

D5.2: Second report on Distributed
AI and AI-based orchestration

Revision: v.1.0

Work package WP5

Task T5.1, T5.2, T5.3

Due date 31/12/2024

Submission date 02/01/2025

Deliverable lead Lidija Fodor (UNS), Dušan Jakovetić (UNS)

Version 1.0

Authors

Dušan Jakovetić (UNS), Lidija Fodor (UNS), Milica Jankov (UNS), Nemanja
Petrović (UNS), Nikola Simić (UNS), Stefan Komarica (UNS), Sotiris
Spantideas (NKUA), Ilias Paralikas (NKUA), Anastasios Kaltakis (NKUA),
Claudia Soares (NOVA), Frederico Metelo (NOVA), Miloš Simić (UNS),
Miroslav Popovic (UNS), Ivan Kaštelan (UNS), Miodrag Djukic (UNS), Pavle
Vasiljevic (UNS), Simona Prokić (UNS), Ivan Prokić (UNS), Silvia Ghilezan
(UNS), Alceste Scalas (DTU), Dimitra Tsigkari (TID), Manuel Pio Silva (EDP),
Giovanni Granato (GMV)

Reviewers
Carlos Coutinho (CMS)

Filippo Vannella (TID)

Abstract

This document represents the second report on the advances in the AI/ML
primitives in T5.1, in the AI-driven orchestration in T5.2 and in the lightweight
energy efficient techniques in T5.3. The proposed tools are described in the
context of the TaRDIS framework, defined in D2.3. This report also contains
the descriptions of advances on ML modelling of the TaRDIS use cases, as
well as a discussion on addressing the project objectives and important KPIs,
regarding the preliminary validation approaches for the TaRDIS toolbox,
defined in D7.2.

Keywords
decentralized machine learning and inference; AI/ML programming primitives,
AI-driven planning, deployment and orchestration; lightweight and energy
efficient ML techniques

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 11/10/2024 Table of contents draft released. UNS, NKUA, NOVA

V1.0 09/12/2024 Document ready for internal review all authors

V1.1 22/12/2024 Document reviewed internally CMS, TID

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held responsible for
them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the
deliverable: R

Dissemination Level

PU Public, fully open, e.g. web (Deliverables flagged as public will be
automatically published in CORDIS project’s page) ✔

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

 Page 2 of 102 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

EXECUTIVE SUMMARY

The objective of the TaRDIS project is to develop a distributed programming toolbox that
makes the development of decentralized, heterogeneous swarm applications deployed in
diverse settings simpler. The main goals of work package 5 (WP5) can be described in the
context of the 3 tasks it consists of: Task 5.1 developing a framework supporting artificial
intelligence/machine learning (AI/ML) programming primitives, Task 5.2 providing an
AI-driven planning, deployment and orchestration framework and Task 5.3 creating a library
of lightweight and energy efficient ML techniques.

In Deliverable 5.1 (D5.1), an initial report on the development of distributed AI/ML primitives,
lightweight ML techniques and AI-based orchestration was provided. The deliverable also
contained an initial description of the positioning of the ML/AI tools in the TaRDIS framework
as well as the first propositions on ML modelling approaches for the TaRDIS use cases.

This document provides an overview of WP5 contributions, for the period after D5.1
submission. It contains the descriptions of the advances on the different tasks within WP5.
Regarding T5.1, the following contributions can be identified: the description and
demonstration of the Flower-based federated learning (FL) tool that contains newly
developed FL implementations; the introduction of split learning (SL) solutions; the illustration
of advances on the Python Testbed for Federated Learning Algorithms (PTB-FLA) framework
and the introduction of the MicroPython implementation of PTB-FLA (MPT-FLA) framework;
and the presentation of the Fedra framework for advancing decentralised federated learning.
The contributions within T5.2 include: the description of the advances on the PeersymGim
environment for solving the task offloading problem with reinforcement learning; and the
introduction of the Federated AI Network Orchestrator (FAuNO). The T5.3 contributions
contain: the explanation of the advances on pruning, early exit and knowledge distillation
lightweight ML techniques; the introduction and detailed analysis of the Decentralised Early
Exit Inference Tool (DEXIT); and the description of the Communication-efficient vertical
federated learning via compressed error feedback. All these tools are placed within the
TaRDIS toolbox, as described in D2.3. Therefore, this document also elaborates the
positioning of AI/ML tools in the TaRDIS framework, while focusing on the collaborations with
activities carried out in other work packages. The advances on ML modelling are also
described for all TaRDIS use cases here. Finally, a discussion on the approaches for
addressing TaRDIS and WP5 objectives, as well as important key performance indicators
(KPIs) is also provided, with respect to the preliminary validation approaches for the TaRDIS
toolbox, reported in D7.2.

 Page 3 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

TABLE OF CONTENTS

Introduction 14
1.1 Overview 14
1.2 Results summary 14
1.3 Deliverable structure 15

2 Advances on framework supporting AI/ML modelling primitives 16
2.1 The Flower-based FL tool 16
2.1.1 The Flower-based FL tool demonstration 17
2.1.2 Distributionally robust FL 19
2.1.3 Anomaly detection 21
2.2 Split learning 22
2.3 PTB-FLA and MPT-FLA 24
2.3.1 Published results and video demonstration 24
2.3.2 PTB-FLA Development Paradigm Adaptation for ChatGPT 25
2.3.3 MPT-FLA Distributed Launcher 25
2.3.4 MPT-FLA Validation and Evaluation 27
2.3.5 Distributed Applications for MNIST NN Training and Testing/Inference on PTB-FLA
and MPT-FLA 29
2.3.6 Towards Formal Verification of Federated Learning Orchestration Protocols on
Satellites 32
2.4 Fedra: Advancing decentralised federated learning 34
2.4.1 Introduction and Conceptual Framework 34

2.4.1.1 Key Innovations: 35
2.4.2 Conceptual Architecture of Fedra 36
2.4.3 Low-level Fedra's Architecture and Process - Architectural Components in Detail 36

2.4.3.1 P2PHandler (handler.py) 36
2.4.3.2 DataLoaderHandler (process.py) 37
2.4.3.3 Operations (operations.py) 38
2.4.3.4 NetworkState (state.py) 38

2.4.4 The Federated Learning Process in Fedra 39
2.4.5 Advanced Features and Future Directions 41

3 Advances on AI-driven planning, deployment and orchestration framework 42
3.1 PeersymGim: An environment for solving the task offloading problem with
reinforcement learning 42
3.2 FAuNO: Federated AI network orchestrator 43

3.2.1 FAuNO Overview 44
3.2.2 FAuNO orchestration mechanism 45
3.2.3 Preliminary Results 47

3.2.3.1 Baselines 47
3.2.3.2 Metrics 47
3.2.3.3 Testing scenarios 47

4 Advances on lightweight, energy-efficient ML techniques 50
4.1 Pruning 50

 Page 4 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

4.2 Early exit of inference 51
4.3 Knowledge distillation 52
4.4 DEXIT framework: A comprehensive analysis 55
4.4.1 The problem space 55
4.4.2 DEXIT High-Level architecture 55

A diagram of a software systemDescription automatically generated with medium
confidence 56

4.4.3 DEXIT Core Architectural Components 56
4.4.3.1 Edge Device 56
4.4.3.2 Cloud1 Node 56
4.4.3.3 Cloud2 Node 56
4.4.3.4 Network layer (libp2p) 57
4.4.3.5 Network state management 57

4.4.4 DEXIT Key Software Components 57
4.4.4.1 P2PHandler (network/handler.py) 57
4.4.4.2 NetworkState (utils/state.py) 58
4.4.4.3 CIFARDataLoader (data/dataloaders.py) 58
4.4.4.4 Early Exit Models (early_exit/) 59

4.4.5 DEXIT Workflow 61
4.4.6 Key Features and Advantages 62

4.4.6.1 Adaptive Computation 62
4.4.6.2 Decentralised Architecture 62
4.4.6.3 Flexibility and Heterogeneity 62
4.4.6.4 Reduced Latency and Bandwidth Usage 63
4.4.6.5 Enhanced Privacy and Security 63

4.4.7 Challenges and Future Directions 63
4.4.7.1 Dynamic Load Balancing 63
4.4.7.2 Model Consistency and Updates 63
4.4.7.3 Privacy-Preserving Techniques 63
4.4.7.4 Fault Tolerance and Recovery 63
4.4.7.5 Standardisation and Interoperability 63

4.4.8 Conclusion 63
4.5 Communication-efficient vertical federated learning via compressed error feedback 64

5 Positioning of ML/AI tools in TaRDIS 65
5.1 Overview and relation with TaRDIS requirements 65
5.2 Interaction with TaRDIS programming abstractions 66
5.3 Interaction with TaRDIS property verification tools 66
5.4 Interaction with TaRDIS data management and distribution primitives 66
5.5 Interaction with TaRDIS implementation and evaluation 67
5.6 Interaction with TaRDIS dissemination, exploitation and standardisation 68

6 ML modelling of TaRDIS use cases 69
6.1 ACT use case 69
6.1.1 Autoencoder-based outlier detection and K-means 69

6.1.1.1 Algorithm 1 69

 Page 5 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

6.1.1.2 Algorithm 2 69
6.1.2 The experimental dataset 70
6.1.3 Results and discussion 70

6.1.3.1 Results on Experiment 1 70
6.1.3.2 Results on Experiment 2 71
6.1.3.3 Scalability and computational aspects 72

6.2 GMV use case 74
6.3 EDP use case 75
6.4 TID use case 79

7 Discussion and Future work 84
7.1 Contributions to TaRDIS project objectives 84

7.1.1 Flower-based FL tool contributions to the TaRDIS project objectives 85
7.1.2 PTB-FLA and MPT-FLA contributions to the TaRDIS project objectives 86
7.1.3 FAuNO and PeersimGym contributions to TaRDIS project objectives 87
7.1.4 Fedra and lightweight ML tools contributions to TaRDIS project objectives 88

7.2 Contributions to WP5 objectives 88
7.2.1 Flower-based FL tool contributions to the TaRDIS WP5 objectives 89
7.2.2 PTB-FLA and MPT-FLA contributions to the TaRDIS WP5 objectives 89
7.2.3 Fedra contribution to the TaRDIS WP5 objectives 90
7.2.4 Orbit determination ML algorithms contributions to the TaRDIS WP5 objectives
90
7.2.5 FAuNO and PeersimGym contributions to the TaRDIS WP5 objectives 90
7.2.6 Lightweight ML techniques contribution to the TaRDIS WP5 objectives 90
7.2.7 Communication efficient vertical federated learning contribution to the TaRDIS
WP5 objectives 91

8 Contribution to TaRDIS KPIs 92
8.1 KPIs for the Flower-based FL tool (T-WP5-01/02/03) 93
8.2 KPIs for the PTB-FLA and MPT-FLA (T-WP5-04) 94
8.3 KPIs for the FAuNO tool (T-WP5-05) 95
8.4 KPIs for the Fedra framework (T-WP5-09) and Lightweight ML tools
(T-WP5-06/07/08) 95

9 Conclusion 97

 Page 6 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

LIST OF FIGURES

FIGURE 1: Setting up the training in the Flower-based FL training tool. 18

FIGURE 2: An example of the output of training for the Flower-based FL model training
tool.

18

FIGURE 3: Split federated learning schema. 23

FIGURE 4: Performance of the full-precision and FP8 model. 23

FIGURE 5: The MPT-FLA Distributed Launcher Architecture. 26

FIGURE 6: The federated map’s mean execution time. 27

FIGURE 7: The centralised data averaging mean execution time. 28

FIGURE 8: The decentralised data averaging mean execution time. 28

FIGURE 9: The ODTS mean execution time. 29

FIGURE 10: The initial and the final NN accuracy versus the server’s dataset size. 31

FIGURE 11: The initial and the final NN accuracy versus the server’s number of iterations. 31

FIGURE 12: The stochastic TA model of the CFL orchestration protocol (taken from [31]). 33

FIGURE 13: The UPPAAL tool simulation diagram (taken from [31]). 34

FIGURE 14: The general architectural considerations of decentralised federated learning:
each node/client trains the model based on the local data and aggregates with the
weights of other clients into a global model.

35

FIGURE 15: The main task of Fedra tool, depicting the node.conf file, as well as the wait for
peers’ workflow (in order to initiate the training process) and the training loop workflow
(that performs the federated learning process).

37

FIGURE 16: The two asynchronous tasks that run in the background: the peers publish
their status in the respective topic (left) and their model weights (right).

39

FIGURE 17: The federated learning workflow. 40

FIGURE 18: The shared objects (status and weights) among the peers participating in the
FL process.

41

FIGURE 19: General and problem-specific RL state action overview. 43

FIGURE 20: FAuNO tool interaction diagram. 44

FIGURE 21: FAuNO Node vs FAuNO Global Manager. 45

FIGURE 22: Modified FedBuff solution. 46

FIGURE 23: Topology with 2 clusters of nodes as generated by Ether. 48

FIGURE 24: Results of Scenario with increasing number of clusters. 49

 Page 7 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

FIGURE 25: Results of Scenario with increasing task arrival rates. 49

FIGURE 26: Results of the pruning process: size of the zipped model (left), mean inference
time (right) .

50

FIGURE 27: Results of the pruning process: mean squared error wrt the pruning rate. 51

FIGURE 28: Histogram depicting the number of times that the model exits on exit 1 (approx
1000), exit 2 (approx 5000) and final exit 3 (approx 4000).

52

FIGURE 29: Results of the knowledge distillation process: accuracy of the student model
compared to the original teacher model for different temperatures.

53

FIGURE 30: Measurement of execution time for different iterations (more lightweight in
terms of model size) of the DNN models.

53

FIGURE 31: Comparison between the four different variants of the resulting model
accuracy when utilizing different iterations.

54

FIGURE 32: Workflow of the DEXIT process, illustrating the user (first part of the model),
the edge device (mid part of the model) and the server (final part of the model).

56

FIGURE 33: The main workflow loop of the DEXIT tool (top) and the published alerts to the
subscribed topics of the involved entities (bottom).

60

FIGURE 34: Inference loop of the DEXIT tool (left) and the send2server functionality (right)
when the confidence level has not been reached in the early exits.

62

FIGURE 35: The TaRDIS toolbox architecture overview (from D2.3 [4]) 65

FIGURE 36: Training Loss of AE over Epochs 71

FIGURE 37: Training Time of AE versus Number of Data Points 71

FIGURE 38: Relative deterioration in F1 score with varying numbers of inaccurate labels 73

FIGURE 39:. Estimation of training time assuming 10 times larger Dataset 73

FIGURE 40: Two-layer Model Architecture. 74

FIGURE 41: The Home Energy Management System (HEMS) that observes the smart
home environment, acts on it and receives a reward based on the optimization objective.

76

FIGURE 42: Forecast of generation power from solar panels of the LSTM model compared
to the real data for 1 week of April.

77

FIGURE 43: Forecast of power consumption requests of the smart home using the trained
LSTM model compared to the real data for one week of April.

77

FIGURE 44: Inside temperature (upper left), power provided to the HVAC system (upper
right) and power exchange between the ESS and the grid (below) using the trained
DDPG model for 1 week of April.

78

FIGURE 45: Reward function of the DDPG model for different β -energy cost vs
temperature comfort trade-off- (left) and for different months -January and July- (right).

78

FIGURE 46: The hybrid federated and split learning setting considered, the considered

 Page 8 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

network topology, its resources, and the processing tasks per entity. Some clients, e.g.,
client 1, participate in the training through parallel SL, by offloading part-2 to a helper,
while others, e.g., client J, participate through FL and perform on-device training.

80

FIGURE 47: An overview of the workflow of the HFSL system, from profiling of processing
and transmission times to the optimization of the workflow, and the system
implementation.

80

FIGURE 48: Makespan obtained by the balanced-greedy solution method in Scenario 1
(low heterogeneity) for J = 100 clients and varying number of helpers I.

83

FIGURE 49: Scaling properties of the pFedMe implementation on a cluster 93

 Page 9 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

LIST OF TABLES

TABLE 1: Final results on Experiment 1, for anomaly detection 70

TABLE 2: Final results versus Ground Truth, for anomaly detection 70

TABLE 3: Final results on Experiment 2, for anomaly detection 72

TABLE 4: Final results versus Ground Truth, for anomaly detection 72

TABLE 5: Relative gain in makespan in the HFSL setting vs. clients training only through
SL

82

TABLE 6: Suboptimality and speedup achieved by the ADMM-based method compared to
an ILP solver for HFSL for different problem instances (J denotes the number of clients,
and I denotes the number of helpers).

82

TABLE 7: KPIs relevant for decentralised ML specific tools 92

TABLE 8: Adapted paradigms performance data 94

 Page 10 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

ABBREVIATIONS

ACT Actyx

ADMM Alternating Direction Method of Multipliers

AI Artificial Intelligence

API Application Programmer Interfaces

APU Air Production Unit

AE Autoencoder

CFL Centralized Federated Learning

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

CSP Communicating Sequential Processes

CSV Comma-Separated Value

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

D Deliverable

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DDPG Deep Deterministic Policy Gradient

DEXIT Decentralised Early Exit Inference Tool

DFL Decentralised Federated Learning

DR Distributionally Robust

DRL Deep Reinforcement Learning

EE Early Exit

ESS Energy Storage System

FAuNO Federated AI Network Orchestrator

FedAvg Federated Averaging

FL Federated Learning

FLA Federated Learning Algorithm

FLaaS Federated Learning as a Service

FP8 Floating-Point 8

 Page 11 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

FP16 Floating-Point 16

FRL Federated Reinforcement Learning

GA Grant Agreement

GS Ground Station

GUI Graphical user Interface

HEMS Home Energy Management System

HFSL Hybrid Federated & Split Learning

HTTP Hypertext Transfer Protocol

HUNOD Hybrid UNsupervised Outlier Detection

HVAC Heating, Ventilation and Air-Conditioning

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ILP Integer Linear Programming

I/O Input/Output

IoT Internet of Things

JSON JavaScript Object Notation

KD Knowledge Distillation

KPI Key Performance Indicator

LEO Lower Earth Orbit

LLM Large Language Model

LSTM Long Short-Term Memory

MAPE-K Monitor, Analyse, Plan, Execute, and Knowledge

ML Machine Learning

MLOps Machine learning operations

MNIST Modified National Institute of Standards and Technology

MPT-FLA MicroPython implementation of PTB-FLA

MSE Mean Squared Error

NAT Network address translation

NN Neural Network

 Page 12 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

NeuralODEs Neural Ordinary Differential Equations

NNI Neural network intelligence

ODTS Orbit Determination and Time Synchronization

P2P Peer-To-Peer

PAT Process Analysis Toolkit

PC Personal Computer

pFedMe Personalized Federated learning with Moreau envelopes

PINNs Physics-Informed Neural Networks

PPO Proximal Policy Optimization

PTB-FLA Python Testbed for Federated Learning Algorithms

Pub/Sub Publish-Subscribe

RAM Random-Access Memory

ResNet Residual Neural Network

RL Reinforcement learning

SGP Simplified General Perturbations

SL Supervised Learning

SSA Space Situational Awareness

SSH Secure Shell

SV Space Vehicle

TA Timed Automata

TDM Time Division Multiplexing

TCP Transmission Control Protocol

VFL Vertical Federated Learning

vgg Visual Geometry Group

VM Virtual Machine

WiFi Wireless Fidelity

WP Work Package

 Page 13 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

INTRODUCTION

1.1 OVERVIEW

This document represents the second report regarding work package 5 (WP5) that is focused
on the development of decentralised machine learning solutions. In D5.1 [1], an initial
progress report was provided, aimed to comprehensively describe the ongoing work of the 3
tasks under WP5: creating a decentralised learning and inference framework supporting
AI/ML primitives (Task 5.1), developing an AI-driven planning, deployment and orchestration
framework (Task 5.2) and providing a library of lightweight and energy efficient ML
techniques (Task 5.3). Besides that, some initial relations with tasks from other work
packages were identified, which enabled an early understanding of the positioning of WP5 in
the TaRDIS framework. The incipient representation of the ML modelling of the TaRDIS use
cases was also provided in D5.1.

In this report, we endeavour to present the advances on each task within WP5 with respect
to the reports from D5.1. At this stage, we are able to discuss the WP5 tools as components
of the TaRDIS toolbox. We also provide a deeper explanation of the positioning of WP5 in the
TaRDIS framework, by explaining the connections with different endeavours under various
work packages. A more specific ML modelling of the TaRDIS use cases is also provided in
this document, relying on the ideas from D5.1. We also discuss the main aspects of meeting
the TaRDIS project objectives as well as the WP5 specific objectives. This document also
contains an overview of the approaches to address the relevant Key Performance Indicators
(KPIs). Finally, we provide some conclusions and ideas for next steps.

1.2 RESULTS SUMMARY

We first present the novel contributions within Task 5.1, that concerns developing AI/ML
primitives. In D5.1, we reported two different directions regarding this task: the PTB-FLA
framework and FL implementations in the Flower framework. We now provide details on the
advances regarding these approaches, and we also introduce two additional directions here:
split learning (SL) and the Fedra framework. Besides the already reported FL algorithms
implemented in the Flower framework, we discuss additional FL Flower-based algorithms
implementations. The implementations are shaped into the Flower-based FL TaRDIS tool.
We also provide a demonstration of this tool. Further, we discuss how ChatGPT can be of
use to ease FL applications creations with the PTB-FLA framework, and we also introduce
MPT-FLA, a MicroPython implementation of PTB-FLA. Additionally, we discuss distributed
applications on these frameworks and aspects of formal verification of FL PTB-FLA
orchestration protocols. Finally, we introduce an FL framework, Fedra. It has been developed
in TaRDIS with the aim to support FL in completely decentralised, peer-to-peer (P2P) swarm
systems. We describe the architecture of the framework in detail in Section 2.4.

The contributions within Task 5.2, concerning AI-driven planning, deployment and
orchestration framework, include two directions. The first one is the PeersimGym
environment, which is meant to address the task offloading problem by means of
reinforcement learning (RL). This tool was already described in detail in D5.1. The second
and novel direction is the development of the FAuNO tool. It represents a federated AI
network orchestrator, developed for distributed AI systems coordination and operation
enhancement. We describe the orchestration mechanism and discuss some preliminary
results.

