder for the ACT use case. 
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6.2 GMV USE CASE 

A centralised fast and precise model for Orbit Determination using machine learning models 
and Neural Networks [68] was developed, which is planned to be decentralised in a later 
stage of the project. 

The GMV use case with respect to WP5 addresses the application of machine learning for 
precise and efficient orbit determination in Low Earth Orbit (LEO). As outlined in the paper 
"Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous 
Variables" [68], traditional methods such as Simplified General Perturbations 4 (SGP4) 
struggle with non-conservative forces like atmospheric drag and gravitational perturbations. 
This paper proposes a machine learning algorithm that utilises past positions and 
environmental variables, significantly reducing computational costs while improving 
prediction accuracy. The methodology integrates exogenous variables to capture the effects 
of non-conservative forces and applies time-series techniques for forecasting, achieving low 
positioning errors and enhancing Space Situational Awareness (SSA) capabilities. Figure 40 
shows the proposed network architecture. It represents a two-layer Model Architecture, i.e. 
an integration of two independently trained models, where one serves partially as the input 
source for the other. 

 

 

Figure 40: Two-layer Model Architecture. 

To address these challenges, the proposed machine learning algorithm leverages historical 
position data and environmental variables such as atmospheric density. The use of 
time-series techniques and exogenous variables enables the model to achieve low 
positioning errors at a reduced computational cost, significantly enhancing the SSA 
capabilities by providing faster and reliable orbit determination for an increasing number of 
space objects. In addition, the survey "Machine Learning in Orbit Estimation" provides a 
comprehensive overview of the state-of-the-art in applying machine learning for orbit 
determination, orbit prediction, and atmospheric density modelling. The survey discusses the 
limitations of traditional methods and emphasises the potential of machine learning to 
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improve accuracy by deriving unmeasured object characteristics and enhancing the 
modelling of non-conservative forces [69]. 

The next stage of the project will involve integrating Physics-Informed Neural Networks 
(PINNs) and Neural Ordinary Differential Equations (NeuralODEs) to enhance the model's 
accuracy and generalizability. 

PINNs introduce physical laws as constraints during the training process by incorporating a 
physics-based loss function in addition to the MSE loss between data points. This 
guarantees that the model's predictions are consistent with known physical principles, such 
as the effects of gravitational forces and atmospheric drag, while also improving 
generalization to new scenarios. By enforcing these laws, PINNs ensure physically sound 
results, and also reduces the need for larger datasets to cover unseen conditions. PINNs 
have been proven effective in solving forward and inverse problems involving nonlinear 
partial differential equations, as demonstrated by [70]. In the same realm of PINNs there is a 
new layer architecture called NeuralODE, which embeds differential equations directly into 
the architecture of the machine learning model. This allows the propagation process to be 
modelled to be constrained/controlled by orbital mechanics during both training and 
inference, by having differential equations serve as layers within the network. This approach 
is particularly promising for improving traditional orbit propagation methods, as discussed by 
[71]. Next steps will also involve the training of a machine learning algorithm to perform 
decentralized Orbit Determination and Time Synchronization utilizing inter-satellite and 
satellite-ground stations measurements, as well as the training of a reinforcement learning 
model for the Inter Satellite Link scheduling optimization and reconfiguration. 

6.3 EDP USE CASE 

As described in D5.1 [1], the use case is based on a realistic mathematical model that 
considers various aspects of a modern smart home environment. Specifically, the model 
accounts for energy generated by renewable sources, household energy demands, an 
energy storage system (ESS), market-dependent electricity prices, and both indoor and 
ambient temperatures. The presented approach aims to minimize the energy cost required 
for non-controllable energy consumption and the operation of the controllable Heating, 
ventilation and Air-Conditioning (HVAC) system by promoting self-sufficient satisfaction of 
smart home energy demands using renewable energy. 

During the second year of the TaRDIS project, the LSTM models were developed that will be 
integrated into our method to forecast smart home energy consumption and renewable 
energy generation based on historical data. These predictions consider time-varying 
parameters, such as solar panel energy production over time. The LSTM models are trained 
on data from individual smart homes, tailored to specific areas (e.g., ambient temperature or 
solar energy generation) and the energy habits of residents (e.g., increased energy demands 
when working remotely). 

Moreover, the designed Deep Reinforcement Learning (DRL) algorithm, based on the Deep 
Deterministic Policy Gradient (DDPG) actor-critic model, as described in D5.1, optimizes the 
energy provision to the HVAC system and the charging/discharging of the ESS. The DDPG 
model observes the dynamic state of the problem, including the LSTM outputs (predicted 
energy generation and requested energy for load activation), which describe future states of 
the environment. The optimization objective is to maintain a comfortable indoor temperature 
while minimizing energy costs. 
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Following the mathematical formulation of the energy use case reported in the previous 
deliverable D5.1, we incorporated the forecasting functionality in the Home Energy 
Management System (HEMS). The environment state is now:  

● renewable generation output  
● non shiftable power demand 
● Energy Storage System energy level  
● Outdoor temperature  
● Indoor temperature  
● Buying electricity price  
● Time slot index in a day 
● Non-shiftable power demand values predicted by the forecasting LSTM model for 

future time instance 
● renewable generation output values predicted by the forecasting LSTM model for 

future time instance 

Moreover, we have made the DRL (DDPG model) more sophisticated, including trade-off 
rewards (temperature comfort vs energy cost). The Home Energy Management System 
(HEMS) that observes the smart home environment, acts on it and receives a reward based 
on the optimization objective is shown in Figure 41. 

 

Figure 41: The Home Energy Management System (HEMS) that observes the smart home 
environment, acts on it and receives a reward based on the optimization objective. 