 Page 14 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Within Task 5.3, concerning lightweight and energy efficient ML techniques, three directions
were identified in D5.1: pruning, early exit of inference and knowledge distillation. These
techniques were recognised and theoretically examined. Now, they have been developed
and are discussed in this document. The implementations of these ML lightweight tools will
be integrated in the TaRDIS toolbox. Furthermore, we introduce a new framework, the DEXIT
(Decentralised Early Exit Inference Tool) framework, which aims to support the deployment of
the trained Early Exit (EE) models in swarm nodes. We provide an overview of its
architecture, components, workflow, as well as a description of its main features. Finally, we
describe communication-efficient vertical federated learning via compressed error feedback.
Beside the mentioned task specific contributions, we also present use-case specific
advances in this document, as well as contributions to different aspects of TaRDIS through
connections with other work packages. We also identify the relevant KPIs, while focusing on
approaches to address them and provide some results for a subset of them. Finally, we
discuss and identify future directions regarding TaRDIS and WP5 objectives.

1.3 DELIVERABLE STRUCTURE

The structure of this document is as follows. An introduction of the main results that
represent the advances on the topics introduced in D5.1 is presented first, in Section 1. In
Section 2, we present these advances regarding the framework supporting AI/ML modelling
primitives with detailed progress descriptions of the following directions under T5.1: The
Flower-base FL tool, split learning, the PTB-FLA and MPT-FLA frameworks and the Fedra:
Advancing decentralised federated learning framework. In Section 3, we discuss the
advances related to the AI-driven planning, deployment and orchestration framework,
focusing on the thorough explanations of the improvements on the PeersymGim environment
for solving the task offloading problem with reinforcement learning and the FAuNO:
Federated AI network orchestrator tool. Section 4 is dedicated to progress description
regarding lightweight, energy-efficient ML techniques, including pruning, early exit and
knowledge distillation. This section also provides a detailed analysis of the DEXIT framework
and finally, it describes a communication-efficient vertical federated learning via compressed
error feedback. Section 5 presents the positioning of AI/ML tools in the TaRDIS framework,
by examining the connections and collaborations with tasks from different work packages.
Section 6 provides a detailed overview of the current state of the art regarding ML modelling
of the four TaRDIS use cases, while Section 7 discusses the approaches to meet the project
and work package specific objectives. Section 8 is dedicated for examining the contributions
to relevant KPIs. Finally, Section 9 concludes this report, by summarizing the most important
aspects.

 Page 15 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2 ADVANCES ON FRAMEWORK SUPPORTING AI/ML MODELLING PRIMITIVES

In this section, we describe the contributions made regarding the development of AI/ML
programming primitives. In D5.1, we discussed two frameworks of interest: the Flower and
the PTB-FLA frameworks. In this section, we also provide an overview of an ongoing work
regarding split learning, by highlighting the planned activities and some preliminary
considerations. In D5.1, we described the PTB-FLA development paradigm and presented an
implementation example. Now, we expand the topic further here and discuss the usefulness
of ChatGPT in creating PTB-FLA implementations and introduce a MycroPython
implementation of the framework, MPT-FLA. We also list the relevant publications on these
topics. Finally, we introduce a new framework, Fedra, for advancing decentralized FL, and
describe the architecture and features of the Fedra framework in detail. We introduced
personalised and clustered FL implementations in the Flower framework. We also describe
the advances in the context of the Flower framework in this section, by introducing and
demonstrating the Flower-based FL tool and discussing new Flower-based FL
implementations, namely distributionally robust FL and anomaly detection. In addition to the
above efforts presented ahead in detail in the current section, we also report here briefly on
methodological T5.1 advances in the context of clustered and robust distributed learning [2],
[3]. Namely, theoretical advances related to clustered learning have been developed in [2],
where we investigate the influence of centre initialization on performance of distributed
gradient-based clustering algorithms. We demonstrate the resilience to initialization effects
for these methods and propose a novel distributed centre initialization scheme. For more
details on the results, we refer to [2]. In the context of robust learning, we also present recent
theoretical advances on heavy-tailed noise in distributed estimation [3], where we introduce a
distributed estimation algorithm in an environment with heavy-tailed observation and
communication noises. We present results on convergence and asymptotic performance, as
well as on trade-offs between system noises and the underlying network topology. For more
details, we refer to [3]. The incorporation of methodologies developed in [2,3] in the
Flower-based FL tool will be considered in the final year of the project.

2.1 THE FLOWER-BASED FL TOOL

The Flower-based FL model training tool (T-WP5-01), the Data preparation for Flower-based
FL model training tool (T-WP5-02) and the Flower-based FL model inference and evaluation
tool (T-WP5-03) have been defined within the TaRDIS architecture definition in D2.3 [4],
where the descriptions have been supported by a set of diagrams defining the tools
architectures, workflows and behaviours. The tools provide federated machine learning
solutions and enable model training. The envisioned functioning was presented by mock-ups
in D3.2 [5]. We now present the Flower-based FL tool, that represents a synthesis of the
mentioned 3 tools, as they are envisioned to work in synergy. During the previous period, we
mainly focused on the development of the Flower-based FL model training tool (T-WP5-01),
where we extended the list of FL model training algorithms. The list of these algorithms will
be expanded further, according to the needs. Additionally, we developed some initial
inference capabilities (T-WP5-03), that will be expanded in the upcoming period. We also
plan to start working on the preprocessing approaches (T-WP5-02) during the finishing phase
of the project. We now demonstrate the functioning and usage of the Flower-based FL tool,
that supports the developer during the process of setting the training up, so that no FL
expertise is needed in order to train a model. We also discuss the novel FL-based Flower
implementations here, which expand the list of already reported algorithms, i.e., federated
averaging, personalised and clustered FL. The algorithms that we consider here are
distributionally robust FL and anomaly detection in the Flower framework.

 Page 16 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.1.1 THE FLOWER-BASED FL TOOL DEMONSTRATION

One of our main focuses is the development of an application that uses the Flower
framework for FL. This application enhances the accessibility and user-friendliness of FL
techniques, particularly for non-expert users. This tool covers the Flower-based tools
T-WP5-01,T-WP5-02 and T-WP5-03, introduced in D2.3 [4]. It meets a set of requirements
(from D2.2 [6]), that, among others, include providing a list of FL algorithms and supporting
diverse ML algorithms in decentralised frameworks.

The primary innovation lies in the intuitive interface and streamlined workflow, which
simplifies the complex process of distributed model training. It is in line with TaRDIS
candidate applications 4.3 - 4.5 proposed in D3.2 [5] for the TaRDIS Toolbox. It provides both
command-line usage, as well as a graphical user interface (GUI).

The application offers flexibility in model selection and initialization. Users can either select a
new model, such as a convolutional neural network, or load pre-existing models into the
system. This feature allows for versatility in addressing various machine learning tasks based
on the specific requirements of the user.

Building on the flexibility of our application, we have implemented a comprehensive system
for customising the learning process while applying FL. Users have the ability to tune training
parameters, allowing for precise control over the learning environment. These parameters
encompass various aspects of the FL setup, including the number of training rounds, the total
client pool size, and the batch size for local computations. Additionally, users can specify the
number of classes in their classification task, adjust the client participation rates for both
model fitting and evaluation phases, and modify key hyperparameters of the optimization
process. This level of customization extends to learning rate settings, momentum values for
the optimizer, and the number of local epochs performed by each client. By providing this
type of control over the training process, our application empowers users to optimise their FL
models for diverse scenarios and dataset characteristics, facilitating more effective and
efficient model development across a variety of use cases.

As already mentioned, the user can interact with the tool by a command-line interface, or by
using a GUI. We illustrate the usage of the GUI, as it is more convenient for most of the
users. First, the user needs to select the tasks of interest, for instance prediction, forecasting,
anomaly detection etc. Then, the dataset needs to be selected. The user can then choose
between two options: training a completely new model or using an existing, pretrained model.
Finally, the user can select the model, as Convolutional Neural Network (CNN) for example,
and an FL algorithm, as Federated Averaging (FedAvg), Personalized Federated learning
with Moreau envelopes (pFedMe), etc. The system guides the user through these steps, and
provides a safe environment, as the available choices depend on the previous selections.
This way, the tool will not allow the user to set up a training that does not apply for the
selected options. We plan to work even further on the possibility of checking the applicability
of the created setup before starting the training, in the future. The process of selecting the
described options is presented in Figure 1.

 Page 17 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 1: Setting up the training in the Flower-based FL training tool.

As the training proceeds, the tool produces results, in terms of loss and accuracy. However,
when the training is finished, it offers graphical representations of the results. For instance,
for the setup in Figure 1, the tool produces the outcomes shown in Figure 2. The graphs
show the accuracy and loss plotted over the training rounds. The horizontal axis displays the
training rounds and the vertical axis shows the accuracy, on the left, and the loss, on the
right. These outcomes may differ for different training scenarios, as we may have different
graphs to show, depending on the selected model and algorithm.

Figure 2: An example of the output of training for the Flower-based FL model training tool.

A key aspect of our implementation is its focus on ease of use. By abstracting away much of
the complexity inherent in FL setups, our app makes the Flower framework more accessible
to a broader audience. This approach eases access to FL technologies, enabling
researchers and practitioners without deep expertise in distributed systems or machine
learning to leverage these powerful tools.

 Page 18 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.1.2 DISTRIBUTIONALLY ROBUST FL

The Flower-based FL model training tool (T-WP5-01) under the Flower-based FL tool aims to
provide a list of implemented FL algorithms and support diverse ML algorithms in
decentralised frameworks. Therefore, we propose a novel FL algorithm, named
Distributionally Robust (DR) FL, that is meant to be implemented in the Flower framework.

The aim of this approach is to find a common ML model that performs well on any client’s
data set. This means that we formulate the problem so that we strive to find an ML model
that performs well in the worst case over a “region” of data distributions.

More formally, assume that each client holds a local loss function . For 𝑖, 𝑖 = 1,..., 𝑁, 𝐹

𝑖
: 𝑅𝑑→𝑅

example, may be the empirical loss associated with the client 's local data set sampled 𝐹
𝑖

𝑖
from a distribution . The distributionally robust FL aims to find a model (e.g., weights of a 𝐷

𝑖

neural network) that performs well on the data coming from the distribution from any 𝑥 ϵ 𝑅𝑑

client or any convex combination of such distributions; see, e.g., [7]. A possible mathematical
formulation to tackle this problem is the following:

. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥ϵ𝑅𝑑 𝑚𝑎𝑥

λϵ∆
𝑖=1

𝑁

∑ λ
𝑖
𝐹

𝑖
(𝑥)

Here, is the N-dimensional probability simplex. It is ∆ = {λ ϵ 𝑅𝑁: λ
𝑖
 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,

𝑖=1

𝑁

∑ λ
𝑖

= 1}

possible to devise distributed and federated methods to tackle problems of the above form,
e.g., [8,9]. However, a major computational challenge here is that the dimensionality of the
uncertainty set scales linearly with the number of clients. In order to tackle this challenge, ∆
we propose a method that simultaneously learns a model and clusters clients into groups 𝑥 𝐾
according to similarity of their data distributions, where is a tuning parameter. It is 𝐾 << 𝑁
often reasonable to assume that the clients may be partitioned into groups such that their
data distributions are mutually identical or similar. For example, the client groups may
correspond to clients in geographical proximity, or to devices of the same type. In our
formulation, the clustering of clients, i.e., grouping of clients according to the similarity of their
distributions, is assumed to be unknown beforehand.

The algorithm can be described by the following pseudo-code:
1. At a global round , the server broadcasts the global model to 𝑡 = 0, . . ., 𝑇 − 1 𝑥

𝑡
each client 𝑖

2. Each client calculates its local loss: 𝐹
𝑖
 : = 𝐹

𝑖
(𝑥

𝑡
)

3. Each client calculates a stochastic gradient of function at argument , e.g., by 𝑔
𝑖, 𝑡

𝐹
𝑖

𝑥
𝑡

by using a mini-batch of data available at client i
4. Each clients sends the pair to the server (𝐹

𝑖
 , 𝑔

𝑖, 𝑡
)

5. The server clusters the vectors into clusters 𝑔
1, 𝑡

 , . . . , 𝑔
𝑁, 𝑡

𝐾 𝐶
𝑘
 , 𝑘 = 1, . . . , 𝐾

6. The server calculates and finds , that is, the 𝑓
𝑘
: = 1

|𝐶
𝑘
| Σ

𝑗ϵ𝐶
𝑘

𝐹
𝑗

𝑓
𝑗*

: = 𝑚𝑎𝑥
𝑘=1, . . ., 𝐾

 𝑓
𝑘

server finds the average cost across each cluster, and determines the cluster
 that has the maximal cost value. Here, denotes the cardinality 𝑗 *= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑘
 𝑓

𝑘
|𝐶

𝑘
|

of set . 𝐶
𝑘

 Page 19 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

7. The server calculates , that is, the server calculates as its search 𝑔
𝑓𝑖𝑛𝑎𝑙,𝑡

= 1
|𝐶

𝑗*
| Σ

𝑗ϵ𝐶
𝑗*

 𝑔
𝑗,𝑡

direction the average of the gradients of all clients that belong to the “currently
hardest” cluster, i.e., the cluster with the highest associated cost function

8. The server updates the model as , where is the step-size 𝑥
𝑡+1

= 𝑥
𝑡

− α
𝑡
 𝑔

𝑓𝑖𝑛𝑎𝑙,𝑡
α

𝑡
> 0

(learning rate).

Intuitively, the algorithm above simultaneously learns the similarity of the data distributions
across different clients and fits the model that is aimed to perform well on the data that
comes from any client. Setting the parameter K (number of clusters) to one, the algorithm
above reduces to the standard FedAvg method. On the other hand, setting K=N reduces to a

(sub)gradient descent on the function . A more detailed performance 𝑚𝑎𝑥
λϵ∆

𝑖=1

𝑁

∑ λ
𝑖
𝐹

𝑖
(𝑥)

evaluation of the algorithm, both analytical and numerical, is left for future work.

The algorithm is being implemented in the Flower framework and is currently under testing.
From the implementational perspective, there are some challenges that arise here. First, the
aggregation of the results from the clients needs to be customised. This is necessary, as the
default approaches do not fit the needs of the algorithm. By default, in the simplest case, the
Flower framework expects to collect the local parameters from the clients and aggregate
them using a predefined strategy. Flower provides an approach for this, called Strategy
abstraction. There is a variety of provided built-in strategies available in Flower, for instance
FedAvg. However, Flower enables building a custom Strategy, i.e., a custom FL algorithm on
the server side. A strategy needs to define some methods, derived from the abstract base
class Strategy. One of these methods is aggregate_fit, which is responsible for aggregating
the results returned by the clients. Here, we can implement our clustering approach (see step
5 in the algorithm above), by using the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [10], for instance.

However, the most challenging part of the implementation is to ensure that the clients send
the weights, the losses and the gradients to the server. This seems straightforward, but when
looking deeper into the way how Flower passes the results from the clients to the server, it
can be seen that a custom approach needs to be built. By default, each client returns the
updated parameters, or the gradients, as a list of arrays, by implementing the appropriate
method for getting the parameters. The server receives a special type of object for each
client, called FitRes. We define a way to serialise the parameters, the losses and the gradient
to FitRes on the clients. We use the Client [11] class instead of the NumPy client, as it is
highly customizable, so that we can apply our implemented mechanisms. Listing 1 shows the
method for getting the parameters on the client. It gets the updated parameters, the loss and
the gradient, and serializes them to the response object.

 def get_parameters(self, ins: GetParametersIns) -> GetParametersRes:
 print(f"[Client {self.cid}] get_parameters")

 # Get parameters as a list of NumPy ndarray's

 arrays: List[np.ndarray] = get_parameters(self.net)

 #Get the gradient and the loss

 gradient: np.ndarray = get_grad()

 loss = get_loss()

 # Serialize everything together, build and return response

 parameters = ndarrays_to_parameters(arrays, gradient, loss)

 status = Status(code=Code.OK, message="Success")

 return GetParametersRes(status=status, parameters=parameters)

Listing 1: The custom get_parameters method on clients.

 Page 20 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

The implementation of the DR FL algorithm is currently under testing. The next step is a
detailed evaluation of the implementation, regarding accuracy. Also, the scalability is an
aspect that will be evaluated by running simulations on a cluster environment. Finally, the
algorithm could be possibly applied to some real-data scenarios.

2.1.3 ANOMALY DETECTION

The development of an algorithm for anomaly (outlier) detection was inspired by the Actyx
(ACT) use case (see ahead Section 6). Since the ground truth labels are unavailable in the
context of this use case, the most suitable approach for addressing the problem relies on
unsupervised learning techniques. The implementation integrates two distinct yet
complementary machine learning methodologies: clustering using the K-means algorithm
and representational learning through autoencoders. When developing our method, we build
upon the HUNOD (Hybrid UNsupervised Outlier Detection) method [12]. With respect to [12],
we are working on providing several innovations. First, we aim to make the method robust to
inexact or noisy label information–a scenario highly relevant for factory cases wherein labels
may be obtained by automated methods subject to errors in the absence of a human labeller.
Second, we aim to generalize the method to federated learning settings.

The core of the developed anomaly detection method focuses on using an autoencoder for
outlier detection. In our approach, the autoencoder is trained using a subset of instances
from the dataset, selected based on predefined knowledge that they represent normal
(non-anomalous) instances. A significant advantage of the developed model is its capability
to perform outlier detection without requiring true positive values during training.

In the developed method, the TensorFlow framework [13] is employed for training the
autoencoder and enabling it to perform outlier detection inference. The entire procedure is
detailed in Algorithm 2 of reference [12]. The autoencoder is constructed using the
TensorFlow sequential neural network model, with the specified number of hidden layers
added. The values for the regularisation hyperparameters are set to α = 0.8 and λ = 0.1, as
proposed in the original implementation. The loss function is optimised using the Adam
optimization algorithm [14] in a given number of epochs e and batch size b [12]. The default
values of the autoencoder hyperparameters are e = 200 and b = 32. The activation function
is set to ReLU, σ(x) = max(0, x) [12].

All outliers detected by the autoencoder are then verified against those identified by K-means
algorithms utilised in our approach. We used two different clustering approaches. First, we
utilized the K-means clustering algorithm ([15], [16]), as proposed in the paper [12]. We relied
on the K-means algorithm from the scikit-learn Python library [17].

When the clustering is finished, the outlier detection can be done by observing small clusters
that are distant from large ones. Further details on the base algorithm can be found in
reference [12]. Additionally, we aimed to explore the use of non-fixed K values, which was
not proposed in the original paper. Therefore, for all integers within the desired range, we
applied the clustering algorithm and subsequently determined the optimal K using the
Silhouette score. This adds an additional element for comparing the outlier detection
approach by the autoencoder and by the K-means algorithms. The optimal clustering
configuration was determined by using non-anomalous data by Silhouette score. We then
obtained the distances of the test data points from the centroids, in order to mark the points
that are significantly distant from all the centroids, as outliers. We used a threshold value for
the distance, based on the 95th percentile of distances calculated from the training set.

 Page 21 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

This corresponds to a centralized learning approach, where an autoencoder model was used
for anomaly detection in the ACT use case, as detailed in Section 6, where we show the
results of the experiments. This centralized learning workflow has been consequently
adapted into an DL paradigm using the Flower framework and the FedAvg algorithm.

The distributed setup involves distributing the anomaly detection task across multiple clients,
each simulating a decentralized node. The Flower framework is employed to coordinate the
interactions between the clients and the server. Clients train their local autoencoder models
on their respective datasets while ensuring that their data remains private throughout the
process. Each client computes and updates its local anomaly detection threshold based on
the training phase. This threshold is then stored locally and used in anomaly classification
tasks. At the server, the model parameters are aggregated using the FedAvg algorithm to
update the global model. Additionally, the server aggregates the local thresholds received
from the clients to compute a global threshold for evaluation purposes.

To assess the effectiveness of the FL approach, future evaluations will analyse performance
using metrics such as accuracy, precision, recall, and F1 score. These evaluations will focus
on both the global model using the aggregated thresholds and the aggregated metrics
derived from local models and thresholds. Moreover, the results will be compared against the
evaluation of the centralized autoencoder model to provide a comprehensive view of the
performance trade-offs between centralized and FL approaches.

2.2 SPLIT LEARNING

In this section, we discuss a new direction of interest for research in the context of
developing support for AI/ML primitives, named split learning (SL). SL represents an
approach that allows different portions of an ML model to be collaboratively trained on
different workers in a learning framework. In split federated learning, a model is partitioned
into (at least) two segments: one that resides on the local device and another that is
centralised. During training, only the intermediate activations (or gradients) between these
split layers are transmitted between the device and the server. This process inherently
involves communication costs, which include both the bandwidth required and the energy
consumed during data transmission.

To enhance energy efficiency and reduce transmission costs, we propose applying various
quantization techniques between the split layers of the model. Specifically, we will investigate
some of the following techniques: deterministic and stochastic binarization, 2-bit quantization,
and Floating-point 8 (FP8) quantization methods. The impact of these techniques will be
evaluated considering problems related to some of the following datasets: CIFAR-10 [18],
Modified National Institute of Standards and Technology (MNIST) [19] and IMDB [20]. Our
goal is to ensure that the approaches involving quantization maintain performance levels
comparable to the full precision (32-bit) models while achieving significant reductions in
transmission costs. To facilitate this research, we will utilise and extend an existing
open-source codebase from the GitHub repository associated with the paper [21].

Currently, we conducted initial experiments on the CIFAR-10 dataset in the context of the
generalized split federated learning setup, whose schema is presented in Figure 3. We
considered 8 client devices and 4 groups (each communicating with two client devices)
connected to the main server. On the client side, the model consists of two convolutional
layers with 32 and 64 kernels, each of size 3×3, followed by a Max Pooling layer. The output
of the Max Pooling layer is sent to the main server, where a linear layer with 128 nodes and
the output layer are deployed.

 Page 22 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 3: Split federated learning schema.

The comparison of classification accuracy between the full-precision 32-bit model and the
FP8 model is presented in Figure 4.

Figure 4: Performance of the full-precision and FP8 model.

As expected, applying FP8 arithmetic to the output of the split layer provides performance
comparable to the full-precision model. A possible scalar quantization solution with the
highest compression ratio is binarization. However, deterministic binarization did not provide
satisfactory performance, and the achieved classification accuracy was very low. This

 Page 23 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

motivated us to explore stochastic binarization. Initially, applying stochastic binarization to the
split layer of the generalized split federated learning algorithm led to an accuracy of 76%. In
the next phase of our research, we will further explore other averaging techniques at the
federated server, as well as alternative quantization approaches.

2.3 PTB-FLA AND MPT-FLA

PTB-FLA, identified as T-WP5-04 in D2.3 [4], is a framework that comes to the rescue for
developers of FL algorithms. Within the vast number of FL frameworks, it provides a
development and test environment for the development of FL algorithms that is lightweight
and easy to install and program by both nonprofessional programmers and Large Language
Models (LLMs) like ChatGPT. The blog published on TaRDIS website explored how ChatGPT
can help humans create federated learning apps on PTB-FLA [22].

In another blog post, the TaRDIS research team provided a brief overview of the MicroPython
implementation MPT-FLA that aims to take what its predecessor did one step further – to the
local network [23].

The video demonstration was made to show the validation of MPT-FLA [24]. In this video
demonstration, the Centralised Averaging app runs on four nodes. A server node is on the
PC. The client nodes are on two Raspberry Pi Pico W boards and a Hussarion ROSbot2
PRO robot.

In the beginning of the video, a node 0 (master node) is started on a PC. The two Raspberry
Pi Pico W boards are then powered on and ROSbot sets its navigation goal. The node on
ROSbot is started over the secure shell (SSH) communication. When the robot reaches its
goal, the application terminates with the expected results.

2.3.1 PUBLISHED RESULTS AND VIDEO DEMONSTRATION

More details about the PTB-FLA (T-WP5-04) and MPT-FLA can be found in the following
published manuscripts:

● The paper that introduced the PTB-FLA system architecture and its validation on the
first three examples (Federated Map, Centralised and Decentralised Data Averaging)
was published in the proceedings of the ZINC 2023 conference [25].

● In the proceedings of the ECBS 2023 conference, a development paradigm was
proposed for PTB-FLA that consists of four steps: 1) the referent sequential code, 2)
the federated sequential code, 3) the federated sequential code with callbacks, and 4)
the PTB-FLA code [26].

● A formal verification of the correctness of two federated learning algorithms using
Communicating Sequential Processes (CSP) was published in the proceedings of the
ECBS 2023 conference [27].

● Developing code is lately supported by AI tools. The TaRDIS research team explored
how ChatGPT can help implement federated learning algorithms in PTB-FLA. The
findings were published in the proceedings of the TELFOR 2023 conference [28].

● An adaptation of the PTB-FLA development paradigm for ChatGPT was published in
the Computer Science and Information Systems journal in September 2024 [29].

● A future paper will introduce the MicroPython implementation of PTB-FLA, named
MPT-FLA. At the time of writing this report, the paper was available in preprint [30].

● Finally, a future paper will introduce a work in progress on formal verification of
federated learning orchestration protocols on satellites. At the time of writing this
report, the paper was available in preprint [31].

 Page 24 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.3.2 PTB-FLA DEVELOPMENT PARADIGM ADAPTATION FOR CHATGPT

In this section, we provide a short digest of the research that was published in the open
access journal ComSIS [32], which comprises the problem formulation and its solution, as
well as this research achievements.

Problem Formulation and Its Solution. The problem that authors tried to solve, was how to
adapt the PTB-FLA development paradigm used by humans for ChatGPT in order to (i)
minimise the human labour by delegating a part of the job to ChatGPT, and at the same time
to (ii) minimise the ChatGPT input by creating minimal contexts, because commercial AI
services are charged according to the input they processed.

The problem was solved experimentally by using the simple iterative development process:
the authors used the text (guidelines) of the original development paradigm to create the
initial ChatGPT context, and then in each iteration they used feedback from ChatGPT to
manually modify the context i.e., to adapt the paradigm, aiming towards the minimal context
without redundant parts. In each iteration, the current paradigm (given in the current context)
was also validated, because it had to produce the output PTB-FLA code that is semantically
equivalent to the input sequential code. The application code that was used for this purpose
is the logistic regression case study.

Research Achievements. As a continuation of [26] and [28], the authors firstly adapted the
four-phases development paradigm originally devised for humans to guide ChatGPT to
successfully develop the same algorithms as in [26]. Secondly, they adapted the four-phases
paradigm into a two-phases development paradigm. As the first phase is always done by
humans, the two-phases paradigm is rather close to the ideal solution where developers in
the second phase immediately get the complete target PTB-FLA code.

It should be emphasised that both adapted paradigms (the four-phases and the two-phase)
are original contributions, and both should be treated unbiasedly as both have their own
strengths and weaknesses. The four-phases paradigm requires more human labour but
provides better traceability (somewhat like grey box testing), whereas the two-phase
paradigm requires minimal (almost no) labour but is less traceable (being based on the black
box approach) and therefore riskier.

Both development paradigms were experimentally validated. In the experimental validation,
the well-known GPT-3.5 model was used. Authors reported on the adapted development
paradigms performance in terms of human labour and size of ChatGPT context needed to
develop the logistic regression PTB-FLA code, see the results in section 8.2 of this
document. For more details on this research see [32].

2.3.3 MPT-FLA DISTRIBUTED LAUNCHER

As the validation of MPT-FLA expanded to include more devices, the process became
increasingly time-consuming, prone to human error, and difficult to test repeatedly. To
address these challenges, the Distributed Launcher was developed as a solution.

The Distributed Launcher for MPT-FLA is a distributed application that simplifies and
automates the execution of applications written utilising the MPT-FLA framework. In addition
to this, it provides a way to reliably and repeatedly test and measure the execution time of
federated learning applications without the need to manually start every instance. Execution
time measurement results are exportable to Comma-Separated Value (CSV) format, which is
convenient for further analysis.

 Page 25 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

The Distributed Launcher comprises three main components: a user-friendly GUI for ease of
use, a master node that coordinates the application's internal processes, and several agent
nodes that execute the actions dictated by the master node. The architecture of the MPT-FLA
Distributed Launcher is shown in Figure 5.

Figure 5: The MPT-FLA Distributed Launcher Architecture.

Functionalities that the distributed launcher encompasses are the following: agent node
discovery, starting of multiple MPT-FLA instances on n hosts from a single point, MPT-FLA
application execution time measurement, and storage and analysis of measurement-related
data.

Agent discovery is facilitated through a simple multicast-based discovery protocol, while
communication between nodes occurs over standard transmission control protocol (TCP),
utilising JavaScript Object Notation (JSON) as the data format. To store and present
measurement data in a more structured way, the subsequent behaviour modelling
abstractions have been introduced: a session and a batch. Session is defined as executing
an MPT-FLA based application, given the number of batches with varying application
parameters, while the term batch corresponds to executing an MPT-FLA based application m
times with the same application parameters. Previously mentioned abstractions improved
data integrity and structure data in a way that is convenient for analysis. Another strength of
the Distributed Launcher is its portability and lightweight nature of agent nodes, using only
the abstractions provided in the Python standard library. The distributed launcher's GUI is
implemented as a web application that communicates with the master node via Hypertext
Transfer Protocol (HTTP), requiring only a web browser for access. It is split into three
sections: launching, measurement, and analysis, reflective of their uses.

Overall, the Distributed Launcher for MPT-FLA improves the developer experience, making
testing and evaluation smoother and less mistake-prone, automating some of the labour
required when testing MPT-FLA based FL applications on multiple devices.

The Distributed Launcher for MPT-FLA was developed by Pavle Vasiljevic in his B.Sc. thesis
(available in Serbian [33]), mentored by Miroslav Popovic, and is publicly available in the
distributed Launcher GitHub repository [34], which is also accessible over a link in the “ptbfla”
GitHub repository [35].

 Page 26 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.3.4 MPT-FLA VALIDATION AND EVALUATION

The MPT-FLA framework was experimentally validated on a WiFi network, consisting of one
WiFi router Belkin F5D7234-4, two Raspberry Pi Pico W boards, and one PC, by using the
four adapted algorithm examples originally developed for the PTB-FLA framework: federated
map, centralised data averaging, decentralised data averaging which were introduced in [25]
and Orbit Determination and Time Synchronization (ODTS) introduced in [30].

The MPT-FLA successfully passed this experimental validation because, as expected, the
adapted algorithms produced the same numerical results as the originals, and this was the
sole goal of this experiment validation. However, two WiFi related issues appeared during the
experiments that might compromise its validity: (1) repetitive WiFi connecting attempts by
Pico boards were taking progressively more time, as remedy pauses were made between the
individual sessions, and (2) under strong WiFi interferences, especially in case of overlapped
networks, connections could be broken [30], therefore the experiments were conducted in the
laboratory.

The MPT-FLA framework was experimentally evaluated using the Distributed Launcher for
MPT-FLA on the wired network, consisting of two D-LINK DGS-1016D routers and 18 PCs (i7
6700, 16 GB), by measuring the mean execution time (mt) versus the number of nodes (n),
for the same four adapted examples, as follows. For each example, a separate session was
conducted. Each session comprises 5 batches of measurements, and each batch comprises
30 measurements. For each packet, the independent variable n was assigned a subsequent
value from the list [2, 6, 10, 14, 18]. Additionally, in the session for the ODTS simulator (the
4th example), the number of blocks was fixed to 1 whereas the number of time slots (ts) was
a dependent variable calculated as ts = n – 1. Finally, for each packet, the mean execution
time and the relative standard deviation were calculated.

Graphs that were acquired in the above-mentioned evaluation followed process showed a
linear trajectory for all examples with decentralised data averaging having a somewhat longer
startup time. Results also showed relative standard deviation decreased as the number of
nodes increased. The graphs showing the mean execution time versus the number of nodes
that were gained in this process are presented below in Figures 6, 7, 8 and 9. (To save
space, graphs for the relative standard deviation are not shown here.)

Figure 6: The federated map’s mean execution time.

 Page 27 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 7: The centralised data averaging mean execution time.

Figure 8: The decentralised data averaging mean execution time.

 Page 28 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 9: The ODTS mean execution time.

2.3.5 DISTRIBUTED APPLICATIONS FOR MNIST NN TRAINING AND
TESTING/INFERENCE ON PTB-FLA AND MPT-FLA

This section briefly presents the development of two distributed applications for Modified
National Institute of Standards and Technology (MNIST) Neural Network (NN) training and
testing/inference on PTB-FLA and MPT-FLA, respectively. Here the inference was conducted
during the testing of the trained model. (However, generally, both PTB-FLA and MPT-FLA
support developing distributed/decentralised swarm applications for both training and
inference).

The first application was developed using the four-phase PTB-FLA development parading
for humans [26]. In the first phase, the referent sequential code was created by adapting the
input code authored by Soham Parmer, a computer engineering student at the University of
Waterloo, which is publicly available [36].

The standard MNIST dataset comprises 28x28 pixel digit images, where pixel values are in
range 0-255. The referent sequential code uses a copy of the MNIST dataset (publicly
available [37]) that comprises 5000 samples, where the last 4000 samples are used for
training the MNIST NN and the first 1000 samples are used for testing the trained model. As
part of data preparation, the pixel values are transcoded to values in the range 0-1 (by
dividing the original values with 255).

For the standard MNIST dataset, the input NN layer has 784 neurons, which corresponds to
the digit image size of 28x28 (28x28 = 784), whereas the output NN layer has 10 neurons,
which corresponds to the number of digits (0-9). The hidden layer in the referent sequential
code has 128 neurons. This NN is traditionally trained by executing a loop wherein the
forward propagation, backward propagation, and NN parameters update (using the gradient
descent approach) is performed a given number of times (here 100 times). Finally, the
trained NN is traditionally tested (using the first 1000 samples) and evaluated by determining
its accuracy, which is defined as a ratio of the number of correct predictions/inferences
versus the test sample size (here 1000).

 Page 29 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

In the second, third, and fourth phase, the federated code, the federated code with callbacks,
and the PTB-FLA code were developed. As expected, the NN produced in the second phase
was slightly different from the NN produced in the first phase, but since this difference was
negligible the former became the reference for the rest of the phases. Again, as expected,
the third and the fourth phase indeed produced the same NNs as the second phase. The
complete PTB-FLA code was successfully performed on the single PC (localhost).

The second application was developed by adapting the first application to (1) the
MicroPython (a trimmed down Python version running on small microcontrollers) and (2) the
RPi Pico W board (a faithful representative of a platform for smart sensors and Internet of
Things - IoTs). To adapt to MicroPython, the code was adapted to use the library uLab library
instead of NumPy, because the latter is not supported on MicroPython and the former is a
replacement for it.

To adapt to RPi Pico W board memory resources, the size of the input images had to be
reduced from 28x28 to 9x9. This optimization was a key to making the second application fit
the RPi Pico W board memory footprint. Additionally, because it was not possible to conduct
NN training with the large dataset as for the first application (which was done on a PC), the
application was reorganised such as to first perform the initial training on the server (running
on a PC) with the dataset of 1000 samples, and then to perform the incremental training on
clients (one running also on the PC and the other running on the RPi Pico W board) with
datasets of only 50 samples, which proved to be sufficient for faster and efficient training
feasible for a small platform like the Pico W board.

This approach, besides enabling efficient usage of limited Pico W board resources, as
expected, also yielded the final aggregated NN whose accuracy was greater than the
accuracy of the NN after the initial training on the server.

The evaluation of the second application was conducted on the configuration comprising
one PC (hosting the server and the first client) and one Pico W board (hosting the second
client) which were connected over a WiFi router (or a mobile phone acting as an access
point). The goal was to evaluate how the accuracy of the final NN depends on: (1) the
server’s dataset size used in the initial NN training, and (2) the server’s number of iterations
used in the initial NN training. The dataset size and the number of iterations on clients was
fixed to 50 and 300, respectively.

When the server’s number of iterations is fixed to 1000, as expected: (1) both the initial and
the final NN accuracies steadily increase with the server’s dataset size (which is used in the
initial NN training), and (2) the final accuracy in better that the initial accuracy, see Figure 10.

 Page 30 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 10: The initial and the final NN accuracy versus the server’s dataset size.

When the server’s dataset size is fixed to 1000, as expected: (1) both the initial and the final
NN accuracies rapidly increases with the server’s number of iterations (which is used in the
initial NN training), and (2) the final accuracy in better that the initial accuracy, see Figure 11.

Figure 11: The initial and the final NN accuracy versus the server’s number of iterations.

These two distributed applications were developed by Marko Nikolovski in his B.Sc. thesis
(available in Serbian [38]), mentored by Miroslav Popovic, and are publicly available in the
“ptbfla” GitHub repository [35], see modules in the folder example2.

 Page 31 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.3.6 TOWARDS FORMAL VERIFICATION OF FEDERATED LEARNING ORCHESTRATION
PROTOCOLS ON SATELLITES

In this section, we provide a short digest of the research that is to be published by Institute of
Electrical and Electronics Engineers (IEEE) Xplore in the Telfor 2024 proceedings, which is
currently available as a preprint [31], which comprises the problem formulation and its
solution, research achievements, and a highlight of the stochastic Timed Automata (TA)
model and formal verification results.

Problem Formulation and Its Solution: The PTB-FLA FL orchestration protocols were
formally verified by using the process algebra CSP and the model checker Process Analysis
Toolkit (PAT) [27]. The main limitation of [27] is that it is suitable for systems with stationary
nodes, but cannot be applied to systems with moving nodes, such as constellations of
spacecrafts, where physical timing needs to be considered, which is exactly the main
motivation for this paper.

To overcome this limitation, authors of [31] use celestial mechanics to model spacecraft
movement, and TA and accompanying tool UPPAAL to formalise and verify the Centralised
FL (CFL) orchestration protocol, in two phases. In the first phase, they created a
conventional TA model to prove traditional properties, namely deadlock freeness and
termination. In the second phase, they created a stochastic TA model to prove the timing
correctness (the alignment of spacecraft movement and communication) and to estimate
termination probability.

Research Achievements are: (1) the model of a spacecraft movement in the form of the
differential equation for the spacecraft’s true anomaly that directly follows from Kepler’s laws,
(2) the conventional TA model of the CFL orchestration protocol, and (3) the stochastic TA
model of the CFL orchestration protocol. To the best of the author's knowledge, this is the
first paper that uses stochastic TA for formal verification of CFL orchestration protocols on
constellations of spacecraft.

Stochastic TA model and formal verification results: The stochastic TA model comprises
the stochastic TA model of spacecraft (not shown here for brevity) and the stochastic TA
model of the CFL orchestrion protocol in Figure 12.

 Page 32 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 12: The stochastic TA model of the CFL orchestration protocol (taken from [31]).

The stochastic TA model has two main assumptions. Assumption 1: the CFL server instance
resides in the Ground Station (GS), whereas fTA the two CFL client instances reside in two
spacecrafts (or space vehicles, SVs) which fly on the same orbit with the initial true anomaly
ν of π and 0, respectively. Assumption 2: each spacecraft should communicate with the
ground station when it reaches the periapsis of its orbit.

To check the alignment of spacecrafts’ movement and their communication with the ground
station we created a simulation query that traces both true anomalies and current locations of
the CFL server and the CFL clients. The simulation diagram plot by UPPAAL looks like a
Gantt chart drawn atop a timing of analogue signals. The former comprises the three
staircase-like lines showing location changes, see Figure 13.

Obviously, the alignment is perfect, see how: (1) the first client (green line) reaches the
location cphase2_t at the time point t = T/2, and the location cend at the time point t = 3T/2,
(2) the second client (blue line) reaches the location cphase2_t at the time point t = T, and
the location cend at the time point t = 2T, and (3) the server (pink line) reaches the location
sphase2 at the time point t = T, and the location send at the time point t = 2T. Both nus[0] and
nus[1] have the period T, and they start from π and 0 (see the ordinate at the time point t =
0), respectively.

 Page 33 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 13: The UPPAAL tool simulation diagram (taken from [31]).

For more details on this research see [31].

2.4 FEDRA: ADVANCING DECENTRALISED FEDERATED LEARNING

Fedra, identified as tool T-WP5-04 in D2.3 [4], is an FL framework that has been developed
in TaRDIS in order to support FL in completely decentralised, peer-to-peer swarm systems.
In this context, Fedra can be used to train diverse ML models using the local data of each
node, while enabling the direct exchange of model parameters amongst the participating
peers.

2.4.1 INTRODUCTION AND CONCEPTUAL FRAMEWORK

FL has emerged as a revolutionary paradigm in machine learning, addressing the growing
concerns of data privacy and the challenges of distributed datasets. Traditional FL
approaches, while groundbreaking, often rely on centralised aggregators, creating potential
bottlenecks and single points of failure. Fedra represents the next evolution in this field,
pushing the boundaries of decentralisation, privacy, and efficiency. The general architectural
considerations of decentralised federated learning are shown in Figure 14.

 Page 34 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 14: The general architectural considerations of decentralised federated learning: each
node/client trains the model based on the local data and aggregates with the weights of other clients

into a global model.

Fedra is not just another FL framework; it's a reimagining of how collaborative machine
learning can be achieved in a truly decentralised manner. By leveraging peer-to-peer (P2P)
communication through libp2p, Fedra creates a robust, scalable network where each node is
an equal participant in the learning process.

2.4.1.1 Key Innovations:

● True Decentralisation: Unlike systems that claim decentralisation but still rely on
central coordinators, Fedra eliminates all central points of control. Each node in the
Fedra network is fully autonomous, capable of training, aggregating, and contributing
to the global model without centralised oversight.

● Enhanced Privacy Guarantees: Fedra takes privacy a step further than traditional
federated learning. Not only does raw data never leave local devices, but the
peer-to-peer nature of communications means that even model updates are shared in
a more private, directed manner.

● Adaptive Learning Topology: The network in Fedra isn't static. It can dynamically
adjust based on node availability, network conditions, and even the nature of the
learning task at hand. This adaptivity ensures resilience and performance across
various scenarios.

● Model Agnosticism Redefined: While many frameworks claim model agnosticism,
Fedra's architecture is designed from the ground up to accommodate not just different
model architectures, but entirely different learning paradigms. From simple neural
networks to complex Long Short-Term Memory (LSTM) models, Fedra's flexibility is
unparalleled.

 Page 35 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.4.2 CONCEPTUAL ARCHITECTURE OF FEDRA

Fedra's architecture is a carefully orchestrated symphony of components, each playing a
crucial role in the decentralised learning process:

1. P2P Communication Layer (P2PHandler):
● Acts as the nervous system of the Fedra network.
● Manages all inter-node communications, from initial peer discovery to ongoing

model update exchanges.
● Utilises libp2p to ensure secure, efficient, and anonymous peer-to-peer

interactions.
2. Data Management and Preprocessing (DataLoaderHandler):

● Serves as the sensory input system, preparing and feeding data to the
learning models.

● Handles diverse data types and structures, ensuring compatibility across
different learning tasks.

● Implements advanced preprocessing techniques to optimise learning
efficiency.

3. Core Operations Module (Operations):
● Functions as the brain of each node, performing critical computations.
● Manages serialisation and deserialization of model updates, crucial for

efficient network transmission.
● Implements the decentralized federated averaging algorithm, the key to

collaborative learning in a decentralised setting.
4. Network State Management (NetworkState):

● Acts as the collective memory of the network.
● Keeps track of the status and contributions of all participating nodes.
● Enables informed decision-making for adaptive learning strategies.

5. Orchestration Engine (Main Script - fedra.py):
● Serves as the conductor, coordinating all components to work in harmony.
● Manages the lifecycle of the learning process, from initialization to

convergence.
● Implements high-level learning strategies and protocols.

This architectural design ensures that Fedra is not just a tool for federated learning, but a
comprehensive ecosystem for decentralised, collaborative AI development.

2.4.3 LOW-LEVEL FEDRA'S ARCHITECTURE AND PROCESS - ARCHITECTURAL
COMPONENTS IN DETAIL

2.4.3.1 P2PHandler (handler.py)

The P2PHandler is the cornerstone of Fedra's decentralised nature. It leverages libp2p to
create a robust, secure, and efficient peer-to-peer network. The main task of the Fedra tool is
shown in Figure 15.

 Page 36 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 15: The main task of Fedra tool, depicting the node.conf file, as well as the wait for peers’
workflow (in order to initiate the training process) and the training loop workflow (that performs the

federated learning process).
Key Features:

● Dynamic Peer Discovery: Utilises libp2p's peer routing to dynamically discover and
connect to other nodes in the network.

● Publish-Subscribe System: Implements a sophisticated pub-sub mechanism for
efficient broadcast of model updates and network states.