 

To this end, we have trained an LSTM network for forecasting the power production from 
solar panels using the southern Germany dataset time series (Figure 42). For training data, 
we used all-year data except April and for testing the data for the month of April. The 
fine-tuned model achieves mean error = 0.22 kWh, following the time-domain trends. 
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Figure 42: Forecast of generation power from solar panels of the LSTM model compared to the real 
data for 1 week of April. 

In a similar manner, we have trained an LSTM network for forecasting the power 
consumption of the smart home, using the southern Germany dataset time series 
(Figure 43). For training data, we used all year except April and for testing the data gathered 
for the month of April. The fine-tuned model achieves Mean error = 0.14 kWh, following the 
time-domain trends. It should be noted that this model achieves more challenging prediction, 
since the consumption requests are more irregular. 

 

Figure 43: Forecast of power consumption requests of the smart home using the trained LSTM model 
compared to the real data for one week of April. 

The above forecasting model outputs are also used to train a DRL (DDPG) model with 
varying 𝛽, i.e., trade-off between temperature comfort 19.5 < Inside Temperature < 22 and 
energy cost (ESS depreciation + cost of the HVAC input power), see Figure 44. As depicted, 
the DDPG model stabilises the time-domain temperature regardless of ambient temperature 
and solar panel produced power, providing the required input power to the HVAC to keep the 
temperature within the comfort bounds. The DDPG model draws energy from the grid when 
required to fulfil the consumption demands 𝛽 = 2 (energy cost is important). 
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Figure 44: Inside temperature (upper left), power provided to the HVAC system (upper right) and 
power exchange between the ESS and the grid (below) using the trained DDPG model for 1 week of 

April. 

Moreover, we have produced several results for different scenarios, i.e., for different trade-off 
index (temperature conform vs energy cost) and for different months (January vs July). The 
results are shown in Figure 45.  

 

Figure 45: Reward function of the DDPG model for different β -energy cost vs temperature comfort 
trade-off- (left) and for different months -January and July- (right). 

The developed method and DDPG model with LSTM assistance can be further extended to 
multiple smart homes that exchange individual energy surpluses from renewable sources to 
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achieve a zero-sum energy footprint. This approach promotes the use of renewable energy 
within a smart home and an energy community of multiple homes, meeting specific energy 
needs with locally produced renewable energy and minimizing grid utilization and associated 
costs. 

6.4 TID USE CASE 

TID’s use case concerns intelligent homes where different devices are part of an automated 
system that is designed to facilitate everyday life. In particular, these devices support 
ML-based functionalities that require the training of neural network (NN) models in a 
collaborative and distributed way among these devices. FL [72] has been designed for this 
purpose. However, it requires the devices (clients) to train the models locally.  However, as 
models become more and more complex, devices (e.g., handheld, Internet-of-Things (IoT)) 
might not be able to participate in the training or might slow down the training. In previous 
deliverables (D2.2 and D5.1), we discussed how the heterogeneity (in terms of computation, 
energy, memory) of these devices can be overcome through the Split Learning (SL) 
paradigm. In this deliverable, we give updates on ongoing research efforts on this aspect with 
the goal of minimizing the maximum training time among all clients in a system1, which is 
called makespan. This is part of an ongoing journal submission that extends a previous 
article [73] (developed outside of TaRDIS) towards a more generic setting, as described 
below.  
 
In SL, clients offload a part of their training task to a helper, which could be, for example, a 
Virtual Machine (VM) on the cloud or a lightweight container in a base station beyond 5G 
networks. Formally, an NN comprising L layers1 (1, . . . ,L) is split into three parts (part-1, 
part-2, and part-3) of consecutive layers ([1, . . . , σ1], [σ1 + 1, . . . , σ2], [σ2 + 1, . . . ,L]) 
using 2 cut layers {σ1, σ2} ∈ Σ. Then, part-1 and part-3 are processed at the clients, and 
part-2 at the helper. This allows the resource-constrained clients to offload computationally 
demanding processes to the helper while keeping their data locally. 
 
In this deliverable, we consider the setting of Hybrid Federated and Split Learning (HFSL) 
to manage both resource-constrained clients and more powerful ones (capable of supporting 
on-device training). This is similar in spirit to works in literature [74]. In this setup, clients may 
train the NN model either through SL in collaboration with a helper or through FL, i.e., train 
the entire NN model locally. The motivation for the hybrid approach is that clients with 
higher-end devices may train through FL without increasing the makespan. Consequently, 
this will reduce the load and alleviate the resource demands at the helpers which will assist 
only the resource-constrained clients. The figure below (Figure 46) depicts this setting.  
 
 

1 In particular, we focus on the training time of a single batch of input data, leveraging the structural 
nature of the training process (that consists of multiple batch processings/updates throughout the local 
epochs and training rounds).  
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Figure 46: The hybrid federated and split learning setting considered, the considered network 

topology, its resources, and the processing tasks per entity. Some clients, e.g., client 1, participate in 
the training through parallel SL, by offloading part-2 to a helper, while others, e.g., client J, participate 

through FL and perform on-device training. 
 
Driven by the time measurements of a testbed that are available online [75] and the 
heterogeneity even among devices of similar capabilities, we identify three key decisions:  

1. the training protocol employed by each client (FL or SL); 
2. the client-helper assignment which is tied to the helpers’ memory and computing 

capacities, in the case where the SL protocol is selected;  
3. the scheduling, i.e., the order in which each helper processes the offloaded tasks, in 

the case where the SL protocol is selected.  

These decisions can be crucial for the training makespan by alleviating the effect of 
stragglers (i.e., the slowest devices) while fully utilizing the available resources. Hence, we 
formulate the problem of jointly making these decisions to minimize the makespan. An 
overview of the workflow of the HSFL system and the role of the optimization steps is 
depicted in the figure below (Figure 47). We also note that the considered framework can be 
easily generalized in the context of decentralized systems where the helpers and the 
aggregator may be devices/clients that are more powerful than others and with high 
connectivity.   
 