● Message Chunking: Handles large model updates by breaking them into
manageable chunks, ensuring smooth transmission even in bandwidth-constrained
environments.

● State Synchronisation: Maintains network-wide consistency through periodic state
broadcasts and reconciliation.

2.4.3.2 DataLoaderHandler (process.py)

This component is crucial for Fedra's ability to handle diverse datasets and model types.

Key Features:
● Adaptive Data Loading: Supports various data formats and structures, from simple

CSV files to complex time-series data.
● Preprocessing Pipeline: Implements a flexible preprocessing pipeline that can be

customised based on the specific requirements of each learning task.
● Batching Strategies: Offers advanced batching techniques to optimise memory

usage and training efficiency.
● Data Privacy Enhancements: Incorporates privacy-preserving techniques like

differential privacy at the data preparation stage.

 Page 37 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

2.4.3.3 Operations (operations.py)

The Operations class is the computational powerhouse of Fedra, handling critical tasks in the
federated learning process.

Key Features:
● Efficient Serialisation: Utilises advanced serialisation techniques to minimise the

size of transmitted model updates.
● Federated Averaging: Implements a robust decentralized federated averaging

algorithm [39] that can handle updates from multiple peers, potentially with varying
contributions. In the current version of Fedra, we assume that all the clients in the
federated framework exhibit peer2peer connections.

● Weight Compression: Incorporates weight compression techniques to further reduce
communication overhead.

● Anomaly Detection: Includes mechanisms to detect and handle anomalous or
malicious updates, enhancing the security of the learning process.

2.4.3.4 NetworkState (state.py)

This component maintains a comprehensive view of the network's state, crucial for informed
decision-making in a decentralised environment.

Key Features:
● Peer Status Tracking: Maintains real-time status of all peers, including their training

progress and contribution quality. There are several methods for sharing model
weights in Decentralised FL (DFL) based on different protocols, e.g., pointing, gossip,
or broadcast protocols. We assume here that each peer broadcasts its state to the
rest of the peers through a Publish-Subscribe (Pub/Sub) system.

● Weight Version Control: Implements a versioning system for model weights,
allowing for rollback and conflict resolution.

● Performance Metrics: Tracks and analyses network-wide performance metrics to
guide adaptive learning strategies.

● Fault Tolerance: Incorporates mechanisms to handle peer dropouts and rejoin
scenarios seamlessly.

The two asynchronous tasks that run in the background are shown in Figure 16.

 Page 38 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 16: The two asynchronous tasks that run in the background: the peers publish their status in
the respective topic (left) and their model weights (right).

2.4.4 THE FEDERATED LEARNING PROCESS IN FEDRA

Fedra's learning process is a sophisticated dance of distributed computation and
collaborative model improvement:

1. Network Initialization:
● Nodes join the P2P network using libp2p's peer discovery mechanisms.
● Each node broadcasts its initial status and capabilities to the network.
● The network collectively establishes initial parameters like learning rate and

batch size based on the capabilities of participating nodes.
2. Data Preparation and Local Training:

● Nodes use the DataLoaderHandler to preprocess their local datasets.
● Initial model architectures are either predefined or negotiated based on the

collective dataset characteristics.
● Each node performs local training, with the flexibility to use custom optimizers

and loss functions suited to their data.
3. Model Update Exchange:

● Post-training, nodes serialise their model updates using the Operations class.
● Updates are strategically disseminated through the network using a

combination of direct peer connections and gossip protocols.
● The P2PHandler manages the chunking and reassembly of large model

updates to ensure reliable transmission.
4. Decentralised Aggregation:

● Nodes perform local aggregation of received model updates using the
federated averaging algorithm in the Operations class.

● The aggregation process is weighted based on factors like peer reputation
and data quality, as tracked by the NetworkState.

 Page 39 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

● Anomaly detection mechanisms filter out potentially harmful or low-quality
updates.

5. Adaptive Learning and Convergence:
● The process iterates, with each round potentially adapting parameters based

on network performance.
● Convergence is determined through a decentralised consensus mechanism,

considering factors like model performance, update magnitude, and network
stability.

● The NetworkState component plays a crucial role in coordinating this
decentralised decision-making process.

6. Continuous Evaluation and Refinement:
● Throughout the process, nodes continuously evaluate the global model on

their local validation sets.
● Feedback loops allow for dynamic adjustment of learning rates, batch sizes,

and even model architectures.
● The network can seamlessly handle the joining of new peers or the departure

of existing ones, ensuring robustness and scalability.

The federated learning workflow and the shared objects among the peers participating in the
FL process are shown in Figure 17 and 18.

Figure 17: The federated learning workflow,

 Page 40 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 18: The shared objects (status and weights) among the peers participating in the FL process.

2.4.5 ADVANCED FEATURES AND FUTURE DIRECTIONS

Fedra's architecture is designed with extensibility in mind, paving the way for advanced
features and future enhancements:

● Differential Privacy Integration: Plans to incorporate more advanced differential
privacy techniques at both the data and model levels.

● Heterogeneous Hardware Support: Developing capabilities to optimally utilise diverse
hardware configurations across the network, from edge devices to high-performance
clusters.

● Multi-Task Learning: Extending the framework to support simultaneous training of
multiple, possibly related models across the network.

● Blockchain Integration: Exploring the integration of blockchain technology for
immutable record-keeping of model updates and peer contributions.

● AI-Driven Network Optimization: Implementing AI algorithms to dynamically optimise
the network topology and learning parameters for maximum efficiency.

Fedra represents not just a step, but a leap forward in the field of federated learning. By
reimagining the very architecture of collaborative learning, Fedra opens up new possibilities
for privacy-preserving, efficient, and truly decentralised AI development. As the framework
continues to evolve, it promises to push the boundaries of what's possible in distributed
machine learning, paving the way for a new era of collaborative AI that respects privacy,
embraces diversity, and harnesses the true power of decentralised computation.

 Page 41 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

3 ADVANCES ON AI-DRIVEN PLANNING, DEPLOYMENT AND ORCHESTRATION
FRAMEWORK

3.1 PEERSYMGIM: AN ENVIRONMENT FOR SOLVING THE TASK OFFLOADING
PROBLEM WITH REINFORCEMENT LEARNING

PeersimGym is a simulation environment designed to address the task offloading problem
using Reinforcement Learning (RL). Task offloading refers to the process of transferring
computationally intensive tasks from resource-constrained devices to less-strained devices.
As described in [40], it allows for the evaluation and optimization of RL algorithms under
dynamic network conditions, facilitating efficient task distribution and resource utilisation. The
framework integrates various RL strategies to solve complex offloading scenarios, promoting
better performance in network management and operations. [40].

The benefit of RL is that it enables learning optimal offloading strategies through iterative
interactions. However, it requires access to rich datasets and custom-tailored, realistic
training environments. Figure 19 shows the general overview as follows: The interaction
cycle of an RL agent with its environment is structured around a continuous loop where, at
each timestep t = 1, ..., T, the agent observes the system state st, executes an action at
based on this observation, and receives feedback in the form of a reward rt. This feedback
reflects the effectiveness of the action, taking into account both its immediate impact and its
influence on future states. Through this iterative process, the agent refines its policy - a set of
rules determining its actions in various states - to maximize cumulative rewards, thereby
aligning with the goal of optimizing task offloading decisions. In Figure 19.a we have the
common RL interaction cycle, obeyed by the controller agents. The cycle begins with the
controller observing a state, as represented in Figure 19.b, containing information about the
part of the environment observed by the controller including its own properties and gathered
information on its neighbourhood. The controllers then make an offloading decision, the
actions taken and the inherent dynamics of the environment produce a state transition and
the cycle repeats itself. In the multi-agent setting all the agent’s would have a similar
interaction loop at the same time, resulting in a joint-action.

PeersimGym is an open-source, customizable simulation environment, with the purpose of
developing and optimising task offloading strategies. It supports a wide range of network
topologies and various constraints. It also integrates a PettingZoo-based interface for RL
agent deployment in solo and multi-agent setups. It has been extensively discussed in D5.1
and presented in the ECML paper [40]. In the last period, there were several code fixes
motivated by tool usage outside of TaRDIS.

 Page 42 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 19: General and problem-specific RL state action overview.

3.2 FAUNO: FEDERATED AI NETWORK ORCHESTRATOR

FAuNO, identified as tool T-WP5-05 in D2.3 [4], represents a federated AI network
orchestrator that enhances the coordination and operation of distributed AI systems.
Leveraging FL principles, FAuNO ensures privacy-preserving collaboration across multiple
nodes while maintaining high performance and scalability. This orchestrator is designed to
manage AI workloads efficiently, balancing computational demands and ensuring optimal
resource use across the network.

The objective of this tool is to learn to orchestrate the network in a federated way. It is
designed to optimise computer network orchestration through Federated Reinforcement
Learning (FRL). The main goals are to enhance efficiency and performance of distributed
network systems and to provide a robust and scalable solution for managing and optimising
network operations across decentralised nodes. It addresses challenges as latency,
bandwidth constraints and data privacy concerns. Therefore, the main benefits can be
identified as the following:

● The nodes learn and adapt locally while contributing to a global model
● Data privacy is ensured.
● The need for extensive data transfer is reduced.
● The latency and bandwidth usages are minimised.

The FAuNO tool interactions with other network entities can be displayed as in Figure 20 (for
more details, see D2.3).

 Page 43 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 20: FAuNO tool interaction diagram.

1.

3.2.1 FAuNO Overview
FAuNO as a Federated solution utilises a Client/Server architecture to have the participants
in the federation cooperate in training a global model utilising their local individually learned
experiences. The global model is handled by a FAuNO node that is capable of hosting a
component to manage the receival of updates and their aggregation into the global model,
we call this as the Global Model Host FAuNO Node, or just global model host. The global
model host other than the module that manages the global model is just like any other
FAuNO node, having its own separate local model to learn locally how to best orchestrate the
node’s workload. The functions of a worker node are to process the tasks that arrive on the
node, share their own state information with their immediate neighbours, collect information
about their neighbourhood and make task offloading decisions based on the collected
information. In Figure 21 we can observe a diagram with the components that make up each
of the FAuNO node types, which include four components. Three of which are hosted by all
the nodes. These are the data processing layer responsible for execution of the tasks
assigned to the node. The data collection layer, responsible for communicating with the
node’s neighbours and managing the collected information. And the FRL Client that is
responsible for the independent orchestration of the node with a task offloading mechanism.
The last component is hosted by a single agent in the network and is the FRL Server that
manages the federation of FRL Clients, when training a model that can solve a global
objective considering the experiences of all the members of the federation.

We focus on the orchestration mechanism leaving the data collection and task processing
generic to accommodate varied scenarios.

 Page 44 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 21: FAuNO Node vs FAuNO Global Manager.

3.2.2 FAuNO orchestration mechanism

Following common client\server federated algorithms we divide the FAuNO orchestration into
two components: the global training and the local training. We utilise Proximal Policy
Optimization (PPO) [41] for the local training component. PPO is an algorithm from the
Actor-Critic family of RL algorithms where two components exist, an actor that learns a
mapping from observations of the state directly to a distribution over the possible actions that
can be taken. And, a Critic component, that is responsible for evaluating the Actor’s choices.
In particular the PPO algorithm looks to improve the reliability and stability of the training by
limiting the size of the updates that can be taken during learning. We utilise function
approximators for both the actor and the critic.

For the global training, where we wish to utilise the federated agent’s learned knowledge to
cooperate in training a global model. To do so we simplified and built upon the FedBuff
solution [42], as demonstrated in Figure 22.

 Page 45 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

a) Beginning of a round. All nodes b) First updates arrive.
download the same model

 c) When multiple updates of one agent d) When k updates from distinct agents
 arrive, the old one is swapped. arrive, the Global model is updated.

Figure 22: Modified FedBuff solution.

The federated buffering solution used is a buffered asynchronous method where the global
server waits for the first K-updates instead of all the participants before the collected local
updates are aggregated and used to update the global model. In our setting, we extend the
mechanism to accommodate continuous control and have the agents continue training, and
sending updates to the global model, these updates replace the last update sent and are
weighted more when aggregating. When enough updates are received, we consider a
FedAvg [43] like aggregation of the updates to update the global model. All the participants
then download the global model. This process is illustrated in Figure 22.

 Page 46 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

3.2.3 Preliminary Results

We have tested our solution on the PeersimGym environment pursuing two preliminary
research questions while doing Binary Task offloading.

3.2.3.1 Baselines

We compare the FAuNO orchestration mechanism to a set of baselines including heuristic
algorithms:

● Least Queues: Tasks are always sent to the nodes with the smaller percentual queue
● Random: Tasks are Randomly offloaded
● No offloading: (Always local in plots) Tasks are only processed locally

And a set of Reinforcement Learning algorithms used in a Multi-Agent setting:
● Double Deep Q-Network [44]
● Advantage Actor Critic [45]
● Proximal Policy Optimization [41]

3.2.3.2 Metrics

We consider three commonly used metrics. The number of times a node exhausted their
resources and was left without room for more tasks, we call this state being overloaded. The
number of tasks dropped. And the average time needed from task request until results
receival.

3.2.3.3 Testing scenarios

We observe these metrics on two testing scenarios, we consider a scenario with an
increasing number of clusters of nodes as generated by the ether tool integrated with
PeersimGym[46], and a fixed task arrival rate at each node. We also compare our algorithm
on a scenario with a fixed topology and an increasing task arrival rate. The topologies with
two clusters can be observed in Figure 23. An in-depth explanation of the PeersimGym
visualization tool used to obtain Figure 23 is available on the PeersimGym’s repository.

 Page 47 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 23: Topology with 2 clusters of nodes as generated by Ether.

As can be seen in Figure 24 andFigure 25, the FAuNO orchestration matched the baselines
in the scenarios considered on both number of overloads and dropped tasks and
outperformed the baselines when considering the response time.

 Page 48 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 24: Results of Scenario with increasing number of clusters.

Figure 25: Results of Scenario with increasing task arrival rates.

 Page 49 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

4 ADVANCES ON LIGHTWEIGHT, ENERGY-EFFICIENT ML TECHNIQUES

In the previous deliverables, we had provided a theoretical overview of the main neural
network compression techniques and reviewed some of the literature. In the meantime, we
developed some initial code for applying those techniques in real problems. Therefore, during
the second year of the activity, the focus was on the implementation of the ML lightweight
tools that will be integrated in the TaRDIS toolbox. The lightweight ML tools were identified in
the TaRDIS architecture in D2.3 [4] as T-WP5-06 (early exit), T-WP5-07 (knowledge
distillation) and T-WP5-08 (pruning). We also published some results regarding theoretical
and practical advances that can be of relevance regarding lightweight, energy-efficient ML
techniques. We considered an Over-the-Air Computation scheme for fast data aggregation in
[47]. Additionally, we proposed a joint adoption of FL principles and the utilization of the
Over-the-Air computation wireless transmission framework [48]. We also published
lightweight inference by neural network pruning [49], where the application of neural
networks in resource constrained edge-devices was addressed. We proposed an
IoT-Edge-Cloud computing system, designed for multiple smart homes in [50], and a two-fold
FL scheme for improving privacy, EE and communication-efficiency of future 6G maritime
networks in [51].

4.1 PRUNING

The development of the Pruning method (T-WP5-08) and its application on sample datasets
was conducted during this period. In the initial stage of the TaRDIS project, we had
developed a wrapper function for applying pruning on PyTorch models, using the Neural
Network intelligence (NNI) Microsoft library. While this yielded results, there were some
disadvantages, such as the fact that this library does not support pruning of LSTM models.

For that reason, we also explored the usage of TensorFlow lite, a very popular library for
lightweight neural networks, and applied pruning to an LSTM model for energy consumption,
for a variety of pruning rates. The results were satisfactory, as there was a reduction in file
size and inference time, with a minimal effect on the Mean Squared Error (MSE). In some
cases, such as the 40 % pruning rate, we see an improvement, whereas the memory
required for inference can be reduced without increasing significantly the mean squared
error. The results of the pruning process are shown in Figure 26 and 27.

Figure 26: Results of the pruning process: size of the zipped model (left), mean inference time (right)

 Page 50 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 27: Results of the pruning process: mean squared error wrt the pruning rate.

4.2 EARLY EXIT OF INFERENCE

During the second year of the TaRDIS activity, the development of the early-exit technique
was conducted in a tool that will be included in the TaRDIS toolbox (T-WP5-06) and its
implementation on sample datasets. Furthermore, a tool for the deployment of the several
parts of the early exit models was designed and developed, named decentralized exit or
D-exit, as reported in the following section.

Developing an early exit framework was more challenging, as there are no libraries that can
be used out of the box to split a network into sub models. The first thing the user has to do is
separate the model into sub-modules that are contained in a nn.Sequential container. The
created class infers the output shape at the end of each Module and creates an Artificial
Neural Network that serves as the exit at each.

Three Functions to train the network have been created:

One that trains the network as a whole (all the exits together). It has been noticed that the
exits closer to the first layers get trained more, when the whole network is trained together.
This can be due to some effect of the vanishing gradient problem. As the first exit is close to
the input layers, the loss function gets multiplied less times than the ones further away,
leading to a smaller gradient and thus a smaller effect on the training of the model.
Additionally, the loss function from two exits could either cancel each other out, or make the
loss overshoot its actual target.

For those reasons, the two other functions were designed to train a) just the exits and b) only
one exit at a time. These functions can be very useful, as they can be applied to a pretrained
model, without messing with its training.

We tested the CIFAR-10 [52] dataset with a pretrained visual geometry group (vgg) type
model and the best results were observed using the third method of training each exit
independently.

Here we can see the accuracy of each exit, if all samples were to take that specific exit.

 Page 51 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Curiously enough, when a combination of the exits was used, the overall accuracy reached
88% in the classification problem. The histogram showing the number of times that the model
exits on different exits is presented in Figure 28.

Figure 28: Histogram depicting the number of times that the model exits on exit 1 (approx 1000), exit 2
(approx 5000) and final exit 3 (approx 4000).

Finally, a function to split that entire model to smaller ones has been developed, in order for
one to be able to deploy each sub model independently. This functionality will be paired with
the DEXIT development (see following sections below).

Most of the above functionalities have been abstracted from the user. That being said, one
has to train the model themselves, as it is impossible to know beforehand the correct
combination of loss function, optimizer learning rate and other hyperparameters, for each and
every problem.

This means that, at least for now, a basic understanding of machine learning is required for
someone to use the early-exit functionality of the TaRDIS toolkit.

4.3 KNOWLEDGE DISTILLATION

Similarly to the previous two methods, the development of the knowledge distillation
technique (T-WP5-07) was conducted during this reporting period, along with the initial
testing on sample datasets. As for now, our knowledge distillation development consists of a
function, that imitates a normal PyTorch training loop, but instead of calculation the loss
function, between the output of the student model and the actual labels, it is a combination of
the labels and the outputs of the teacher model, filtered through a softmax temperature
function.

Apart from the usual hyperparameters that one has to select, in Knowledge distillation two
extra variables are present: (i) the percentage which the teacher takes into account. While
training, a combination of the actual labels and that produced by the teacher can be used; (ii)
additionally, the temperature in the softmax temperature function, which determines how
sharp the teachers’ outputs will be.

As a proof of concept, we trained a small model for CIFAR-10 classification. The first column
depicts the model that was trained the conventional way and the other models trained with
different temperature values. The teacher that was used was a pretrained model found on
github, with 89% accuracy. The results of the knowledge distillation process are displayed in
Figure 29.

 Page 52 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

As we can see the optimal value for this specific configuration is 3, that outperforms the
original model, by a small margin. Future modifications to the distillation training loop could
be a conditional usage of the teacher, if it correctly classified the sample, so that it does not
misguide the student.

Figure 29: Results of the knowledge distillation process: accuracy of the student model compared to
the original teacher model for different temperatures.

Regarding the measured efficiency of the Knowledge Distillation (KD) and the EE methods,
most papers measure the success of their methods by compression rate, usually expressed
as a percentage of weights removed from the original model. But measuring compression
this way, leaves us with a big question. What if, instead of training a bigger model and then
compressing it, we instead created and trained a small model from the start. That is the
comparative analysis that we demonstrate here. The models are first separated in what is
called iteration. Each iteration has 10% less weights than the previous one. In Figure 30, we
can see that time it took for each model to run on the CIFAR-10 dataset.

Figure 30: Measurement of execution time for different iterations (more lightweight in terms of model
size) of the DNN models.

 Page 53 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

For all the models, the Central Processing Unit (CPU) and Compute Unified Device
Architecture (CUDA) time are measured using PyTorch’s native method called profiler while
the elapsed time is the total time that it took to run, using pythons time package. We can see
that the CUDA time, which is the GPU that performs the operations fall-off logarithmically,
just like the number of weights and thus floating-point operations. The total and CPU time
involve additional procedures such as data loading, which are not tied to the size of the
model and thus can’t be reduced by compressing the model.

Now we will differentiate the models, not only by size (the iteration) but by training method as
well. We have 4 different variants.

● The baselines are the models that were initialized the “compressed” size and trained
from scratch

● The knowledge distillation models were produced using KD
● The pruning using pruning, from our own trained model
● The pruned from pre-trained also used pruning, but they were pruned from a

pre-trained model found on the internet.

The comparison between the four different variants of the resulting model accuracy when
utilizing different iterations is shown in Figure 31.

Figure 31: Comparison between the four different variants of the resulting model accuracy when
utilizing different iterations.

As it is evident, if a pretrained model is available, it should be used as a basis for our
compression methods, both having a better performance and saving us the time to train our
own. If not, we still are better off training a bigger model and compressing it, rather than
training a small one to begin with.

 Page 54 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

4.4 DEXIT FRAMEWORK: A COMPREHENSIVE ANALYSIS

As aforementioned, a particular tool named DEXIT (Decentralised Early Exit Inference Tool)
was developed to support the deployment of the trained EE models in swarm nodes. DEXIT
represents a cutting-edge approach to distributed inference in the realm of edge computing
and artificial intelligence. By leveraging the power of early exit strategies and decentralised
computing, DEXIT addresses several critical challenges in modern AI deployment,
particularly in resource-constrained and latency-sensitive environments.

4.4.1 THE PROBLEM SPACE

In the era of Internet of Things (IoT) and edge computing, traditional centralised cloud-based
inference models face several limitations:

1. Latency: The round-trip time for sending data to a centralised cloud and receiving
results can be prohibitively high for real-time applications.

2. Bandwidth Constraints: Transmitting large amounts of data from edge devices to
the cloud can overwhelm network capacities.

3. Privacy Concerns: Sending sensitive data to centralised servers raises security and
privacy issues.

4. Resource Utilisation: Cloud-only models often underutilize the computational
capabilities of edge devices.

5. Scalability: As the number of edge devices grows, centralised models struggle to
keep up with the increased load.

DEXIT addresses these challenges through a novel combination of distributed computing,
early exit strategies, and peer-to-peer networking:

1. Distributed Inference: By distributing the inference process across edge and cloud
nodes, DEXIT reduces the burden on any single point in the network.

2. Early Exit: Implementing early exit strategies allows simpler inferences to be
completed at the edge, reducing latency and bandwidth usage.

3. P2P Communication: Utilising libp2p for peer-to-peer networking enables efficient,
decentralised data exchange between nodes.

4. Adaptive Computation: The framework adapts to the complexity of inputs, allocating
more resources only when necessary.

5. Scalability: The decentralised nature of DEXIT allows for easy addition or removal of
nodes, enabling the network to scale dynamically.

4.4.2 DEXIT HIGH-LEVEL ARCHITECTURE

The DEXIT architecture is designed to be flexible, scalable, and efficient. It comprises
several key components that work in concert to enable distributed early exit inference. The
workflow of the Dexit process is shown in Figure 32.

 Page 55 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 32: Workflow of the DEXIT process, illustrating the user (first part of the model), the edge

device (mid part of the model) and the server (final part of the model).

4.4.3 DEXIT CORE ARCHITECTURAL COMPONENTS
4.4.3.1 Edge Device

The Edge Device serves as the entry point for inference requests. It is typically a
resource-constrained device (e.g., smartphone, IoT sensor) that initiates the inference
process.

Key responsibilities:
● Initial processing of input data
● Making early exit decisions based on confidence thresholds
● Forwarding complex cases to Cloud1 Node

4.4.3.2 Cloud1 Node

The Cloud1 Node acts as an intermediate processing unit with more computational power
than the Edge Device.

Key responsibilities:
● Processing more complex inference tasks
● Implementing its own early exit strategy
● Forwarding the most challenging cases to Cloud2 Node

4.4.3.3 Cloud2 Node

The Cloud2 Node represents the final and most powerful computational resource in the
DEXIT network.

 Page 56 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Key responsibilities:
● Handling the most complex inference tasks
● Providing high-accuracy results for challenging inputs
● Supporting the overall network by processing overflow from other nodes

4.4.3.4 Network layer (libp2p)

The P2P Network Layer, implemented using libp2p, forms the communication backbone of
DEXIT.

Key features:
● Decentralised peer discovery
● Efficient message routing between nodes
● Support for various transport protocols
● Network Address Translation (NAT) traversal capabilities

4.4.3.5 Network state management

The Network State Management component keeps track of the overall system state,
including peer statuses, inference requests, and results.

Key responsibilities:
● Maintaining a real-time view of the network topology
● Tracking the status of ongoing inference tasks
● Managing the distribution of workload across nodes

The interconnection of these software components is demonstrated in the following
schematic, where the decentralized nodes (edge device, cloud1 and cloud2 nodes) are
linked between them through the libp2p protocol and the network state management entity
keeps track of the overall system state.

[Edge Device] <---> [Cloud1 Node] <---> [Cloud2 Node]
 ^ ^ ^
 | | |
 v v v
[P2P Network Layer (libp2p)]
 ^
 |
 v
[Network State Management]

4.4.4 DEXIT KEY SOFTWARE COMPONENTS

4.4.4.1 P2PHandler (network/handler.py)

The P2PHandler is responsible for managing all P2P network operations within DEXIT.

Key functionalities:
● Network initialization and peer discovery
● Message publishing and subscription
● Direct messaging between peers
● Handling of inference requests and results

Implementation highlights:

 Page 57 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

class P2PHandler:
 def __init__(self, bootnodes, key_path, topic, models, packet_size=1024,
device='cpu', role=None):
 # Initialize P2P network parameters

 async def init_network(self):
 # Initialize the P2P network

 async def publish_status(self, peer_status: PeerStatus):
 # Publish peer status to the network

 async def send_inference_request(self, peer_id: str, inference_request:
InferenceRequest):
 # Send inference request to a specific peer

 async def send_inference_result(self, peer_id: str, inference_result:
InferenceResult):
 # Send inference result to a specific peer

4.4.4.2 NetworkState (utils/state.py)

The NetworkState class manages the overall state of the DEXIT network.

Key functionalities:
● Tracking peer statuses
● Managing inference requests and results
● Providing network state summaries

Implementation highlights:

class NetworkState:
 def __init__(self):
 self.peer_statuses = {}
 self.inference_results = {}
 self.inference_requests = []

 def update_peer_status(self, peer_status_info: PeerStatus):
 # Update the status of a peer

 def get_peer_by_role(self, role: str) -> str:
 # Get a peer ID based on its role

 def update_inference_result(self, result: InferenceResult):
 # Update an inference result

4.4.4.3 CIFARDataLoader (data/dataloaders.py)

The CIFARDataLoader handles data loading and preprocessing for the CIFAR-10 dataset,
which is used for testing and demonstration purposes in DEXIT.

Key functionalities:
● Loading and preprocessing CIFAR-10 dataset
● Creating DataLoaders for efficient batch processing
● Supporting customizable sample sizes for testing

Implementation highlights:

 Page 58 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

class CIFARDataLoader:
 def __init__(self, batch_size: int = 4, root_dir: str = './shared/data',
num_samples: int = None):
 # Initialize data loader parameters

 def _create_transform(self) -> transforms.Compose:
 # Create image transformation pipeline

 def _load_dataset(self, train: bool) -> torchvision.datasets.CIFAR10:
 # Load CIFAR-10 dataset

 def get_test_loader(self) -> DataLoader:
 # Get DataLoader for test dataset

4.4.4.4 Early Exit Models (early_exit/)

The early exit models are custom neural network architectures that support multiple exit
points for inference.

Key features:
● Multiple intermediate classifiers (exit points)
● Confidence thresholds for early termination
● Adaptive computation based on input complexity

The main workflow loop of the DEXIT tool and the published alerts to the subscribed topics of
the involved entities are shown in Figure 33.

 Page 59 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 33: The main workflow loop of the DEXIT tool (top) and the published alerts to the subscribed
topics of the involved entities (bottom).

 Page 60 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

The configuration file that can be modified from the user includes three objects: (i) a network
object, containing the configurations related to the network in the decentralized architecture,
(ii) a model object, containing parameters setting related to the early exit models and (iii) a
data object, that handles the inference data. As depicted in Figure 33, only the network
object is needed to initiate the wait for peers loop, i.e., each peer waits until the required
number of decentralized nodes/peers (configurable by the user) has joined the Dexit
framework and the inference process can start. The rest of the inference workflow is
described below.

4.4.5 DEXIT WORKFLOW

The DEXIT workflow demonstrates how the system processes inference requests across the
distributed network:

1. Inference Initiation:
● An inference request is initiated at the Edge Device.
● The Edge Device performs initial processing on the input data.

2. Edge Device Early Exit:
● If the confidence threshold is met at the Edge Device, the inference terminates

here.
● The result is returned immediately, minimising latency.

3. Forwarding to Cloud1:
● If the Edge Device cannot meet the confidence threshold, the intermediate

result is forwarded to the Cloud1 Node.
● The P2P network layer handles the efficient transfer of data.

4. Cloud1 Node Processing:
● The Cloud1 Node receives the intermediate result and continues processing.
● It applies its own early exit strategy based on confidence thresholds.

5. Cloud1 Early Exit or Forward:
● If Cloud1 meets the confidence threshold, it terminates the inference and

returns the result.
● If further processing is needed, the intermediate result is forwarded to the

Cloud2 Node.
6. Cloud2 Node Final Processing:

● The Cloud2 Node receives the most complex cases.
● It performs the final inference steps and returns the result.

7. Result Propagation:
● The final inference result is propagated back through the network to the

originating Edge Device.
● The Network State is updated with the completed inference result.

The inference loop of the DEXIT tool and the send2server functionality when the confidence
level has not been reached in the early exits are shown in Figure 34.

 Page 61 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 34: Inference loop of the DEXIT tool (left) and the send2server functionality (right) when the
confidence level has not been reached in the early exits.

4.4.6 KEY FEATURES AND ADVANTAGES

4.4.6.1 Adaptive Computation

DEXIT's early exit strategy allows for adaptive computation based on input complexity. This
results in:

● Reduced overall computational load
● Lower latency for simpler inputs
● Efficient utilisation of resources across the network

4.4.6.2 Decentralised Architecture

The use of a P2P network powered by libp2p provides:

● Improved scalability and resilience
● Reduced dependency on centralised infrastructure
● Dynamic adaptation to network conditions and node availability

4.4.6.3 Flexibility and Heterogeneity

DEXIT accommodates a wide range of devices with varying computational capabilities:

● Leverages both edge and cloud resources effectively
● Adapts to different hardware configurations and constraints
● Supports seamless integration of new devices into the network

 Page 62 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

4.4.6.4 Reduced Latency and Bandwidth Usage

By processing data closer to the source, when possible, DEXIT achieves:

● Lower end-to-end latency for time-sensitive applications
● Reduced bandwidth consumption, especially beneficial in constrained network

environments
● Improved real-time decision-making capabilities

4.4.6.5 Enhanced Privacy and Security

The distributed nature of DEXIT offers inherent privacy and security benefits:

● Sensitive data can be processed locally, reducing exposure
● Decentralised architecture minimises single points of failure
● Potential for implementing federated learning approaches

4.4.7 CHALLENGES AND FUTURE DIRECTIONS

While DEXIT presents a promising approach to distributed inference, several challenges and
areas for future research remain:

4.4.7.1 Dynamic Load Balancing

Developing sophisticated algorithms for real-time load balancing across heterogeneous
nodes is crucial for optimal performance.

4.4.7.2 Model Consistency and Updates

Ensuring consistency of model versions across distributed nodes and implementing efficient
update mechanisms are important challenges to address.

4.4.7.3 Privacy-Preserving Techniques

Integrating advanced privacy-preserving methods, such as differential privacy or secure
multi-party computation, could enhance DEXIT's applicability in sensitive domains.

4.4.7.4 Fault Tolerance and Recovery

Implementing robust fault tolerance mechanisms and recovery strategies is essential for
maintaining system reliability in dynamic edge environments.

4.4.7.5 Standardisation and Interoperability

Developing standards for decentralised early exit inference and ensuring compatibility with
existing edge computing platforms will be crucial for widespread adoption.

4.4.8 CONCLUSION

DEXIT represents a significant advancement in the field of distributed inference for edge
computing. By combining early exit strategies with decentralised computing, it addresses
critical challenges in latency, bandwidth utilisation, and scalability. As edge computing and
IoT continue to evolve, frameworks like DEXIT will play a crucial role in enabling efficient,
real-time AI inference across distributed networks of heterogeneous devices.

 Page 63 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

The modular and extensible nature of DEXIT opens up numerous possibilities for future
enhancements and adaptations to diverse use cases, from smart cities and autonomous
vehicles to industrial IoT and beyond. As research in this area progresses, DEXIT stands as
a promising foundation for the next generation of distributed AI systems.

4.5 COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED
ERROR FEEDBACK

This section explores innovative approaches to vertical federated learning, focusing on
communication efficiency through compressed error feedback [53]. The proposed techniques
aim to minimise communication overhead while preserving model accuracy and convergence
speed, thus promoting energy-efficient learning processes. The methodology involves
compressing the error feedback in federated learning scenarios, thereby reducing data
transfer requirements without compromising learning efficacy.

As a natural application of [53], the NOVA group in WP5 is testing the viability of [53] in the
space domain. In recent years, vertical federated learning (VFL), which allows different
entities to collaboratively train models using their unique feature sets, has emerged as a
promising framework for enhancing data-driven applications in Lower Earth Orbit (LEO).
Despite this, the communication overhead in VFL remains a significant bottleneck, especially
in satellite-based networks. As seen in FedSpace [54], the challenges of connectivity and
aggregation in federated learning systems can significantly slow down training processes.
More efficient communication and aggregation algorithms are needed, such as those
proposed in EFVFL [53]. This work aims to explore the application of VFL in LEO satellite
constellations, utilizing state-of-the-art algorithms to address the unique challenges posed by
such distributed networks.

 Page 64 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

5 POSITIONING OF ML/AI TOOLS IN TARDIS

5.1 OVERVIEW AND RELATION WITH TARDIS REQUIREMENTS

TaRDIS WP2 aims to analyse and review the end-user needs and determine the functional
requirements of the TaRDIS development environment. D2.2 [6] synthesised the functional
requirements for TaRDIS, where WP5 contributed to D2.2 [6] by identifying the requirements
regarding WP5 (as reported in D5.1 [1]). In D2.3 [4], the precise meaning of heterogeneous
swarm systems for TaRDIS was defined. It also revealed the details about the necessary
structure of the toolbox including the requirements to be fulfilled by each kind of tool included.
WP5 contributed to this deliverable, by the definitions of the WP5 tools and the links with the
appropriate requirements.

In D2.3 [4] the TaRDIS toolbox architecture was introduced, as shown in Figure 35. The tools
on higher levels are built on or use guarantees of tools on lower levels. The positioning of
WP5 within this architecture can be identified through 3 units, coloured blue: Intelligent
orchestrator, ML inference agents and Federated ML training. The contributions of different
tasks in WP5 fit into these architectural units. The tools that belong to each unit are listed in
brackets and described in D2.3 [4] in detail, including also their linkages with the TaRDIS
requirements, defined in D2.2 [6].

Figure 35: The TaRDIS toolbox architecture overview (from D2.3 [4]).

The Federated ML Training unit includes a set of tools offering solutions for federated
learning training: Flower-based FL model training (T-WP5-01), PTB-FLA and MPT-FLA
(T-WP5-04), Decentralised Federated Learning Framework - Fedra (T-WP5-09), as well as a
tool for data preparation for Flower-based FL model training (T-WP5-02). It also includes two
lightweight ML technique tools: Knowledge distillation(T-WP5-07) and Pruning (T-WP5-08).
On a higher architectural level, ML inference agents rely on the outputs from the Federate
ML Training. Here, we can identify three relevant tools: Flower-based FL model inference
and evaluation (T-WP5-03), PTB-FLA and MPT-FLA (T-WP5-04) and Early exit (T-WP5-06).
On the same level, under Intelligent orchestrator, the Federated AI Network Orchestrator -
FAuNO (T-WP5-05) is defined. This architectural view pervades the results of the different
WP5 tasks.

 Page 65 of 102 © 2023-2025 TaRDIS Consortium

https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=bd0msl8e5qjn
https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=bd0msl8e5qjn

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

5.2 INTERACTION WITH TARDIS PROGRAMMING ABSTRACTIONS

TaRDIS WP3 aims to specify the programming model and the APIs (Application Programmer
Interfaces) that can be offered to programmers by the TaRDIS toolbox. WP3 is also focusing
on integrating a set of tools on an IDE (Integrated Development Environment) that simplifies
the development of decentralised applications deployed in diverse settings. A first outline of
the TaRDIS programming model and APIs is provided in D3.1 [55] (led by WP3), where WP5
has contributed to D3.1 [55] by providing initial definitions of WP5 APIs (as reported in D5.1
[1]). D3.2 [5] provided a detailed evaluation of the TaRDIS IDE platform, where WP5 created
descriptions of its proposed candidate applications, supported by mock-ups, screenshots and
detailed explanations. D3.3 [56] presents the second revision of the TaRDIS programming
models and TaRDIS toolkit APIs, and WP5 contributed to this deliverable by providing
updates on WP5 APIs defined in D3.1 [55]. Also, the TaRDIS models and APIs
documentation is currently available under the TaRDIS wiki, where WP5 provided an
overview of its APIs. The WP5-related Application Programmer Interfaces (API) definitions
are aligned with the proposed WP5 tools. The proposed WP5 tools will be integrated in the
TaRDIS IDE platform during the last year of the project, as drafted in D3.2.

5.3 INTERACTION WITH TARDIS PROPERTY VERIFICATION TOOLS

The work of WP4 is focused on developing formal analyses to establish the soundness,
security, and reliability of a heterogeneous swarm. The first step was to identify desirable
properties for analysis, which were reported in D4.1 [57]. In this stage, WP5 and WP4 have
worked together on identifying several desirable FL properties (FL roles of agents, FL data
privacy, FL message delivery, and FL clients’ equality). In D4.2 [58], WP4 has reported
results on formal verification of the correctness of centralised and decentralised FL
algorithms developed in the PTB-FLA tool (T-WP5-04). The correctness of two generic FL
algorithms was verified by proving two properties: deadlock freedom and successful
Federated Learning Algorithm (FLA) termination. The properties have been formalised in
communicating sequential processes calculus (CSP) and verified in the Process Analysis
Toolkit (PAT) [59]. In addition, a systematic approach to translating Python code that follows a
restricted actor-based programming model to a corresponding CSP model is developed. In
future work, this approach should serve as a basis for developing a tool for the automatic
translation of certain classes of Python code to CSP models.

5.4 INTERACTION WITH TARDIS DATA MANAGEMENT AND DISTRIBUTION PRIMITIVES

TaRDIS WP6 aims to provide communication, membership and data management primitives.
As stated in D5.1 [1], the connection between WP5 and WP6 aims to provide the ability to
combine ML with decision making regarding resource availability.

The results accomplished within WP6 provide that designed services are able to collect,
aggregate, transform and store diverse monitoring-related data from heterogeneous sources
and with respect to resource availability. The metrics are collected from a few places: (i) node
metrics, (ii) applications (in containers) metrics, and (3) other places in the toolbox that
provide metrics such as distributed protocols and probing mechanisms. All metrics are
stored, and therefore available for others in OpenMetrics format. A unified interface of the
system and application state progression over time is accessible to users. This will allow for
informed decision making. The toolbox also offers an API for machine learning models to be
both trained on and put in the role of decision makers, which provides the automation of the
decision process. The telemetry data is being stored by the toolbox in time series manner
(i.e. data points with time). The telemetry data means, for instance, CPU load, disk usage,

 Page 66 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

memory usage, network properties... This data is accessible by ML models through a
specifically designed API directed towards their needs. An agent that requires data from the
platform for training, simply needs to send a point in time when the last contact occurred. If
the agent for whatever reason misses to get data in e.g., regular intervals, there is an
interface to get metrics in a specific period between two dates. This ensures that machine
learning models can be trained at their own pace. Even if an agent crashes, or goes offline
for some period of time, newly added data points cannot be missed or skipped.

Task 5.2 (from WP5) is responsible for automated analysis and planning, while WP6 will
perform execution and monitoring, according to the framework: Monitor, Analyse, Plan,
Execute, and Knowledge (MAPE-K) [60]. The list of federated ML algorithms that need to be
provided by the TaRDIS toolkit, in the context of WP6 needs include three categories:

● supervised learning algorithms, for regression and classification tasks, as well as for
time-series forecasting, for instance

● unsupervised learning algorithms, as anomaly detection tasks and
● reinforcement learning algorithms, e.g., decision-making for resource optimization.

The most important link with WP6 is the capture of network and node usage metrics to be fed
to the orchestration RL agent (or agents), and the communication between agents in the
deployment phase (the details are available in the requirements Deliverable D2.2[6]).

5.5 INTERACTION WITH TARDIS IMPLEMENTATION AND EVALUATION

TaRDIS WP7 is focused on evaluation activities concerning the technical achievements of
the project. D7.2 [61] represents a report on preliminary validation of the toolbox. WP5
contributed to D7.2 [61], by providing descriptions for the WP5 tools and connecting them to
evaluations on TaRDIS use cases, as well as to the relevant KPIs. In specific, sample ML
modelling applications have been designed and developed for each use case separately,
showcasing the implementation of different ML algorithms for the diverse requirements of the
TaRDIS use cases (analysed in Section 6). Apart from the ML application analysis, WP7 has
identified the particular tools developed in the framework WP5 that will be used for
demonstration and validation purposes:

● Distributed navigation concepts for LEO satellites constellations: For the GMV use
case, the ML tools from WP5 that will be utilized in the demonstration for performing
the federated learning of at least two ML models (one model based on supervised
learning and one model based on reinforcement learning) are the T-WP5-04
PTB-FLA, T-WP5-09 Fedra or T-WP5-01 Flower-based tool and T-WP5-05 FAuNO. In
addition, the tools offering lightweight functionalities in the inference process will be
used, i.e., T-WP5-07 Knowledge Distillation or T-WP5-08 Pruning tools, to save
computational resources.

● Multi-Level Grid Balancing: For the EDP use case, the T-WP5-09 Fedra tool (or the
T-WP5-01 Flower-based tool) will be utilized to perform the FL training of two types of
ML models (based on supervised learning and reinforcement learning). Moreover, the
functionalities offered by the T-WP5-08 Pruning tool will be utilized to provide more
lightweight ML model inference at the edge devices, without significant degradation of
their accuracy.

● Privacy-Preserving Learning Through Decentralized Training in Smart Homes: The
TID use case inherently uses the T-WP5-10 Federated Learning as a Service
(FLaaS) tool in order to demonstrate the privacy-preserving federated learning
framework in a decentralized configuration. Furthermore, this use case will also utilize
the energy-efficient APIs provided by WP5 at the level of the FLaaS app and
specifically the ones adopted for FL clients. In specific, at least one of the lightweight

 Page 67 of 102 © 2023-2025 TaRDIS Consortium

https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=j0p0gy20ailn
https://docs.google.com/document/d/104WksDpHMNfq5WbGljXa-_kDOVaVJ5sn6d_eoDmWzJ8/edit#smartreference=bd0msl8e5qjn

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

functionalities for inference will be demonstrated upon compatibility, i.e., T-WP5-06
Early-Exit, T-WP5-07 Knowledge Distillation or T-WP5-08 Pruning.

● Highly resilient factory shop floor digitalisation: For the ACT use case demonstration,
WP5 tools will be involved in the Machine app, the Transport app, the Manager app
and the Event Archive App. In this context, Flower-based tool T-WP5-03 will be
utilized for inference of ML models, as well as evaluation of their accuracy. In
addition, the models will be trained using the T-WP5-01 Flower-based tool, while the
T-WP5-02 Data preparation for Flower-based FL model training tool will be used to
pre-process the dataset and overcome potential irregularities.