 
Figure 47: An overview of the workflow of the HFSL system, from profiling of processing and 

transmission times to the optimization of the workflow, and the system implementation. 
 
We analyse this problem and its challenges both theoretically (by proving it is NP-hard) and 
experimentally (using measurements from a realistic testbed). Therefore, we propose a 
solution method based on an intuitive decomposition of the problem into two subproblems, 
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leveraging its inherent symmetry. The first one involves the training protocol selection for 
each client, the assignment, and the forward-propagation scheduling variables. The second 
one involves the backward-propagation scheduling variables. For the former, the Alternating 
Direction Method of Multipliers (ADMM) [76] is employed, while for the latter, a 
polynomial-time algorithm is provided (that is based on a known scheduling algorithm [77]). 
The advantage of employing ADMM lies in its versatility, allowing us to use techniques that 
may constrain the problem’s solution space or tune its penalty parameters and stopping 
criteria, and thus, we tailor it to leverage the nature of the subproblem at hand. 
 
Moreover, we propose a second solution method based on load balancing, that is more 
scalable, and thus, ideal for large problem instances. Specifically, we propose 
balanced-greedy that can be run by the orchestrator (e.g., the aggregator) and consists of 
three steps; it first decides on the training protocol per client (i.e., FL or SL), then on the 
client-helper assignments (for the clients for which the SL protocol was selected), and finally, 
on the scheduling at the helpers. We note that the time complexity of balanced-greedy2 is 
smaller than the one of the ADMM-based method, which makes balanced-greedy ideal for 
large scale scenarios.  
 
Finally, our numerical evaluations provide insights into the performance of the proposed 
methods, as well as the achieved gains in makespan in representative scenarios. We use 
CIFAR-10 [18] and two NN models: (i) ResNet101 [78], and (ii) VGG19 [79] for our training 
tasks. They are both deep convolutional NNs with 0.42 and 2.4 million parameters and are 
organized in 37 and 25 layers respectively. The testbed’s devices include a RPi 3, a RPi 4, a 
Jetson GPU, a laptop, and a Virtual Machine. In our simulations, the values of the input 
parameters are set according to the profiling data of the testbed (for the computation times) 
and findings on Internet connectivity in France [80] (for the bandwidths of the network links). 
We explore two scenarios that represent two levels of heterogeneity in terms of devices, 
resources, and cut layers: Scenario 1 represents a system of low heterogeneity, while 
Scenario 2 a system of high heterogeneity.  
 
Table 5 shows the relative gain in makespan in the HFSL setting vs. clients training only 
through SL. In detail, we consider a large scenario (row “large partition”) according to the 
characteristics defined above and a small scenario (small partition) that consists of a set of 
10 clients and 2 helpers (whose processing times follow the profiled times for VMs) and, 
initially, the profiled data of RPi 4 are used for the clients, while the bandwidth of all network 
connections belongs to the fastest class of the measurements of [80]. As we proceed, we 
alter the computing characteristics for a portion of the clients by slowing them down and 
similarly changing the bandwidth from the fastest class to the slowest one. The first row of 
Table 5 shows the relative gain in makespan in the HFSL setting for the corresponding 
experiments for the small partition. At first glance, we notice that when there are slow clients 
but good connections, having on-device training will not alter the makespan, except in the 
case where there are no slow connections and no slow devices, i.e., (0%, 0%), in which there 
is a slight acceleration of 4.8%. However, as more communication links get slower it is 
preferable to use on-device training (i.e., FL) even if the client’s device is slower. We 
conclude that HFSL can decrease the makespan by up to 59% in the presence of slow 
network connections and devices that can process part-2 fast. This happens because model 
part-2 is small and the processing time on the devices is not significantly different from the 
processing time on the helper. As a result, the communication delay may be larger than the 
on-device computation delay. When having a larger part-2 it is more beneficial to offload, 
because, the on-device processing time becomes larger, while the offloading delay gets 
smaller. This is shown in the second row in Table 5, where the acceleration of HFSL is 

2 Balanced-greedy runs in O(JI) time, where J is the number of clients and I the number of 
helpers. 
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smaller compared to the previous case because fewer clients perform FL. Whereas, when 
there are faster clients with slow communication links we can see the effects of FL, where the 
makespan is decreased by up to 5.6%. In general, these findings demonstrate the 
importance of having a balance between the SL and FL, which is achieved through HFSL. 

Table 5: Relative gain in makespan in the HFSL setting vs. clients training only through SL. 

 
 
Further, Table 6 shows the suboptimality and speedup achieved by the ADMM-based method 
when compared to Gurobi [81] that optimally solves the formulated optimization problem. The 
table shows the effectiveness of the ADMM-based method since it finds the optimal solution 
in most scenarios. There are some corner cases (e.g., 9.4%, 15.9%), but even then, there is 
a significant speedup compared to the solver, i.e., ×14, ×11.3, respectively. Finally, we can 
conclude that the proposed ADMM-based method finds the optimal solution in most problem 
instances and achieves up to x15.7 speedup compared to an ILP solver. 
 
Table 6: Suboptimality and speedup achieved by the ADMM-based method compared to an ILP solver 
for HFSL for different problem instances (J denotes the number of clients, and I denotes the number of 

helpers). 

 
 

Finally, in Figure 48, we perform a sensitivity analysis with respect to the number of helpers 
in Scenario 1 where we depict the relative gains in makespan. Given the scenario’s type and 
size, we employ balanced-greedy. We observe that, in a scenario of 100 clients and 1 helper, 
adding one more helper can dramatically decrease the batch makespan by up to 43.4%. 
Whereas, in the presence of 10 helpers, the relative gains of adding more helpers are 
decreasing. Such observations provide useful insights for real-life implementation of HFSL. 
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Figure 48: Makespan obtained by the balanced-greedy solution method in Scenario 1 (low 

heterogeneity) for J = 100 clients and varying number of helpers I. 
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7 DISCUSSION AND FUTURE WORK 

In this section, we discuss the contributions that the work package and its tasks have already 
made regarding the overall TaRDIS objectives per Grant Agreement (GA), and regarding the 
specific WP5 objectives per GA, and also identify the aspects that will be addressed during 
the last year of the project. 
 