5.6 INTERACTION WITH TARDIS DISSEMINATION, EXPLOITATION AND
STANDARDISATION

TaRDIS WP8 aims to monitor and collect the project results and outcomes. The Energy use
case has received a strong contribution from WP5 regarding Renewable Energy generation
and Energy consumption forecasts using Federated Learning Model, developed by University
of Athens and has been already included in the use case’s swarm code. Additionally, a
poster titled “Collaborative Intelligence Sharing in Energy Communities via Federated
Learning” was recently accepted for the ETSI Artificial Intelligence Conference - How
Standardization is Shaping the Future of AI [62].

 Page 68 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

6 ML MODELLING OF TARDIS USE CASES

6.1 ACT USE CASE

The initial Machine Learning model for the ACT use case, as well as the underlying use case
scenario description, is provided in D5.1 [1]. The implementation utilises unsupervised
learning approaches (due to the lack of ground-truth labels for this use case). It represents
an integration of two ML methodologies: K-means clustering algorithm and representational
learning through autoencoders. In this section, we provide experimental results described
ahead; further innovations regarding the machine learning modeling of the use case were
detailed in Section 2.1.3 of this deliverable.

6.1.1 AUTOENCODER-BASED OUTLIER DETECTION AND K-MEANS

We train the autoencoder (using the TensorFlow framework) on a subset of a dataset, where
the instances are non-anomalous. The classification of the test data is relying on a threshold
value that is dependent on the dataset structure. Following the training phase, the test data is
classified as either normal or anomalous based on a threshold value that depends on the
structure of the testing dataset. In our experiments, the testing dataset includes normal and
anomalous data, as in Experiment 1, and additionally comprises pseudo-normal and
pseudo-anomalous data, as described in Experiment 2. In the first experiment, an instance in
the testing dataset is classified as an outlier if its reconstruction error exceeds a predefined
threshold, determined as the maximum reconstruction error observed during the training
phase. In the second experiment, the threshold is set based on the 95th percentile of the
reconstruction error values from the training data, also established during the training phase.

The outliers detected by the autoencoder are then verified against those identified by the two
K-means algorithms utilised in our approach. We refer to these approaches as Algorithm 1
and Algorithm 2, for simplicity.

6.1.1.1 Algorithm 1

The hybrid outlier detection method utilises the K-means clustering algorithm ([15], [16]) to
identify a wide range of potential outliers in the dataset. After K-means identifies clusters, we
analyse these clusters to detect outliers. As already explained, typically, potential outliers are
found in small clusters that are significantly distant from large clusters. Our implementation
utilises the K-means algorithm from the scikit-learn Python library [17].

6.1.1.2 Algorithm 2

Due to the need for a detailed comparison between outliers detected by the autoencoder and
those detected by the K-means algorithm, we introduced another algorithm into the
comparison phase. This algorithm is designed to flag a data point as an outlier if it is
significantly distant from all centroids. Initially, we identified the optimal clustering
configuration using only non-anomalous data, as dictated by the structure of our training
dataset. The optimal number of clusters was identified using the Silhouette score.
Subsequently, we introduced points from the testing set, and for each added point, we
computed its distance from the centroids. Each point in the test set was evaluated to
determine whether its distance exceeded the threshold, thereby designating it as an outlier,
or if its distance was lower, assigning it to one of the existing clusters. This threshold value
was established based on the 95th percentile of distances calculated from the training set.

 Page 69 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

6.1.2 THE EXPERIMENTAL DATASET

Due to the current unavailability of real data provided by the use case provider, we carried
out a significant study for identification of a suitable publicly available dataset. This task
proved to be quite challenging. Most datasets accessible online are either insufficiently large
or not designed for use in anomaly detection or classification tasks. After extensive research,
we selected the MetroPT-3 Dataset [63] for its relevance and comprehensive data collection,
which aligns well with our anomaly detection objective.

The dataset, known as the MetroPT-3 Dataset, was gathered from a metro train in an
operational environment. It includes measurements of pressure, temperature, motor current,
and air intake valves from a compressor's Air Production Unit (APU). This dataset addresses
real-world predictive maintenance challenges and is applicable for tasks such as failure
prediction and anomaly detection. It contains multivariate time series data from various
analogue and digital sensors on a train's compressor. These data recorded the temporal
behaviour and fault events of the industrial equipment over a period of seven months. Further
details on the data collection process and potential compressor system failures are provided
in the accompanying papers [64, 65].

6.1.3 RESULTS AND DISCUSSION

This section presents the results of two experiments conducted on a subset of the original
dataset. The subset consists of 6000 instances and 14 features. The nature of the original
dataset is such that, even though the data is not labelled, there is a guideline ([63]), that
indicates the time intervals during which "Air Leak" occurs, thus identifying 1.975% of the
data as anomalies. This method yields a subset of the dataset with 29,960 instances
representing anomalies. All remaining data is classified as normal, resulting in a dataset with
1,516,948 instances of non-anomalous data.

6.1.3.1 Results on Experiment 1

The dataset used for the first experiment consists of 4800 instances with 14 features in the
training set and 1200 instances with 14 features in the test set. The test set contains 600
outliers, representing 50 % of the total data points inside the test set.

Upon applying the autoencoder to these training and test sets, and cross-checking its results
with K-means, 531 final anomalies are detected, which constitutes 88.5% of the total
anomalies, as shown in Table 1. When comparing these results with the ground truth
(Table 2), the precision achieved is 99.81%, recall is 88.33%, accuracy is 94.08%, and the F1
score is 93.72%. The first image below (Figure 36), shows the training loss across epochs,
while the second image (Figure 37) presents the training time relative to the number of data
points used for training the autoencoder.

Table 1: Final results on Experiment 1, for anomaly detection

Outliers total Outliers detected [% od anomalies]

600 531 88.5000

Table 2: Final results on Experiment 1 versus Ground truth, for anomaly detection

Precision Recall Accuracy F1 score

0.9981 0.8833 0.9408 0.9372

 Page 70 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 36: Training Loss of AE over Epochs.

Figure 37: Training Time of AE versus Number of Data Points.

6.1.3.2 Results on Experiment 2

In the next experiment, we introduced label flipping, by randomly selecting instances within a
subset of the dataset: a certain percent of the known non-anomalous data was relabelled as
anomalies, and similarly, the same percent of the anomalous data points were relabelled as
normal (non-anomalies). We then repeated the testing on using the autoencoder and
different versions of the K-means algorithm. In our evaluation, we tested both the incorrect
(flipped labels) and correct (true ground truth) datasets. Our aim was to show how robust this
method is against errors in labelling.

In this experiment, we maintained the same training and test set proportions as in the first
experiment: 80 % for training and 20 % for testing. To make the task more challenging for our
method, 10% of the training data were mislabelled as non-anomalies (when they were
actually anomalies), and the test set included 600 true anomalies along with 10%
inaccurately labelled as anomalies (non-anomalous data falsely presented as anomalous

 Page 71 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

data). Despite these challenges, the method performed robustly, achieving slightly lower but
still high-performance metrics compared to the true labels. In this case, after applying the
autoencoder to the training and test sets, and cross-verifying its results with K-means, a total
of 551 anomalies were detected, representing 91.8% of all identified anomalies, as presented
in Table 3. In comparison with the ground truth (Table 4), the model achieved a precision of
96.19%, recall of 73.61%, accuracy of 82.41%, and an F1 score of 83.40%.

Table 3: Final results on Experiment 2, for anomaly detection

Outliers total Outliers detected [% of anomalies]

600 551 91.8333

Table 4: Final results versus Ground Truth, for anomaly detection

Precision Recall Accuracy F1 score

0.9619 0.7361 0.8241 0.8340

To further validate the method's robustness, we increased the proportion of inaccurate labels
from 20% to 90% in increments. The relative deterioration of the F1 score correspondingly
increased with the percentage of inaccuracies, reaching a maximum of 0.23 when 90% of the
labels were flipped in the training dataset, as shown in Figure 38. This experiment
demonstrates that the method is robust when applied in real-world scenarios where training
data may be affected by label noise, which can result from imperfect labeling processes or
the presence of anomalies in the training dataset.

6.1.3.3 Scalability and computational aspects

The method employed is beneficial for larger datasets despite their computational demands.
The provided Figure (Figure 39) illustrates the linear increase in execution time relative to the
dataset size.

Additionally, in the case of using a larger number of features, it is suggested to employ an
efficient method for dimensionality reduction that utilises the variational autoencoder
approach, as described in [66]. In our ongoing efforts to achieve even better results, we
intend to investigate the potential of transformer models for anomaly detection, as proposed
in [67].

 Page 72 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 38: Relative deterioration in F1 score with varying number of inaccurate labels.

Figure 39: Scalability of the Autoencoder for the ACT use case.

 Page 73 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

6.2 GMV USE CASE

A centralised fast and precise model for Orbit Determination using machine learning models
and Neural Networks [68] was developed, which is planned to be decentralised in a later
stage of the project.

The GMV use case with respect to WP5 addresses the application of machine learning for
precise and efficient orbit determination in Low Earth Orbit (LEO). As outlined in the paper
"Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous
Variables" [68], traditional methods such as Simplified General Perturbations 4 (SGP4)
struggle with non-conservative forces like atmospheric drag and gravitational perturbations.
This paper proposes a machine learning algorithm that utilises past positions and
environmental variables, significantly reducing computational costs while improving
prediction accuracy. The methodology integrates exogenous variables to capture the effects
of non-conservative forces and applies time-series techniques for forecasting, achieving low
positioning errors and enhancing Space Situational Awareness (SSA) capabilities. Figure 40
shows the proposed network architecture. It represents a two-layer Model Architecture, i.e.
an integration of two independently trained models, where one serves partially as the input
source for the other.

Figure 40: Two-layer Model Architecture.

To address these challenges, the proposed machine learning algorithm leverages historical
position data and environmental variables such as atmospheric density. The use of
time-series techniques and exogenous variables enables the model to achieve low
positioning errors at a reduced computational cost, significantly enhancing the SSA
capabilities by providing faster and reliable orbit determination for an increasing number of
space objects. In addition, the survey "Machine Learning in Orbit Estimation" provides a
comprehensive overview of the state-of-the-art in applying machine learning for orbit
determination, orbit prediction, and atmospheric density modelling. The survey discusses the
limitations of traditional methods and emphasises the potential of machine learning to

 Page 74 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

improve accuracy by deriving unmeasured object characteristics and enhancing the
modelling of non-conservative forces [69].

The next stage of the project will involve integrating Physics-Informed Neural Networks
(PINNs) and Neural Ordinary Differential Equations (NeuralODEs) to enhance the model's
accuracy and generalizability.

PINNs introduce physical laws as constraints during the training process by incorporating a
physics-based loss function in addition to the MSE loss between data points. This
guarantees that the model's predictions are consistent with known physical principles, such
as the effects of gravitational forces and atmospheric drag, while also improving
generalization to new scenarios. By enforcing these laws, PINNs ensure physically sound
results, and also reduces the need for larger datasets to cover unseen conditions. PINNs
have been proven effective in solving forward and inverse problems involving nonlinear
partial differential equations, as demonstrated by [70]. In the same realm of PINNs there is a
new layer architecture called NeuralODE, which embeds differential equations directly into
the architecture of the machine learning model. This allows the propagation process to be
modelled to be constrained/controlled by orbital mechanics during both training and
inference, by having differential equations serve as layers within the network. This approach
is particularly promising for improving traditional orbit propagation methods, as discussed by
[71]. Next steps will also involve the training of a machine learning algorithm to perform
decentralized Orbit Determination and Time Synchronization utilizing inter-satellite and
satellite-ground stations measurements, as well as the training of a reinforcement learning
model for the Inter Satellite Link scheduling optimization and reconfiguration.

6.3 EDP USE CASE

As described in D5.1 [1], the use case is based on a realistic mathematical model that
considers various aspects of a modern smart home environment. Specifically, the model
accounts for energy generated by renewable sources, household energy demands, an
energy storage system (ESS), market-dependent electricity prices, and both indoor and
ambient temperatures. The presented approach aims to minimize the energy cost required
for non-controllable energy consumption and the operation of the controllable Heating,
ventilation and Air-Conditioning (HVAC) system by promoting self-sufficient satisfaction of
smart home energy demands using renewable energy.

During the second year of the TaRDIS project, the LSTM models were developed that will be
integrated into our method to forecast smart home energy consumption and renewable
energy generation based on historical data. These predictions consider time-varying
parameters, such as solar panel energy production over time. The LSTM models are trained
on data from individual smart homes, tailored to specific areas (e.g., ambient temperature or
solar energy generation) and the energy habits of residents (e.g., increased energy demands
when working remotely).

Moreover, the designed Deep Reinforcement Learning (DRL) algorithm, based on the Deep
Deterministic Policy Gradient (DDPG) actor-critic model, as described in D5.1, optimizes the
energy provision to the HVAC system and the charging/discharging of the ESS. The DDPG
model observes the dynamic state of the problem, including the LSTM outputs (predicted
energy generation and requested energy for load activation), which describe future states of
the environment. The optimization objective is to maintain a comfortable indoor temperature
while minimizing energy costs.

 Page 75 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Following the mathematical formulation of the energy use case reported in the previous
deliverable D5.1, we incorporated the forecasting functionality in the Home Energy
Management System (HEMS). The environment state is now:

● renewable generation output
● non shiftable power demand
● Energy Storage System energy level
● Outdoor temperature
● Indoor temperature
● Buying electricity price
● Time slot index in a day
● Non-shiftable power demand values predicted by the forecasting LSTM model for

future time instance
● renewable generation output values predicted by the forecasting LSTM model for

future time instance

Moreover, we have made the DRL (DDPG model) more sophisticated, including trade-off
rewards (temperature comfort vs energy cost). The Home Energy Management System
(HEMS) that observes the smart home environment, acts on it and receives a reward based
on the optimization objective is shown in Figure 41.

Figure 41: The Home Energy Management System (HEMS) that observes the smart home
environment, acts on it and receives a reward based on the optimization objective.

To this end, we have trained an LSTM network for forecasting the power production from
solar panels using the southern Germany dataset time series (Figure 42). For training data,
we used all-year data except April and for testing the data for the month of April. The
fine-tuned model achieves mean error = 0.22 kWh, following the time-domain trends.

 Page 76 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 42: Forecast of generation power from solar panels of the LSTM model compared to the real
data for 1 week of April.

In a similar manner, we have trained an LSTM network for forecasting the power
consumption of the smart home, using the southern Germany dataset time series
(Figure 43). For training data, we used all year except April and for testing the data gathered
for the month of April. The fine-tuned model achieves Mean error = 0.14 kWh, following the
time-domain trends. It should be noted that this model achieves more challenging prediction,
since the consumption requests are more irregular.

Figure 43: Forecast of power consumption requests of the smart home using the trained LSTM model
compared to the real data for one week of April.

The above forecasting model outputs are also used to train a DRL (DDPG) model with
varying 𝛽, i.e., trade-off between temperature comfort 19.5 < Inside Temperature < 22 and
energy cost (ESS depreciation + cost of the HVAC input power), see Figure 44. As depicted,
the DDPG model stabilises the time-domain temperature regardless of ambient temperature
and solar panel produced power, providing the required input power to the HVAC to keep the
temperature within the comfort bounds. The DDPG model draws energy from the grid when
required to fulfil the consumption demands 𝛽 = 2 (energy cost is important).

 Page 77 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 44: Inside temperature (upper left), power provided to the HVAC system (upper right) and
power exchange between the ESS and the grid (below) using the trained DDPG model for 1 week of

April.

Moreover, we have produced several results for different scenarios, i.e., for different trade-off
index (temperature conform vs energy cost) and for different months (January vs July). The
results are shown in Figure 45.

Figure 45: Reward function of the DDPG model for different β -energy cost vs temperature comfort
trade-off- (left) and for different months -January and July- (right).

The developed method and DDPG model with LSTM assistance can be further extended to
multiple smart homes that exchange individual energy surpluses from renewable sources to

 Page 78 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

achieve a zero-sum energy footprint. This approach promotes the use of renewable energy
within a smart home and an energy community of multiple homes, meeting specific energy
needs with locally produced renewable energy and minimizing grid utilization and associated
costs.

6.4 TID USE CASE

TID’s use case concerns intelligent homes where different devices are part of an automated
system that is designed to facilitate everyday life. In particular, these devices support
ML-based functionalities that require the training of neural network (NN) models in a
collaborative and distributed way among these devices. FL [72] has been designed for this
purpose. However, it requires the devices (clients) to train the models locally. However, as
models become more and more complex, devices (e.g., handheld, Internet-of-Things (IoT))
might not be able to participate in the training or might slow down the training. In previous
deliverables (D2.2 and D5.1), we discussed how the heterogeneity (in terms of computation,
energy, memory) of these devices can be overcome through the Split Learning (SL)
paradigm. In this deliverable, we give updates on ongoing research efforts on this aspect with
the goal of minimizing the maximum training time among all clients in a system1, which is
called makespan. This is part of an ongoing journal submission that extends a previous
article [73] (developed outside of TaRDIS) towards a more generic setting, as described
below.

In SL, clients offload a part of their training task to a helper, which could be, for example, a
Virtual Machine (VM) on the cloud or a lightweight container in a base station beyond 5G
networks. Formally, an NN comprising L layers1 (1, . . . ,L) is split into three parts (part-1,
part-2, and part-3) of consecutive layers ([1, . . . , σ1], [σ1 + 1, . . . , σ2], [σ2 + 1, . . . ,L])
using 2 cut layers {σ1, σ2} ∈ Σ. Then, part-1 and part-3 are processed at the clients, and
part-2 at the helper. This allows the resource-constrained clients to offload computationally
demanding processes to the helper while keeping their data locally.

In this deliverable, we consider the setting of Hybrid Federated and Split Learning (HFSL)
to manage both resource-constrained clients and more powerful ones (capable of supporting
on-device training). This is similar in spirit to works in literature [74]. In this setup, clients may
train the NN model either through SL in collaboration with a helper or through FL, i.e., train
the entire NN model locally. The motivation for the hybrid approach is that clients with
higher-end devices may train through FL without increasing the makespan. Consequently,
this will reduce the load and alleviate the resource demands at the helpers which will assist
only the resource-constrained clients. The figure below (Figure 46) depicts this setting.

1 In particular, we focus on the training time of a single batch of input data, leveraging the structural
nature of the training process (that consists of multiple batch processings/updates throughout the local
epochs and training rounds).

 Page 79 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 46: The hybrid federated and split learning setting considered, the considered network

topology, its resources, and the processing tasks per entity. Some clients, e.g., client 1, participate in
the training through parallel SL, by offloading part-2 to a helper, while others, e.g., client J, participate

through FL and perform on-device training.

Driven by the time measurements of a testbed that are available online [75] and the
heterogeneity even among devices of similar capabilities, we identify three key decisions:

1. the training protocol employed by each client (FL or SL);
2. the client-helper assignment which is tied to the helpers’ memory and computing

capacities, in the case where the SL protocol is selected;
3. the scheduling, i.e., the order in which each helper processes the offloaded tasks, in

the case where the SL protocol is selected.

These decisions can be crucial for the training makespan by alleviating the effect of
stragglers (i.e., the slowest devices) while fully utilizing the available resources. Hence, we
formulate the problem of jointly making these decisions to minimize the makespan. An
overview of the workflow of the HSFL system and the role of the optimization steps is
depicted in the figure below (Figure 47). We also note that the considered framework can be
easily generalized in the context of decentralized systems where the helpers and the
aggregator may be devices/clients that are more powerful than others and with high
connectivity.

Figure 47: An overview of the workflow of the HFSL system, from profiling of processing and

transmission times to the optimization of the workflow, and the system implementation.

We analyse this problem and its challenges both theoretically (by proving it is NP-hard) and
experimentally (using measurements from a realistic testbed). Therefore, we propose a
solution method based on an intuitive decomposition of the problem into two subproblems,

 Page 80 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

leveraging its inherent symmetry. The first one involves the training protocol selection for
each client, the assignment, and the forward-propagation scheduling variables. The second
one involves the backward-propagation scheduling variables. For the former, the Alternating
Direction Method of Multipliers (ADMM) [76] is employed, while for the latter, a
polynomial-time algorithm is provided (that is based on a known scheduling algorithm [77]).
The advantage of employing ADMM lies in its versatility, allowing us to use techniques that
may constrain the problem’s solution space or tune its penalty parameters and stopping
criteria, and thus, we tailor it to leverage the nature of the subproblem at hand.

Moreover, we propose a second solution method based on load balancing, that is more
scalable, and thus, ideal for large problem instances. Specifically, we propose
balanced-greedy that can be run by the orchestrator (e.g., the aggregator) and consists of
three steps; it first decides on the training protocol per client (i.e., FL or SL), then on the
client-helper assignments (for the clients for which the SL protocol was selected), and finally,
on the scheduling at the helpers. We note that the time complexity of balanced-greedy2 is
smaller than the one of the ADMM-based method, which makes balanced-greedy ideal for
large scale scenarios.

Finally, our numerical evaluations provide insights into the performance of the proposed
methods, as well as the achieved gains in makespan in representative scenarios. We use
CIFAR-10 [18] and two NN models: (i) ResNet101 [78], and (ii) VGG19 [79] for our training
tasks. They are both deep convolutional NNs with 0.42 and 2.4 million parameters and are
organized in 37 and 25 layers respectively. The testbed’s devices include a RPi 3, a RPi 4, a
Jetson GPU, a laptop, and a Virtual Machine. In our simulations, the values of the input
parameters are set according to the profiling data of the testbed (for the computation times)
and findings on Internet connectivity in France [80] (for the bandwidths of the network links).
We explore two scenarios that represent two levels of heterogeneity in terms of devices,
resources, and cut layers: Scenario 1 represents a system of low heterogeneity, while
Scenario 2 a system of high heterogeneity.