The TaRDIS project objectives are defined as follows (for more details, see the GA): 

● Objective 1: Novel programming model for heterogeneous swarms: The aim is to 
create a language-independent, event-driven programming model that offers 
distribution abstractions and decentralised machine learning primitives. 

● Objective 2: Development environment for correct-by-design heterogeneous swarms: 
The aim is to build a development environment with embedded semantic analyses to 
achieve a correctness-by-design approach. 

● Objective 3: Decentralised intelligence for heterogeneous swarms: The aim is to 
provide support for decentralised intelligence for the purposes of heterogeneous 
swarms. 

● Objective 4: Runtime support for distributed heterogeneous swarms: The aim is to 
provide decentralised algorithms and protocols for supporting the TaRDIS 
programming model at runtime. 

● Objective 5: Interoperable execution environment: The aim is to ensure a high level of 
interoperability of TaRDIS distribution runtime, by supporting different devices and 
programming languages by formally specifying the protocols developed by the 
consortium. 

The WP5 - Decentralised Machine learning, defines 3 main objectives (for more details see 
the GA), that correspond to different WP5 tasks: 

● Develop a framework supporting decentralised learning and inference through AI/ML 
programming primitives (Task 5.1) 

● Exploit and specialise the preceding for the planning deployment and orchestration of 
the complete TaRDIS framework through reinforcement learning and other relevant 
methodologies (Task 5.2) 

● Develop novel lightweight ML techniques to enable decentralised and swarm learning 
in resource-constrained devices (Task 5.3) 

7.1 CONTRIBUTIONS TO TARDIS PROJECT OBJECTIVES  

WP5 contributes to 3 TaRDIS project objective (to specific results listed below): 

● Objective 1: Novel programming model for heterogeneous swarms, linked with the 
following specific project result:  

● R1.2 APIs for distribution, data management, and AI/ML (T5.1): the relevant 
tools for this result are PTB-FLA and MPT-FLA APIs (T-WP5-04) for the 
development of FL algorithms. The tools are already developed and available, 
which make this result addressed. However, possible future advances make 
the contributions to this result continuing. 
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● Objective 3: Decentralised intelligence for heterogeneous swarms, that addresses the 
following specific project results: 

● R3.1 Techniques, algorithms, and models to support swarm intelligence. 
(T5.1, T5.2, T5.3): The relevant tools for this result are the Flower-based FL 
tool (T-WP5-01, T-WP5-02, T-WP5-03), FAuNO (T-WP5-05) with 
PeersimGym, Fedra (T-WP5-09) and Lightweight ML tools (T-WP5-06, 
T-WP5-07, T-WP5-08). These tools are available and evolving, which make 
this result addressed, but still expanding. 

● R3.2 Open-source implementation of decentralised algorithms for FL and 
Supervised Learning (SL). (T5.1, T5.3): The relevant tools for this result are 
the Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03), Fedra 
(T-WP5-09) and Lightweight ML tools (T-WP5-06, T-WP5-07, T-WP5-08). 
These tools have been developed and are evolving in covering new 
decentralized algorithms. Therefore, this result is being addressed in 
continuation. 

● R3.3 Contextual Machine Learning Operations (MLOps) solutions for swarm 
intelligence. (T5.1):  The relevant tool for this result is Flower-based FL model 
training. The contribution to this result is in progress. As already defined in 
Section 2, the Flower-based FL tool strives to simplify and automate various 
stages in the machine learning pipeline. This will include preparation and 
preprocessing techniques (T-WP5-02) and additional possibilities for inference 
and evaluation (T-WP5-03), beside the support for various training algorithms 
(T-WP5-01). 

● R3.4 Dynamic peer-to-peer resource orchestration for the computing 
continuum. (T5.2): The relevant tool for this result is FAuNO (T-WP5-05) with 
PeersimGym. The tools have been developed as described in Section 3, 
which addresses this result. 

● Objective 5: Interoperable execution environment, that is linked with the following 
specific project result: 

● R5.1 Open and extensible development environment supporting the TaRDIS’ 
methodology and toolbox (T5.1):  The relevant tools for this result are 
PTB-FLA & MPT-FLA (T-WP5-04) as development environments for FL 
algorithm, which have been developed, as described in Section 2, making this 
result addressing continuously. 

We now discuss these contributions in more detail, for specific TaRDIS WP5 tools below. 

7.1.1 Flower-based FL tool contributions to the TaRDIS project objectives 

The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) contributed to Objective 3 of 
GA: Decentralised intelligence for heterogeneous swarms, to the following results: 

● R3.1 – Techniques, algorithms, and models to support swarm intelligence. 
● R3.2 – Open-source implementation of decentralised algorithms for FL and 

Supervised Learning. 
● R3.3 – Contextual MLOps solutions for swarm intelligence. 

 
The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) is an integral part of the 
TaRDIS toolbox architecture (part of federated ML training unit in Figure 35), as an important 
aspect of the development of a swarm application. It provides the developer the possibility of 
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utilising federated ML training strategies. The federated ML approaches within the TaRDIS 
architecture enable training on data sets that are distributed in diverse locations. The tool 
supports and guides the developer through the process of initiating the training. The 
developer needs to specify the target data set and choose an approach for training. This 
means that the use of the tool does not require expertise in the field. The tool also provides 
appropriate feedback when the training is finished, in terms of loss and accuracy. It supports 
model selection, parameter tuning and custom initialization, where a completely new or 
pre-existing model can be used for the training. It covers a set of FL algorithms, discussed in 
D5.1 [1] and in Section 2. Our plan for the future is to widen further the set of FL algorithms 
according to the needs, as well as to connect a set of data preparation and preprocessing, as 
well as inference and evaluation facilities to the tool. 

7.1.2 PTB-FLA and MPT-FLA contributions to the TaRDIS project objectives 

The work done on PTB-FLA and MPT-FLA (T-WP5-04) has contributed to the TaRDIS project 
objectives in the following way. 

● O.1 Novel programming model for heterogeneous swarms 
● Contribution to the result R1.2. APIs for distribution, data management, and 

AI/ML 

● O.3 Decentralised intelligence for heterogeneous swarms 
● Contribution to the result R3.2. Open-source implementation of decentralised 

algorithms for FL and SL 
● Contribution to the result R3.3. Contextual MLOPs solutions for swarm 

intelligence 

● O.5 Decentralised intelligence for heterogeneous swarms 
● Contribution to the result R5.1. Open and extensible development 

environment supporting the TaRDIS’ methodology and toolbox 

The Python Testbed for Federated Learning Algorithms (PTB-FLA, T-WP5-04) was 
developed as a runtime environment for FL algorithms under development. Intentionally 
written in pure Python, it allows the algorithm designers to develop, execute and test their FL 
algorithms in an environment which is easy to install, because it has no external 
dependencies, and easy to fit to a small IoT edge device. The PTB-FLA supports the 
execution of centralised and decentralised federated learning algorithms, as well as the 
peer-to-peer data exchange used in Time Division Multiplexing (TDM) communication e.g., 
used for Orbit Determination and Time Synchronisation (ODTS) in Low Earth Orbit (LEO) 
satellite constellations. The PTB-FLA was explained in detail in D5.1. 

MPT-FLA is a new framework that inherits all the advantages of PTB-FLA while overcoming 
its main limitation such that individual application instances may run on different network 
nodes like Personal Computers (PCs) and IoTs, primarily in edge systems. It is based on 
Python asynchronous Input/Output I/O (asyncio) abstractions (including asyncio coroutines, 
streams, and events), and runs on MicroPython. It is therefore a great match for smart IoTs 
and devices in edge systems. 

The two frameworks define APIs that allow developers to easily implement the server and 
client callback functions and provide a ready-to-use environment for their execution in either 
a centralised or a decentralised way. 

The PtbFla API comprises the following four functions (for details see the references in the 
section on published results below): 
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1. None PtbFla(noNodes, nodeId, flSrvId=0) 
2. ret fl_centralized(sfun, cfun, ldata, noIters=1) 
3. ret fl_decentralized(sfun, cfun, ldata, noIters=1) 
4. PtbFla destructor 

The MPT-FLA API comprises the following five members (the first is a function, whereas the 
next four are coroutines declared as such by the keyword async): 

1. None PtbFla(noNodes, nodeId, flSrvId=0, mrIpAdr='localhost') 
2. None async start() 
3. ret async fl_centralized(sfun, cfun, ldata, pdata, noIters=1) 
4. ret async fl_decentralized(sfun, cfun, ldata, pdata, noIters=1) 
5. obs async get1Meas(peerId, odata). 

Within the PTB-FLA and MPT-FLA we implemented the following examples: 

● Federated map  
● Centralised data averaging 
● Decentralised data averaging 
● Centralised logistic regression 
● Decentralised logistic regression 
● Centralised MNIST NN training and inference 

The PTB-FLA and MPT-FLA development environments provide the solution for developing, 
testing and verifying the FL algorithms targeting the heterogeneous swarms. It is 
open-source, available on GitHub [35], and extensible allowing developers to extend its 
functionality if needed and develop their own examples. 

The main task for the future work after D5.2 is to make necessary PTB-FLA adaptations and 
extensions to enable usage of PTB-FLA in the GMV use case. This task needs to be 
coordinated by NOVA and will be conducted by UNS in cooperation with NOVA and GMV. 

7.1.3 FAuNO and PeersimGym contributions to TaRDIS project objectives 
The contribution of T5.2 to TaRDIS objective 3: Decentralised intelligence for heterogeneous 
swarms is twofold: 

● We are developing Reinforcement Learning-based (RL-based) orchestration of the 
TaRDIS runtime. The centralised version is completed. A federated RL framework is 
now in progress. 

● It also provides decentralised (p2p) ML for Orbit Determination in satellite swarms. 
The centralised version is completed. A decentralised version is being developed. 

The specific Project Results linked to this Objective are the following: 

● R3.1 – Techniques, algorithms, and models to support swarm intelligence. 
● R3.4 – Dynamic peer-to-peer resource orchestration for the computing continuum. 

 
To summarize, the targeted results are partially met by the developed centralized 
implementations. The main focus for the future is to complete the development of the 
decentralized versions. 
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7.1.4 Fedra and lightweight ML tools contributions to TaRDIS project 
objectives 

Objective 3 of GA is reached by promoting decentralised intelligence in swarm systems 
based on a decentralised FL framework (Fedra, T-WP5-09) that enables collaborative 
peer-to-peer intelligence sharing. The Fedra framework can support various ML algorithms 
and models being deployed directly at edge nodes, while keeping data and computation at a 
local level, promoting data privacy. Moreover, the work performed in T5.3 targets to offer 
lightweight ML inference techniques (T-WP5-06, T-WP-07, T-WP5-08) designed for nodes 
with limited computational capabilities. Finally, in the framework of WP5, a decentralised ML 
application was designed, developed and deployed for the EDP use case (smart home 
energy dynamics) in the TaRDIS environment. The ML-assisted application is based on RL, 
as well as assisted by forecasting ML models.  

The specific Project Results here linked to this Objective are: 

● R3.1 – Techniques, algorithms, and models to support swarm intelligence. 
● R3.2 – Open-source implementation of decentralised algorithms for FL and 

Supervised Learning. 