Table 5 shows the relative gain in makespan in the HFSL setting vs. clients training only
through SL. In detail, we consider a large scenario (row “large partition”) according to the
characteristics defined above and a small scenario (small partition) that consists of a set of
10 clients and 2 helpers (whose processing times follow the profiled times for VMs) and,
initially, the profiled data of RPi 4 are used for the clients, while the bandwidth of all network
connections belongs to the fastest class of the measurements of [80]. As we proceed, we
alter the computing characteristics for a portion of the clients by slowing them down and
similarly changing the bandwidth from the fastest class to the slowest one. The first row of
Table 5 shows the relative gain in makespan in the HFSL setting for the corresponding
experiments for the small partition. At first glance, we notice that when there are slow clients
but good connections, having on-device training will not alter the makespan, except in the
case where there are no slow connections and no slow devices, i.e., (0%, 0%), in which there
is a slight acceleration of 4.8%. However, as more communication links get slower it is
preferable to use on-device training (i.e., FL) even if the client’s device is slower. We
conclude that HFSL can decrease the makespan by up to 59% in the presence of slow
network connections and devices that can process part-2 fast. This happens because model
part-2 is small and the processing time on the devices is not significantly different from the
processing time on the helper. As a result, the communication delay may be larger than the
on-device computation delay. When having a larger part-2 it is more beneficial to offload,
because, the on-device processing time becomes larger, while the offloading delay gets
smaller. This is shown in the second row in Table 5, where the acceleration of HFSL is

2 Balanced-greedy runs in O(JI) time, where J is the number of clients and I the number of
helpers.

 Page 81 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

smaller compared to the previous case because fewer clients perform FL. Whereas, when
there are faster clients with slow communication links we can see the effects of FL, where the
makespan is decreased by up to 5.6%. In general, these findings demonstrate the
importance of having a balance between the SL and FL, which is achieved through HFSL.

Table 5: Relative gain in makespan in the HFSL setting vs. clients training only through SL.

Further, Table 6 shows the suboptimality and speedup achieved by the ADMM-based method
when compared to Gurobi [81] that optimally solves the formulated optimization problem. The
table shows the effectiveness of the ADMM-based method since it finds the optimal solution
in most scenarios. There are some corner cases (e.g., 9.4%, 15.9%), but even then, there is
a significant speedup compared to the solver, i.e., ×14, ×11.3, respectively. Finally, we can
conclude that the proposed ADMM-based method finds the optimal solution in most problem
instances and achieves up to x15.7 speedup compared to an ILP solver.

Table 6: Suboptimality and speedup achieved by the ADMM-based method compared to an ILP solver
for HFSL for different problem instances (J denotes the number of clients, and I denotes the number of

helpers).

Finally, in Figure 48, we perform a sensitivity analysis with respect to the number of helpers
in Scenario 1 where we depict the relative gains in makespan. Given the scenario’s type and
size, we employ balanced-greedy. We observe that, in a scenario of 100 clients and 1 helper,
adding one more helper can dramatically decrease the batch makespan by up to 43.4%.
Whereas, in the presence of 10 helpers, the relative gains of adding more helpers are
decreasing. Such observations provide useful insights for real-life implementation of HFSL.

 Page 82 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Figure 48: Makespan obtained by the balanced-greedy solution method in Scenario 1 (low

heterogeneity) for J = 100 clients and varying number of helpers I.

 Page 83 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

7 DISCUSSION AND FUTURE WORK

In this section, we discuss the contributions that the work package and its tasks have already
made regarding the overall TaRDIS objectives per Grant Agreement (GA), and regarding the
specific WP5 objectives per GA, and also identify the aspects that will be addressed during
the last year of the project.

The TaRDIS project objectives are defined as follows (for more details, see the GA):

● Objective 1: Novel programming model for heterogeneous swarms: The aim is to
create a language-independent, event-driven programming model that offers
distribution abstractions and decentralised machine learning primitives.

● Objective 2: Development environment for correct-by-design heterogeneous swarms:
The aim is to build a development environment with embedded semantic analyses to
achieve a correctness-by-design approach.

● Objective 3: Decentralised intelligence for heterogeneous swarms: The aim is to
provide support for decentralised intelligence for the purposes of heterogeneous
swarms.

● Objective 4: Runtime support for distributed heterogeneous swarms: The aim is to
provide decentralised algorithms and protocols for supporting the TaRDIS
programming model at runtime.

● Objective 5: Interoperable execution environment: The aim is to ensure a high level of
interoperability of TaRDIS distribution runtime, by supporting different devices and
programming languages by formally specifying the protocols developed by the
consortium.

The WP5 - Decentralised Machine learning, defines 3 main objectives (for more details see
the GA), that correspond to different WP5 tasks:

● Develop a framework supporting decentralised learning and inference through AI/ML
programming primitives (Task 5.1)

● Exploit and specialise the preceding for the planning deployment and orchestration of
the complete TaRDIS framework through reinforcement learning and other relevant
methodologies (Task 5.2)

● Develop novel lightweight ML techniques to enable decentralised and swarm learning
in resource-constrained devices (Task 5.3)

7.1 CONTRIBUTIONS TO TARDIS PROJECT OBJECTIVES

WP5 contributes to 3 TaRDIS project objective (to specific results listed below):

● Objective 1: Novel programming model for heterogeneous swarms, linked with the
following specific project result:

● R1.2 APIs for distribution, data management, and AI/ML (T5.1): the relevant
tools for this result are PTB-FLA and MPT-FLA APIs (T-WP5-04) for the
development of FL algorithms. The tools are already developed and available,
which make this result addressed. However, possible future advances make
the contributions to this result continuing.

 Page 84 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

● Objective 3: Decentralised intelligence for heterogeneous swarms, that addresses the
following specific project results:

● R3.1 Techniques, algorithms, and models to support swarm intelligence.
(T5.1, T5.2, T5.3): The relevant tools for this result are the Flower-based FL
tool (T-WP5-01, T-WP5-02, T-WP5-03), FAuNO (T-WP5-05) with
PeersimGym, Fedra (T-WP5-09) and Lightweight ML tools (T-WP5-06,
T-WP5-07, T-WP5-08). These tools are available and evolving, which make
this result addressed, but still expanding.

● R3.2 Open-source implementation of decentralised algorithms for FL and
Supervised Learning (SL). (T5.1, T5.3): The relevant tools for this result are
the Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03), Fedra
(T-WP5-09) and Lightweight ML tools (T-WP5-06, T-WP5-07, T-WP5-08).
These tools have been developed and are evolving in covering new
decentralized algorithms. Therefore, this result is being addressed in
continuation.

● R3.3 Contextual Machine Learning Operations (MLOps) solutions for swarm
intelligence. (T5.1): The relevant tool for this result is Flower-based FL model
training. The contribution to this result is in progress. As already defined in
Section 2, the Flower-based FL tool strives to simplify and automate various
stages in the machine learning pipeline. This will include preparation and
preprocessing techniques (T-WP5-02) and additional possibilities for inference
and evaluation (T-WP5-03), beside the support for various training algorithms
(T-WP5-01).

● R3.4 Dynamic peer-to-peer resource orchestration for the computing
continuum. (T5.2): The relevant tool for this result is FAuNO (T-WP5-05) with
PeersimGym. The tools have been developed as described in Section 3,
which addresses this result.

● Objective 5: Interoperable execution environment, that is linked with the following
specific project result:

● R5.1 Open and extensible development environment supporting the TaRDIS’
methodology and toolbox (T5.1): The relevant tools for this result are
PTB-FLA & MPT-FLA (T-WP5-04) as development environments for FL
algorithm, which have been developed, as described in Section 2, making this
result addressing continuously.

We now discuss these contributions in more detail, for specific TaRDIS WP5 tools below.

7.1.1 Flower-based FL tool contributions to the TaRDIS project objectives

The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) contributed to Objective 3 of
GA: Decentralised intelligence for heterogeneous swarms, to the following results:

● R3.1 – Techniques, algorithms, and models to support swarm intelligence.
● R3.2 – Open-source implementation of decentralised algorithms for FL and

Supervised Learning.
● R3.3 – Contextual MLOps solutions for swarm intelligence.

The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) is an integral part of the
TaRDIS toolbox architecture (part of federated ML training unit in Figure 35), as an important
aspect of the development of a swarm application. It provides the developer the possibility of

 Page 85 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

utilising federated ML training strategies. The federated ML approaches within the TaRDIS
architecture enable training on data sets that are distributed in diverse locations. The tool
supports and guides the developer through the process of initiating the training. The
developer needs to specify the target data set and choose an approach for training. This
means that the use of the tool does not require expertise in the field. The tool also provides
appropriate feedback when the training is finished, in terms of loss and accuracy. It supports
model selection, parameter tuning and custom initialization, where a completely new or
pre-existing model can be used for the training. It covers a set of FL algorithms, discussed in
D5.1 [1] and in Section 2. Our plan for the future is to widen further the set of FL algorithms
according to the needs, as well as to connect a set of data preparation and preprocessing, as
well as inference and evaluation facilities to the tool.

7.1.2 PTB-FLA and MPT-FLA contributions to the TaRDIS project objectives

The work done on PTB-FLA and MPT-FLA (T-WP5-04) has contributed to the TaRDIS project
objectives in the following way.

● O.1 Novel programming model for heterogeneous swarms
● Contribution to the result R1.2. APIs for distribution, data management, and

AI/ML

● O.3 Decentralised intelligence for heterogeneous swarms
● Contribution to the result R3.2. Open-source implementation of decentralised

algorithms for FL and SL
● Contribution to the result R3.3. Contextual MLOPs solutions for swarm

intelligence

● O.5 Decentralised intelligence for heterogeneous swarms
● Contribution to the result R5.1. Open and extensible development

environment supporting the TaRDIS’ methodology and toolbox

The Python Testbed for Federated Learning Algorithms (PTB-FLA, T-WP5-04) was
developed as a runtime environment for FL algorithms under development. Intentionally
written in pure Python, it allows the algorithm designers to develop, execute and test their FL
algorithms in an environment which is easy to install, because it has no external
dependencies, and easy to fit to a small IoT edge device. The PTB-FLA supports the
execution of centralised and decentralised federated learning algorithms, as well as the
peer-to-peer data exchange used in Time Division Multiplexing (TDM) communication e.g.,
used for Orbit Determination and Time Synchronisation (ODTS) in Low Earth Orbit (LEO)
satellite constellations. The PTB-FLA was explained in detail in D5.1.

MPT-FLA is a new framework that inherits all the advantages of PTB-FLA while overcoming
its main limitation such that individual application instances may run on different network
nodes like Personal Computers (PCs) and IoTs, primarily in edge systems. It is based on
Python asynchronous Input/Output I/O (asyncio) abstractions (including asyncio coroutines,
streams, and events), and runs on MicroPython. It is therefore a great match for smart IoTs
and devices in edge systems.

The two frameworks define APIs that allow developers to easily implement the server and
client callback functions and provide a ready-to-use environment for their execution in either
a centralised or a decentralised way.

The PtbFla API comprises the following four functions (for details see the references in the
section on published results below):

 Page 86 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

1. None PtbFla(noNodes, nodeId, flSrvId=0)
2. ret fl_centralized(sfun, cfun, ldata, noIters=1)
3. ret fl_decentralized(sfun, cfun, ldata, noIters=1)
4. PtbFla destructor

The MPT-FLA API comprises the following five members (the first is a function, whereas the
next four are coroutines declared as such by the keyword async):

1. None PtbFla(noNodes, nodeId, flSrvId=0, mrIpAdr='localhost')
2. None async start()
3. ret async fl_centralized(sfun, cfun, ldata, pdata, noIters=1)
4. ret async fl_decentralized(sfun, cfun, ldata, pdata, noIters=1)
5. obs async get1Meas(peerId, odata).

Within the PTB-FLA and MPT-FLA we implemented the following examples:

● Federated map
● Centralised data averaging
● Decentralised data averaging
● Centralised logistic regression
● Decentralised logistic regression
● Centralised MNIST NN training and inference

The PTB-FLA and MPT-FLA development environments provide the solution for developing,
testing and verifying the FL algorithms targeting the heterogeneous swarms. It is
open-source, available on GitHub [35], and extensible allowing developers to extend its
functionality if needed and develop their own examples.

The main task for the future work after D5.2 is to make necessary PTB-FLA adaptations and
extensions to enable usage of PTB-FLA in the GMV use case. This task needs to be
coordinated by NOVA and will be conducted by UNS in cooperation with NOVA and GMV.

7.1.3 FAuNO and PeersimGym contributions to TaRDIS project objectives
The contribution of T5.2 to TaRDIS objective 3: Decentralised intelligence for heterogeneous
swarms is twofold:

● We are developing Reinforcement Learning-based (RL-based) orchestration of the
TaRDIS runtime. The centralised version is completed. A federated RL framework is
now in progress.

● It also provides decentralised (p2p) ML for Orbit Determination in satellite swarms.
The centralised version is completed. A decentralised version is being developed.

The specific Project Results linked to this Objective are the following:

● R3.1 – Techniques, algorithms, and models to support swarm intelligence.
● R3.4 – Dynamic peer-to-peer resource orchestration for the computing continuum.

To summarize, the targeted results are partially met by the developed centralized
implementations. The main focus for the future is to complete the development of the
decentralized versions.

 Page 87 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

7.1.4 Fedra and lightweight ML tools contributions to TaRDIS project
objectives

Objective 3 of GA is reached by promoting decentralised intelligence in swarm systems
based on a decentralised FL framework (Fedra, T-WP5-09) that enables collaborative
peer-to-peer intelligence sharing. The Fedra framework can support various ML algorithms
and models being deployed directly at edge nodes, while keeping data and computation at a
local level, promoting data privacy. Moreover, the work performed in T5.3 targets to offer
lightweight ML inference techniques (T-WP5-06, T-WP-07, T-WP5-08) designed for nodes
with limited computational capabilities. Finally, in the framework of WP5, a decentralised ML
application was designed, developed and deployed for the EDP use case (smart home
energy dynamics) in the TaRDIS environment. The ML-assisted application is based on RL,
as well as assisted by forecasting ML models.

The specific Project Results here linked to this Objective are:

● R3.1 – Techniques, algorithms, and models to support swarm intelligence.
● R3.2 – Open-source implementation of decentralised algorithms for FL and

Supervised Learning.

During the upcoming period of the TaRDIS project, the following activities will be conducted
and finalized: (i) training of RL algorithms in the Fedra framework, specifically adapted for the
energy use case; (ii) testing of the three lightweight ML inference techniques with real
datasets and comparison of the resulting trade-off (accuracy vs computational resources);
(iii) deployment of the early-exit models in real swarm nodes using Dexit tool; (iv)
enhancement of the DRL model in a multi-agent framework, permitting the interaction
between smart homes.

7.2 CONTRIBUTIONS TO WP5 OBJECTIVES
The contributions regarding WP5 objectives can be categorised to 3 groups as follows:

1. WP5 Objective 1: Develop a framework supporting decentralised learning and
inference through AI/ML programming primitives:

a. An AI/ML library of implemented FL solutions for distributed AI applications
was developed. It includes some widely applicable approaches, such as FL
implementations of personalised and clustered federated learning (reported in
D5.1), and distributionally robust FL (ongoing work). Also, the application of
autoencoders and k-means for the process of anomaly detection for the ACT
use case has been investigated. A tool for Flower-based FL
(T-WP5-01/02/03), that supports the developer during the training setup, has
been introduced. An approach for customised client-server message
exchange in Flower implementations has been also considered.

b. PTB-FLA & MPT-FLA (T-WP5-04) development environments for
implementing the FL programming primitives were introduced.

c. Precise ML Algorithms for Orbit Determination were proposed, which will be
decentralised in the second half of the project.

 Page 88 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

d. A decentralised framework (Fedra, T-WP5-09) was designed and developed
in the first half of the project lifetime, as an additional framework that enables
model-agnostic FL learning.

2. WP5 Objective 2: Exploit and specialise the preceding for the planning, deployment,
and orchestration of the complete TaRDIS framework through RL and other relevant
methodologies

a. The Federated AI Network Orchestrator (FAuNO, T-WP5-05) has been
developed, consisting of a system allowing RL agents under a Markov Game
framework to solve the task offloading problem, supported by a training
environment PeersimGym for the decentralised agents.

3. WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised
and swarm learning in resource-constrained devices

a. MPT-FLA has been developed. It represents a Micro-Python implementation
of PTB-FLA (T-WP5-04) that allows the development of federated learning
algorithms in resource-constrained devices, such as Raspberry Pi Pico W
boards, Husarion ROSbot, etc.

b. Communication efficient vertical FL via compressed error feedback is
proposed

c. Three Lightweight ML tools methods were introduced: early-exit (EE,
T-WP5-06) of inference, knowledge distillation (KD, T-WP5-07) and pruning
(T-WP5-07) techniques.

We now discuss these contributions in more detail, for specific TaRDIS WP5 tools below.

7.2.1 Flower-based FL tool contributions to the TaRDIS WP5 objectives

The Flower-based FL tool (T-WP5-01, T-WP5-02, T-WP5-03) contributes to the following
WP5 objective:

WP5 Objective 1: to develop a framework supporting decentralised learning and inference
through AI/ML programming primitives.

The contribution has a few dimensions. First, it includes a list of widely applicable
approaches, such as FL implementations of personalised and clustered FL (both reported in
D5.1), and distributionally robust FL and anomaly detection (see Section 2). Also, the tool
contributes to the ACT use case specific needs. The application of autoencoders and
k-means for the process of anomaly detection for the ACT use case has been investigated
(see Sections 2 and 6). Additionally, the developed Flower-based FL tool supports the
developer during the training setup and makes the process of starting the training
straightforward. Finally, we also made an implementation-wise progress, by implementing a
custom client-server message exchange approach in the Flower implementation of the DR
FL. The tool will evolve further in the upcoming period, as described above.

7.2.2 PTB-FLA and MPT-FLA contributions to the TaRDIS WP5 objectives

The work done on PTB-FLA and MPT-FLA (T-WP5-04) contributed to the following WP5
objectives.

WP5 Objective 1: to develop a framework supporting decentralised learning and inference
through AI/ML programming primitives.

 Page 89 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

WP5 Objective 3: to develop novel light-weight ML techniques to enable decentralised and
swarm learning in resource-constrained devices.

Regarding O.1, as already mentioned above, both PTB-FLA and MPT-FLA are the FL
frameworks supporting decentralised learning and inference through AI/ML programming
primitives.

Regarding O.3, the MPT-FLA framework was experimentally validated on the Wireless
Fidelity (WiFi) network, consisting of one WiFi router Belkin F5D7234-4, two Raspberry Pi
Pico W boards, and one PC, by using the four adapted algorithm examples originally
developed for the PTB-FLA framework. The MPT-FLA successfully passed this experimental
validation because, as expected, the adapted algorithms produced the same numerical
results as the originals, and this was the sole goal of this experiment validation. The
validation showed its applicability in resource-constrained devices.

7.2.3 Fedra contribution to the TaRDIS WP5 objectives

The Fedra framework (T-WP5-09) contributes to the following objective:

WP5 Objective 1: to develop a framework supporting decentralised learning and inference
through AI/ML programming primitives

Fedra was designed and developed in the first half of the project lifetime, as an additional
framework that enables model-agnostic FL learning.

7.2.4 Orbit determination ML algorithms contributions to the TaRDIS WP5
objectives

The contribution is related to the following WP5 objective:

WP5 Objective 1: to develop a framework supporting decentralised learning and inference
through AI/ML programming primitives

Precise ML Algorithms for Orbit Determination are planned to be decentralised in the second
half of the project.

7.2.5 FAuNO and PeersimGym contributions to the TaRDIS WP5 objectives

The tools FAuNO (T-WP5-05) and PeersimGym developed under T5.2 contribute to the
following WP5 objective:

WP5 Objective 2: exploit and specialise the preceding for the planning, deployment, and
orchestration of the complete TaRDIS framework through reinforcement learning and other
relevant methodologies

The team is developing the Federated AI Network Orchestrator (FAuNO), consisting of a
system allowing RL agents under a Markov Game framework to solve the task offloading
problem. For this purpose, the team developed a training environment for the decentralised
agents, PeersymGym.

7.2.6 Lightweight ML techniques contribution to the TaRDIS WP5 objectives

WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised and
swarm learning in resource-constrained devices

 Page 90 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Three methods were investigated for this objective: early-exit (EE, T-WP5-06) of inference,
knowledge distillation (KD, T-WP5-07) and pruning (T-WP5-08) techniques. Four tools were
developed and will be incorporated in the TaRDIS toolbox to provide these functionalities.

7.2.7 Communication efficient vertical federated learning contribution to the
TaRDIS WP5 objectives

WP5 Objective 3: develop novel lightweight ML techniques to enable decentralised and
swarm learning in resource-constrained devices

Communication efficient vertical FL via compressed error feedback is being developed.

 Page 91 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

8 CONTRIBUTION TO TARDIS KPIS

We present the KPIs that are related to decentralised ML specific tools. In D2.2, an analysis
of the overall requirements was performed, where the first version of the requirements list
was identified (please see D2.2 for the complete list of KPIs). The table below (Table 7) lists
the relevant KPIs and the decentralised ML TaRDIS tools that are related to them. Note that
O means Objective, and B means Baseline, in KPIs IDs, as denoted in D2.2. We present a
few preliminary results regarding the contributions to KPIs. However, these will be aligned
with the descriptions of the KPIs from D7.2 in the future. In D7.2, a preliminary evaluation of
the TaRDIS toolbox was carried out, where the appropriate measurement methodologies and
related requirements were identified for the KPIs. We discuss the KPIs listed in Table 7, per
individual tools below.

Table 7: KPIs relevant for decentralised ML specific tools.

ID Description WP5 tools

K-O-1.3 Decrease median development time by 25% PTB-FLA based model training

K-O-3.1 Use TaRDIS ML to autonomously manage
system operations

Federated AI Network
Orchestrator (FAuNO)

K-O-3.2 Improved edge orchestration Federated AI Network
Orchestrator (FAuNO)

K-O-3.3 Reduced Transmission overhead by 20%

Flower-based FL model
training

Fedra and the lightweight ML
tools

K-O-3.4 Model reduction/compression increased by
15%

Fedra and the lightweight ML
tools

K-O-3.5 Reduced model training time by 25% Fedra and the lightweight ML
tools

K-B-07 FL training latency

Flower-based FL model
training

Fedra and the lightweight ML
tools

K-B-08 FL storage/RAM requirements per node

Flower-based FL model
training

Fedra and the lightweight ML
tools

K-B-10 FL accuracy

Flower-based FL model
training
Fedra and the lightweight ML
tools

 Page 92 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

8.1 KPIS FOR THE FLOWER-BASED FL TOOL (T-WP5-01/02/03)

As shown in Table 7, this tool is related to the following KPIs:

● K-B-07: FL training latency
● K-B-10: FL accuracy
● K-B-08: FL storage/Random-Access Memory (RAM) requirements per node
● K-O-3.3: Reduced transmission overhead by 20% (w.r.t. FedAvg)

The tool addresses the KPI K-B-07: FL training latency, in two ways. The first approach is to
measure the runtimes by executing a FL training algorithm with different numbers of
participating client nodes. These simulations have been carried out on a cluster environment
containing 16 nodes, 8 Intel i7 5820k 3.3GHz and 8 Intel i7 8700 3.2GHz CPU - 96 cores and
16GB DDR4 RAM/node, interconnected by a 10 Gbps network. Although a cluster
environment is not a natural choice for federated learning, it may serve as an excellent setup
for evaluations and running large-scale simulations.