During the upcoming period of the TaRDIS project, the following activities will be conducted 
and finalized: (i) training of RL algorithms in the Fedra framework, specifically adapted for the 
energy use case; (ii) testing of the three lightweight ML inference techniques with real 
datasets and comparison of the resulting trade-off (accuracy vs computational resources); 
(iii) deployment of the early-exit models in real swarm nodes using Dexit tool; (iv) 
enhancement of the DRL model in a multi-agent framework, permitting the interaction 
between smart homes. 

7.2 CONTRIBUTIONS TO WP5 OBJECTIVES 
The contributions regarding WP5 objectives can be categorised to 3 groups as follows: 

1. WP5 Objective 1: Develop a framework supporting decentralised learning and 
inference through AI/ML programming primitives: 

a. An AI/ML library of implemented FL solutions for distributed AI applications 
was developed. It includes some widely applicable approaches, such as FL 
implementations of personalised and clustered federated learning (reported in 
D5.1), and distributionally robust FL (ongoing work). Also, the application of 
autoencoders and k-means for the process of anomaly detection for the ACT 
use case has been investigated. A tool for Flower-based FL 
(T-WP5-01/02/03), that supports the developer during the training setup, has 
been introduced. An approach for customised client-server message 
exchange in Flower implementations has been also considered. 

b. PTB-FLA & MPT-FLA (T-WP5-04) development environments for 
implementing the FL programming primitives were introduced. 

c. Precise ML Algorithms for Orbit Determination were proposed, which will be 
decentralised in the second half of the project. 
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d. A decentralised framework (Fedra, T-WP5-09) was designed and developed 
in the first half of the project lifetime, as an additional framework that enables 
model-agnostic FL learning. 

2. WP5 Objective 2: Exploit and specialise the preceding for the planning, deployment, 
and orchestration of the complete TaRDIS framework through RL and other relevant 
methodologies 

a. The Federated AI Network Orchestrator (FAuNO, T-WP5-05) has been 
developed, consisting of a system allowing RL agents under a Markov Game 
framework to solve the task offloading problem, supported by a training 
environment PeersimGym for the decentralised agents. 

3. WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised 
and swarm learning in resource-constrained devices 

a. MPT-FLA has been developed. It represents a Micro-Python implementation 
of PTB-FLA (T-WP5-04) that allows the development of federated learning 
algorithms in resource-constrained devices, such as Raspberry Pi Pico W 
boards, Husarion ROSbot, etc. 

b. Communication efficient vertical FL via compressed error feedback is 
proposed  

c. Three Lightweight ML tools methods were introduced: early-exit (EE, 
T-WP5-06) of inference, knowledge distillation (KD, T-WP5-07) and pruning 
(T-WP5-07) techniques. 

We now discuss these contributions in more detail, for specific TaRDIS WP5 tools below. 

7.2.1 Flower-based FL tool contributions to the TaRDIS WP5 objectives 

The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) contributes to the following 
WP5 objective: 

WP5 Objective 1: to develop a framework supporting decentralised learning and inference 
through AI/ML programming primitives. 
 
The contribution has a few dimensions. First, it includes a list of widely applicable 
approaches, such as FL implementations of personalised and clustered FL (both reported in 
D5.1), and distributionally robust FL and anomaly detection (see Section 2). Also, the tool 
contributes to the ACT use case specific needs. The application of autoencoders and 
k-means for the process of anomaly detection for the ACT use case has been investigated 
(see Sections 2 and 6). Additionally, the developed Flower-based FL tool supports the 
developer during the training setup and makes the process of starting the training 
straightforward. Finally, we also made an implementation-wise progress, by implementing a 
custom client-server message exchange approach in the Flower implementation of the DR 
FL. The tool will evolve further in the upcoming period, as described above. 

7.2.2 PTB-FLA and MPT-FLA contributions to the TaRDIS WP5 objectives 

The work done on PTB-FLA and MPT-FLA (T-WP5-04) contributed to the following WP5 
objectives. 

WP5 Objective 1: to develop a framework supporting decentralised learning and inference 
through AI/ML programming primitives. 
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WP5 Objective 3: to develop novel light-weight ML techniques to enable decentralised and 
swarm learning in resource-constrained devices. 

Regarding O.1, as already mentioned above, both PTB-FLA and MPT-FLA are the FL 
frameworks supporting decentralised learning and inference through AI/ML programming 
primitives. 

Regarding O.3, the MPT-FLA framework was experimentally validated on the Wireless 
Fidelity (WiFi) network, consisting of one WiFi router Belkin F5D7234-4, two Raspberry Pi 
Pico W boards, and one PC, by using the four adapted algorithm examples originally 
developed for the PTB-FLA framework. The MPT-FLA successfully passed this experimental 
validation because, as expected, the adapted algorithms produced the same numerical 
results as the originals, and this was the sole goal of this experiment validation. The 
validation showed its applicability in resource-constrained devices.  

7.2.3 Fedra contribution to the TaRDIS WP5 objectives 

The Fedra framework (T-WP5-09) contributes to the following objective: 

WP5 Objective 1: to develop a framework supporting decentralised learning and inference 
through AI/ML programming primitives 

Fedra was designed and developed in the first half of the project lifetime, as an additional 
framework that enables model-agnostic FL learning. 

7.2.4 Orbit determination ML algorithms contributions to the TaRDIS WP5 
objectives 

The contribution is related to the following WP5 objective: 
 
WP5 Objective 1: to develop a framework supporting decentralised learning and inference 
through AI/ML programming primitives 
 
Precise ML Algorithms for Orbit Determination are planned to be decentralised in the second 
half of the project. 

7.2.5 FAuNO and PeersimGym contributions to the TaRDIS WP5 objectives 

The tools FAuNO (T-WP5-05) and PeersimGym developed under T5.2 contribute to the 
following WP5 objective: 
 
WP5 Objective 2: exploit and specialise the preceding for the planning, deployment, and 
orchestration of the complete TaRDIS framework through reinforcement learning and other 
relevant methodologies 
 
The team is developing the Federated AI Network Orchestrator (FAuNO), consisting of a 
system allowing RL agents under a Markov Game framework to solve the task offloading 
problem. For this purpose, the team developed a training environment for the decentralised 
agents, PeersymGym. 

7.2.6 Lightweight ML techniques contribution to the TaRDIS WP5 objectives 

WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised and 
swarm learning in resource-constrained devices 
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Three methods were investigated for this objective: early-exit (EE, T-WP5-06) of inference, 
knowledge distillation (KD, T-WP5-07) and pruning (T-WP5-08) techniques. Four tools were 
developed and will be incorporated in the TaRDIS toolbox to provide these functionalities. 

7.2.7 Communication efficient vertical federated learning contribution to the 
TaRDIS WP5 objectives 

WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised and 
swarm learning in resource-constrained devices 
 
Communication efficient vertical FL via compressed error feedback is being developed. 
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8 CONTRIBUTION TO TARDIS KPIS  

We present the KPIs that are related to decentralised ML specific tools. In D2.2, an analysis 
of the overall requirements was performed, where the first version of the requirements list 
was identified (please see D2.2 for the complete list of KPIs). The table below (Table 7) lists 
the relevant KPIs and the decentralised ML TaRDIS tools that are related to them. Note that 
O means Objective, and B means Baseline, in KPIs IDs, as denoted in D2.2. We present a 
few preliminary results regarding the contributions to KPIs. However, these will be aligned 
with the descriptions of the KPIs from D7.2 in the future. In D7.2, a preliminary evaluation of 
the TaRDIS toolbox was carried out, where the appropriate measurement methodologies and 
related requirements were identified for the KPIs. We discuss the KPIs listed in Table 7, per 
individual tools below. 

Table 7: KPIs relevant for decentralised ML specific tools. 

ID Description WP5 tools 

K-O-1.3 Decrease median development time by 25% PTB-FLA based model training 

K-O-3.1 Use TaRDIS ML to autonomously manage 
system operations 

Federated AI Network 
Orchestrator (FAuNO) 

K-O-3.2 Improved edge orchestration Federated AI Network 
Orchestrator (FAuNO) 

K-O-3.3 Reduced Transmission overhead by 20% 

Flower-based FL model 
training 

Fedra and the lightweight ML 
tools 

K-O-3.4 Model reduction/compression increased by 
15% 

Fedra and the lightweight ML 
tools 

K-O-3.5 Reduced model training time by 25% Fedra and the lightweight ML 
tools 

K-B-07 FL training latency 

Flower-based FL model 
training 

Fedra and the lightweight ML 
tools 

K-B-08 FL storage/RAM requirements per node 

Flower-based FL model 
training 

Fedra and the lightweight ML 
tools 

K-B-10 FL accuracy 

Flower-based FL model 
training 
Fedra and the lightweight ML 
tools 
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8.1 KPIS FOR THE FLOWER-BASED FL TOOL (T-WP5-01/02/03) 

As shown in Table 7, this tool is related to the following KPIs:  

● K-B-07: FL training latency 
● K-B-10: FL accuracy 
● K-B-08: FL storage/Random-Access Memory (RAM) requirements per node 
● K-O-3.3: Reduced transmission overhead by 20% (w.r.t. FedAvg) 

 
The tool addresses the KPI K-B-07: FL training latency, in two ways. The first approach is to 
measure the runtimes by executing a FL training algorithm with different numbers of 
participating client nodes. These simulations have been carried out on a cluster environment  
containing 16 nodes, 8 Intel i7 5820k 3.3GHz and 8 Intel i7 8700 3.2GHz CPU - 96 cores and 
16GB DDR4 RAM/node, interconnected by a 10 Gbps network. Although a cluster 
environment is not a natural choice for federated learning, it may serve as an excellent setup 
for evaluations and running large-scale simulations.  

The results are shown for the pFedMe algorithm (reported in D5.1), in Figure 49. The 
simulations were launched on CPUs with a different number of Flower clients c=[2,3,..,10], 
where each client represents a separate cluster node. The experiments were performed on 
the Fashion MNIST data set, containing 60000 training examples. It can be observed that the 
algorithm scales well, reaching a ‘sweet spot’ at 6 clients, where the execution time has the 
lowest value. The plot also shows that the differences in timings are not drastic up to 7 
clients. After that point, the time starts to grow while increasing the number of clients, which 
is a typical behavior of a parallel program. At that point, the gains of parallelisation for this 
data set are becoming lower than the expenses of synchronising. 
 

 
Figure 49: Scaling properties of the pFedMe implementation on a cluster. 

 
The second set of experiments that contributes to K-B-07 is the measure of the scalability of 
a serial implementation of the Autoencoder, used for the ACT use case. See Figure 38 in 
Section 6 above. It can be observed that the increase of training time with respect to 
increased number of data points is almost linear. This is a preliminary result that seems 
promising, as it can be expected that the parallel, federated version of the algorithm will scale 
well, similarly as the pFed me algorithm, in Figure 49. 
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Regarding the KPI K-B-10: FL accuracy, the tool already provided measured accuracy values 
for the developed pFedMe algorithm (reported in D5.1). Please see D5.1 for additional 
details. Also, we measured the accuracy values for the autoencoder for the ACT use case. 
The results seem promising, giving accuracies of 0.94 and 0.82 (versus ground truth). For 
more details on the results, see Section 6. 

The KPI K-B-08: FL storage/RAM requirements per node, will be addressed also by running 
a set of experiments on a cluster environment. During FL model training, the storage and 
RAM resources of the participating nodes will be measured. 

For K-O-3.3: Reduced transmission overhead by 20% (wrt FedAvg) will be measured 
regarding the network load of the model weights exchange during the FL process. 

8.2 KPIS FOR THE PTB-FLA AND MPT-FLA (T-WP5-04) 

The work done on PTB-FLA and MPT-FLA has contributed to the following TaRDIS KPI. 
● K-O-1.3 Decrease median development time by 25%. 

In [28] we reported on the adapted development paradigms performance in terms of human 
labour (in working hours) and size of ChatGPT context (in number of characters with spaces) 
needed to develop the logistic regression PTB-FLA code. We would like to emphasise that 
data on human labour should be treated as rough estimates because it is based on our 
freeform notes in private diaries. Data on ChatGPT context size is exact and we got them by 
the text editor. 

In the following table (Table 8), the left part relates to human labour and the right part relates 
to the ChatGPT context size. The top part contains raw (input) data, and the bottom part 
contains calculated (output) data; some of the fields are not applicable (but this should be 
obvious, so we skip explaining these exceptions). There are two types of calculated data: (i) 
the working speed-up that is defined as the ratio of working hours, and (ii) the ChatGPT 
context size reduction that is defined as the ratio of ChatGPT context sizes. 

 

Table 8: Adapted paradigms performance data. 

 Human labour [h] Context size [ch with spaces] 

Phase 4-Ph human 4-Ph GPT 2-Ph GPT 4-Ph GPT 2-Ph GPT 

Phase 2 8 4 4 2462 2685 

Phase 3 12 4  2593  

Phase 4 4 4  2334  

Total 24 12 4 7389 2685 

 Speed up: 2 6 Reduction: 2.75 
 
        
The calculated data in the bottom raw reveal encouraging results, the adapted 4-phases 
development paradigm for ChatGPT achieved the speed up of 2 times over the original 
4-phases development paradigm for humans, whereas the adapted 2-phase development 
paradigm for ChatGPT achieved the speed up of 6 times over the original 4-phase 
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development paradigm for humans. However, one should keep in mind that these impressive 
results are based on rough estimates of working hours. 

Regarding the ChatGPT context sizes, the calculated data in the bottom row of Table 8 
reveal that the adapted 2-phases development paradigm for ChatGPT achieves the context 
size reduction of 2.75 times over the adapted 4-phases development paradigm for ChatGPT 
i.e., it makes using ChatGPT 2.75 times cheaper. 

8.3 KPIS FOR THE FAUNO TOOL (T-WP5-05) 

The following KPIs can be demonstrated for the tool FAuNO, that can be directly measured 
and compared to baseline results: 

● K-O-3.1 Use TaRDIS ML to autonomously manage system operations (used by 50% 
of use cases). FAuNO is being developed as a generic AI orchestration tool and can 
be applied to the GMV use case, by specialisation and reconfiguration.  

● K-O-3.2 Improved edge orchestration (15% faster response time, 20% faster event 
processing throughput). When compared to standard heuristic algorithms, like Least 
Queues, vanilla RL agents already show improvement. We expect that FRL and 
specially designed agents will attain the KPI. 

 

8.4 KPIS FOR THE FEDRA FRAMEWORK (T-WP5-09) AND LIGHTWEIGHT ML 
TOOLS (T-WP5-06/07/08) 

Fedra and the lightweight ML tools are linked with the following KPIs that can be directly 
measured and compared to baseline results: 

● K-B-07: FL training latency, measured by executing the FL training with SL and RL 
algorithm and varying number of participating nodes  

● K-B-08: FL storage/RAM requirements per node, obtained by executing the FL 
training in a practical implementation scheme (optionally with virtual machines 
representing decentralised FL nodes) and measuring the storage and RAM resources 
of the participating nodes. Moreover, the storage/RAM requirements and inference 
latency can be also measured when the EE, KD or pruning methods are employed for 
the model hosted at the edge nodes. 

● K-B-10: FL accuracy, by obtaining the testing error of the trained models and 
quantifying the validation/inference error of the lightweight models. 

● K-O-3.3: Reduced transmission overhead, measuring the network load of the model 
weights exchanged during the FL process, as well as the data exchange between the 
nodes during the inference in the case of EE. 

● K-O-3.4: Model reduction/compression, measuring the compression rate of the neural 
network when using the pruning method. 

● K-O-3.5: Reduced model training time by 25%, measured by executing FL training in 
the Fedra framework. 

● Develop at least 3 different lightweight techniques (KD, EE, pruning) and demonstrate 
SL and RL algorithms in the TaRDIS use cases. 
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It should be noted that several of the KPIs have been partially measured according to the 
measurement methodology presented in D7.2 - Report on the preliminary evaluation of the 
TaRDIS toolbox. These KPIs will be presented in the evaluation of the Tardis toolbox results 
for the associated use cases, as well as in the final WP5 deliverable D5.3. 
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9 CONCLUSION 

This document has reported the advances and ongoing work on the tasks regarding the 
development of decentralized machine learning approaches. It contains the contributions for 
the period after D5.1 submission. It has presented the current statuses of frameworks that 
support AI/ML primitives, AI-driven planning, deployment and orchestration, and lightweight, 
energy efficient ML techniques. We also described the positioning of these approaches in 
TaRDIS. Additionally, we listed the relevant KPIs and objectives, supported by some results 
and plans for addressing them in the future. We also described the novelties and current 
state of the art regarding the ML modelling of all TaRDIS use cases. 
 
The TaRDIS project tasks T5.1, T5.2 and T5.3 will continue with their activities, by working on 
improving and expanding their solutions, in order to support the development of the TaRDIS 
toolbox, while constantly focusing on the needs of the use cases. The results of these 
activities will be documented in the next (and final) deliverable for the work package (D5.3), 
which is due on M34. 
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