The results are shown for the pFedMe algorithm (reported in D5.1), in Figure 49. The
simulations were launched on CPUs with a different number of Flower clients c=[2,3,..,10],
where each client represents a separate cluster node. The experiments were performed on
the Fashion MNIST data set, containing 60000 training examples. It can be observed that the
algorithm scales well, reaching a ‘sweet spot’ at 6 clients, where the execution time has the
lowest value. The plot also shows that the differences in timings are not drastic up to 7
clients. After that point, the time starts to grow while increasing the number of clients, which
is a typical behavior of a parallel program. At that point, the gains of parallelisation for this
data set are becoming lower than the expenses of synchronising.

Figure 49: Scaling properties of the pFedMe implementation on a cluster.

The second set of experiments that contributes to K-B-07 is the measure of the scalability of
a serial implementation of the Autoencoder, used for the ACT use case. See Figure 38 in
Section 6 above. It can be observed that the increase of training time with respect to
increased number of data points is almost linear. This is a preliminary result that seems
promising, as it can be expected that the parallel, federated version of the algorithm will scale
well, similarly as the pFed me algorithm, in Figure 49.

 Page 93 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Regarding the KPI K-B-10: FL accuracy, the tool already provided measured accuracy values
for the developed pFedMe algorithm (reported in D5.1). Please see D5.1 for additional
details. Also, we measured the accuracy values for the autoencoder for the ACT use case.
The results seem promising, giving accuracies of 0.94 and 0.82 (versus ground truth). For
more details on the results, see Section 6.

The KPI K-B-08: FL storage/RAM requirements per node, will be addressed also by running
a set of experiments on a cluster environment. During FL model training, the storage and
RAM resources of the participating nodes will be measured.

For K-O-3.3: Reduced transmission overhead by 20% (wrt FedAvg) will be measured
regarding the network load of the model weights exchange during the FL process.

8.2 KPIS FOR THE PTB-FLA AND MPT-FLA (T-WP5-04)

The work done on PTB-FLA and MPT-FLA has contributed to the following TaRDIS KPI.
● K-O-1.3 Decrease median development time by 25%.

In [28] we reported on the adapted development paradigms performance in terms of human
labour (in working hours) and size of ChatGPT context (in number of characters with spaces)
needed to develop the logistic regression PTB-FLA code. We would like to emphasise that
data on human labour should be treated as rough estimates because it is based on our
freeform notes in private diaries. Data on ChatGPT context size is exact and we got them by
the text editor.

In the following table (Table 8), the left part relates to human labour and the right part relates
to the ChatGPT context size. The top part contains raw (input) data, and the bottom part
contains calculated (output) data; some of the fields are not applicable (but this should be
obvious, so we skip explaining these exceptions). There are two types of calculated data: (i)
the working speed-up that is defined as the ratio of working hours, and (ii) the ChatGPT
context size reduction that is defined as the ratio of ChatGPT context sizes.

Table 8: Adapted paradigms performance data.

 Human labour [h] Context size [ch with spaces]

Phase 4-Ph human 4-Ph GPT 2-Ph GPT 4-Ph GPT 2-Ph GPT

Phase 2 8 4 4 2462 2685

Phase 3 12 4 2593

Phase 4 4 4 2334

Total 24 12 4 7389 2685

 Speed up: 2 6 Reduction: 2.75

The calculated data in the bottom raw reveal encouraging results, the adapted 4-phases
development paradigm for ChatGPT achieved the speed up of 2 times over the original
4-phases development paradigm for humans, whereas the adapted 2-phase development
paradigm for ChatGPT achieved the speed up of 6 times over the original 4-phase

 Page 94 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

development paradigm for humans. However, one should keep in mind that these impressive
results are based on rough estimates of working hours.

Regarding the ChatGPT context sizes, the calculated data in the bottom row of Table 8
reveal that the adapted 2-phases development paradigm for ChatGPT achieves the context
size reduction of 2.75 times over the adapted 4-phases development paradigm for ChatGPT
i.e., it makes using ChatGPT 2.75 times cheaper.

8.3 KPIS FOR THE FAUNO TOOL (T-WP5-05)

The following KPIs can be demonstrated for the tool FAuNO, that can be directly measured
and compared to baseline results:

● K-O-3.1 Use TaRDIS ML to autonomously manage system operations (used by 50%
of use cases). FAuNO is being developed as a generic AI orchestration tool and can
be applied to the GMV use case, by specialisation and reconfiguration.

● K-O-3.2 Improved edge orchestration (15% faster response time, 20% faster event
processing throughput). When compared to standard heuristic algorithms, like Least
Queues, vanilla RL agents already show improvement. We expect that FRL and
specially designed agents will attain the KPI.

8.4 KPIS FOR THE FEDRA FRAMEWORK (T-WP5-09) AND LIGHTWEIGHT ML
TOOLS (T-WP5-06/07/08)

Fedra and the lightweight ML tools are linked with the following KPIs that can be directly
measured and compared to baseline results:

● K-B-07: FL training latency, measured by executing the FL training with SL and RL
algorithm and varying number of participating nodes

● K-B-08: FL storage/RAM requirements per node, obtained by executing the FL
training in a practical implementation scheme (optionally with virtual machines
representing decentralised FL nodes) and measuring the storage and RAM resources
of the participating nodes. Moreover, the storage/RAM requirements and inference
latency can be also measured when the EE, KD or pruning methods are employed for
the model hosted at the edge nodes.

● K-B-10: FL accuracy, by obtaining the testing error of the trained models and
quantifying the validation/inference error of the lightweight models.

● K-O-3.3: Reduced transmission overhead, measuring the network load of the model
weights exchanged during the FL process, as well as the data exchange between the
nodes during the inference in the case of EE.

● K-O-3.4: Model reduction/compression, measuring the compression rate of the neural
network when using the pruning method.

● K-O-3.5: Reduced model training time by 25%, measured by executing FL training in
the Fedra framework.

● Develop at least 3 different lightweight techniques (KD, EE, pruning) and demonstrate
SL and RL algorithms in the TaRDIS use cases.

 Page 95 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

It should be noted that several of the KPIs have been partially measured according to the
measurement methodology presented in D7.2 - Report on the preliminary evaluation of the
TaRDIS toolbox. These KPIs will be presented in the evaluation of the Tardis toolbox results
for the associated use cases, as well as in the final WP5 deliverable D5.3.

 Page 96 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

9 CONCLUSION

This document has reported the advances and ongoing work on the tasks regarding the
development of decentralized machine learning approaches. It contains the contributions for
the period after D5.1 submission. It has presented the current statuses of frameworks that
support AI/ML primitives, AI-driven planning, deployment and orchestration, and lightweight,
energy efficient ML techniques. We also described the positioning of these approaches in
TaRDIS. Additionally, we listed the relevant KPIs and objectives, supported by some results
and plans for addressing them in the future. We also described the novelties and current
state of the art regarding the ML modelling of all TaRDIS use cases.

The TaRDIS project tasks T5.1, T5.2 and T5.3 will continue with their activities, by working on
improving and expanding their solutions, in order to support the development of the TaRDIS
toolbox, while constantly focusing on the needs of the use cases. The results of these
activities will be documented in the next (and final) deliverable for the work package (D5.3),
which is due on M34.

 Page 97 of 102 © 2023-2025 TaRDIS Consortium

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

REFERENCES

[1] D5.1 - Initial report on distributed AI and AI-based orchestration, 2024, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D5.1-Final.pdf

[2] A. Armacki, H. Sharma, D. Bajović, D. Jakovetić, M. Chakraborty, S. Kar. Distributed Gradient
Clustering: Convergence and the Effect of Initialization. Asilomar conference on signals, systems
and computers, October 27-30, 2024

[3] D. Bajović, D. Jakovetić, S. Kar, M. Vuković. Tackling heavy-tailed noise in distributed estimation:
Asymptotic performance and tradeoffs. Telecommunications Forum, TELFOR, November 26-27,
2024

[4] D2.3 - Report on architecture specification and evaluation methodology, 2024, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D2.3-Architecture-an
d-Specification-v1.0.pdf

[5] D3.2 - First release of TaRDIS development environment, 2024, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D3.2-final.pdf

[6] D2.2 - Report on overall requirements analysis, 2023, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/D2.2-V1.1-Final.pdf

[7] Issaid, C.B., Elgabli, A., Bennis, M. (2022). DR-DSGD: A Distributionally Robust Decentralized
Learning Algorithm over Graphs. Transaction on Machine Learning Research, 2022.
https://openreview.net/pdf?id=VcXNAr5Rur

[8] Zecchin, M., Kountouris, M., Gesbert, D. (2022). Communication-Efficient Distributionally Robust
Decentralized Learning. Transaction on Machine Learning Research, 2023.
https://arxiv.org/abs/2205.15614

[9] Mohri, M., Sivek, G., Suresh, A.T.. (2019). Agnostic Federated Learning. Proceedings of the 36th
International Conference on Machine Learning, in Proceedings of Machine Learning Research
97:4615-4625, Available from https://proceedings.mlr.press/v97/mohri19a.html.

[10] Ester, M., Kriegel H.-P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 226–231.

[11] Flower documentation, retrieved December 2, 2024,
https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html

[12] M. Savic, J. Atanasijevic, D. Jakovetic, N. Krejic. Tax evasion risk management using a Hybrid
Unsupervised Outlier Detection method. Expert Syst. Appl. 193, 2022,
https://doi.org/10.48550/arXiv.2103.01033

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M.
Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, DG Murray, B. Steiner, P. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng. Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, USENIX Association, USA, OSDI’16, pp 265–283, 2016,
https://doi.org/10.48550/arXiv.1605.08695

[14] D.P. Kingma, J. B. Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, https://doi.org/10.48550/arXiv.1412.6980

[15] S. Lloyd, Least squares quantization in PCM. IEEE Transactions on Information Theory 28 (2):
129–137, 1982, DOI: 10.1109/TIT.1982.1056489

[16] J. MacQueen, Some methods for classification and analysis of multivariate observations. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, University of California Press, Berkeley, Calif., pp 281–297, 1967

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

 Page 98 of 102 © 2023-2025 TaRDIS Consortium

https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D5.1-Final.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D2.3-Architecture-and-Specification-v1.0.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D2.3-Architecture-and-Specification-v1.0.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/07/TaRDIS_D3.2-final.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/D2.2-V1.1-Final.pdf
https://openreview.net/pdf?id=VcXNAr5Rur
https://arxiv.org/abs/2205.15614
https://proceedings.mlr.press/v97/mohri19a.html
https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html
https://doi.org/10.48550/arXiv.2103.01033
https://doi.org/10.48550/arXiv.2103.01033
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1412.6980
https://ieeexplore.ieee.org/document/1056489

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12:2825–2830, 2011, https://doi.org/10.48550/arXiv.1201.0490

[18] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009, retrieved
November 20, 2024, https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[19] Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6), 141–142. doi: 10.1109/

[20] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the
Association for Computational Linguistics (ACL 2011).

[21] Gao Y., Kim, M., Thapa, C., Abuadbba, A., Zhang, Z., Camptepe, S. Evaluation and Optimization
of Distributed Machine Learning Techniques for Internet of Things. IEEE Transactions on
Computers, vol. 71, no. 10, pp. 2538-2552, 1 Oct. 2022, doi: 10.1109/TC.2021.3135752

[22] ChatGPT helps humans creating federated learning apps on PTB-FLA, retrieved November 25,
2024,
https://www.project-tardis.eu/news/2024/06/11/chatgpt-helps-humans-creating-federated-learning-
apps-on-ptb-fla/

[23] The PTB-FLA successor MPT-FLA advances to edge systems, retrieved November 20, 2024,
https://www.project-tardis.eu/blog/2024/06/25/the-ptb-fla-successor-mpt-fla-advances-to-edge-syst
ems/

[24] Validation of MPT-FLA, retrieved November 12, 2024,
https://www.youtube.com/watch?v=QQJ-xs7ZG3

[25] M. Popovic, M. Popovic, I. Kastelan, M. Djukic and S. Ghilezan, “A Simple Python Testbed for
Federated Learning Algorithms,” 2023 Zooming Innovation in Consumer Technologies Conference
(ZINC), Novi Sad, Serbia, 2023, pp. 148-153, https://doi.org/10.1109/ZINC58345.2023.10173859

[26] Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Basicevic, I. (2024). A Federated Learning
Algorithms Development Paradigm. In: Kofroň, J., Margaria, T., Seceleanu, C. (eds) Engineering
of Computer-Based Systems. ECBS 2023. Lecture Notes in Computer Science, vol 14390.
Springer, Cham. https://doi.org/10.1007/978-3-031-49252-5_4

[27] Prokić, I., Ghilezan, S., Kašterović, S., Popovic, M., Popovic, M., Kaštelan, I. (2024). Correct
Orchestration of Federated Learning Generic Algorithms: Formalisation and Verification in CSP. In:
Kofroň, J., Margaria, T., Seceleanu, C. (eds) Engineering of Computer-Based Systems. ECBS
2023. Lecture Notes in Computer Science, vol 14390. Springer, Cham.
https://doi.org/10.1007/978-3-031-49252-5_25

[28] M. Popovic, M. Popovic, I. Kastelan, M. Djukic and I. Basicevic, “Developing Elementary
Federated Learning Algorithms Leveraging the ChatGPT,” 2023 31st Telecommunications Forum
(TELFOR), Belgrade, Serbia, 2023, pp. 1-4,
https://doi.org/10.1109/TELFOR59449.2023.10372714

[29] M. Popovic, M. Popovic, I. Kastelan, M. Djukic and I. Basicevic. PTB-FLA Development Paradigm
Adaptation for ChatGPT. Computer Science and Information Systems, vol. 21, no. 4, pp. 1-25,
2024. https://doi.org/10.2298/CSIS231224036P

[30] M. Popovic, M. Popovic, I. Kastelan, M. Djukic and I. Basicevic, “MicroPython Testbed for
Federated Learning Algorithms” preprint on arXiv: https://arxiv.org/abs/2405.09423

[31] Popovic, M., Popovic, M., Djukic, M., Basicevic, I. Towards Formal Verification of Federated
Learning Orchestration Protocols on Satellites. arXiv:2410.13429 [cs.DC], 2024.
https://doi.org/10.48550/arXiv.2410.13429

[32] Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Basicevic, I.: PTB-FLA Development Paradigm
Adaptation for ChatGPT. Computer Science and Information Systems, Vol. 21, No. 4, 1269–1292.
(2024), https://doi.org/10.2298/CSIS231224036P

 Page 99 of 102 © 2023-2025 TaRDIS Consortium

https://doi.org/10.48550/arXiv.1201.0490
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf
https://www.project-tardis.eu/news/2024/06/11/chatgpt-helps-humans-creating-federated-learning-apps-on-ptb-fla/
https://www.project-tardis.eu/news/2024/06/11/chatgpt-helps-humans-creating-federated-learning-apps-on-ptb-fla/
https://www.project-tardis.eu/blog/2024/06/25/the-ptb-fla-successor-mpt-fla-advances-to-edge-systems/
https://www.project-tardis.eu/blog/2024/06/25/the-ptb-fla-successor-mpt-fla-advances-to-edge-systems/
https://www.youtube.com/watch?v=QQJ-xs7ZG3
https://doi.org/10.1109/ZINC58345.2023.10173859
https://doi.org/10.1007/978-3-031-49252-5_4
https://doi.org/10.1007/978-3-031-49252-5_25
https://doi.org/10.1007/978-3-031-49252-5_25
https://doi.org/10.1109/TELFOR59449.2023.10372714
https://doi.org/10.2298/CSIS231224036P
https://arxiv.org/abs/2405.09423
https://doi.org/10.48550/arXiv.2410.13429
https://doi.org/10.2298/CSIS231224036P

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

[33] Pavle Vasiljević (2024). Distribuirani lanser za okruženje za federativno učenje MPT-FLA. Fakultet
Tehničkih nauka, Novi Sad. https://www.rt-rk.uns.ac.rs/sites/default/files/bachelor_radCyr.pdf

[34] Distributed launcher for the MPT-FLA federated learning framework, retrieved December 2, 2024,
https://github.com/LinguineP/distributedLauncher

[35] PTB-FLA, retrieved November 27, 2024, https://github.com/miroslav-popovic/ptbfla

[36] MNIST neural network from scratch, retrieved November 19, 2024,
https://github.com/SohamP2812/MNIST-Neural-Network-from-Scratch/blob/main/MNIST_N

[37] MNIST train dataset, retrieved December 12, 2024,
https://www.dropbox.com/scl/fi/2icmgkmbwz4x0gfwm8l99/mnist_train.csv?rlkey=r5fd8omdxpubhq
qe2bcmlomrv&e=1&dl=0

[38] Marko Nikolovski (2024). Distribuirane aplikacije za obučavanje neuralne mreže MNIST na
okruženjima PTB-FLA i MPT-FLA. Fakultet Tehničkih Nauka, Novi Sad.
https://www.rt-rk.uns.ac.rs/sites/default/files/Diplomsi-rad.pdf

[39] Sun, T., D. Li, and B. Wang. Decentralized federated averaging. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45.4 (2022): 4289-4301. doi: 10.1109/TPAMI.2022.3196503

[40] F. Metelo, S. Racković, P. Á. Costa, C. Soares, PeersimGym: An Environment for Solving the Task
Offloading Problem with Reinforcement Learning, Machine Learning and Knowledge Discovery in
Databases. Applied Data Science Track, ECML-PKDD 2024

[41] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Kimov, O.. Proximal Policy Optimization
Algorithms. arXiv:1707.06347, arXiv, 28 Aug. 2017. arXiv.org,
http://arxiv.org/abs/1707.06347.

[42] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba. Federated Learning
with Buffered Asynchronous Aggregation. arXiv:2106.06639, arXiv, 7 Mar. 2022. arXiv.org,
http://arxiv.org/abs/2106.06639.

[43] McMahan, H.B., Moore, E., Ramage, D., Hampson, S., & Arcas, B.A. (2016).
Communication-Efficient Learning of Deep Networks from Decentralized Data. International
Conference on Artificial Intelligence and Statistics.

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-Level Control through Deep
Reinforcement Learning. Nature, vol. 518, no. 7540, Feb. 2015, pp. 529–33. DOI.org
(Crossref), https://doi.org/10.1038/nature14236.

[45] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. Kavukcuoglu, K.
(2016). Asynchronous Methods for Deep Reinforcement Learning. Proceedings of The 33rd
International Conference on Machine Learning, in Proceedings of Machine Learning Research
48:1928-1937 Available from https://proceedings.mlr.press/v48/mniha16.html.

[46] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, S. Dustdar, TU Wien. Synthesizing plausible
infrastructure configurations for evaluating edge computing systems. In: 3rd USENIX
Workshop HotEdge 20. 2020, https://www.usenix.org/conference/hotedge20/presentation/rausch

[47] Tsinos, C., Spantideas, S., Giannopoulos, A., & Trakadas, P. (2023). Over‐the‐Air Computation
with Quantized CSI and Discrete Power Control Levels. Wireless Communications and Mobile
Computing, 2023(1). https://doi.org/10.1155/2023/8559701

[48] Zetas, M., Spantideas, S., Giannopoulos, A., Nomikos, N., & Trakadas, P. (2024). Empowering 6G
maritime communications with distributed intelligence and over-the-air model sharing. Frontiers in
Communications and Networks, 4, https://doi.org/10.3389/frcmn.2023.1280602

[49] Paralikas, I., Spantideas, S., Giannopoulos, A., & Trakadas, P. (2024, June). Lightweight Inference
by Neural Network Pruning: Accuracy, Time and Comparison. In IFIP International Conference on
Artificial Intelligence Applications and Innovations (pp. 248-257). Cham: Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-63219-8_19

 Page 100 of 102 © 2023-2025 TaRDIS Consortium

https://www.rt-rk.uns.ac.rs/sites/default/files/bachelor_radCyr.pdf
https://github.com/LinguineP/distributedLauncher
https://github.com/miroslav-popovic/ptbfla
https://github.com/SohamP2812/MNIST-Neural-Network-from-Scratch/blob/main/MNIST_N
https://www.dropbox.com/scl/fi/2icmgkmbwz4x0gfwm8l99/mnist_train.csv?rlkey=r5fd8omdxpubhqqe2bcmlomrv&e=1&dl=0
https://www.dropbox.com/scl/fi/2icmgkmbwz4x0gfwm8l99/mnist_train.csv?rlkey=r5fd8omdxpubhqqe2bcmlomrv&e=1&dl=0
https://www.rt-rk.uns.ac.rs/sites/default/files/Diplomsi-rad.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2106.06639
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v48/mniha16.html
https://www.usenix.org/conference/hotedge20/presentation/rausch
https://doi.org/10.1155/2023/8559701
https://doi.org/10.3389/frcmn.2023.1280602
https://doi.org/10.1007/978-3-031-63219-8_19

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

[50] M. Christopoulos, S. Spantideas, A. Giannopoulos, P. Trakadas. 2024. Deep Reinforcement
Learning for Smart Home Temperature Comfort in IoT-Edge Computing Systems. In Proceedings
of the 1st International Workshop on MetaOS for the Cloud-Edge-IoT Continuum (MECC '24).
Association for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3642975.3678961

[51] A. E. Giannopoulos, S. T. Spantideas, M. Zetas, N. Nomikos and P. Trakadas. FedShip: Federated
Over-the-Air Learning for Communication-Efficient and Privacy-Aware Smart Shipping in 6G
Communications. In IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 12, pp.
19873-19888, Dec. 2024, doi: 10.1109/TITS.2024.3468383

[52] The CIFAR-10 dataset, retrieved November 28, 2024, https://www.cs.toronto.edu/~kriz/cifar.html

[53] P. Valdeira, J. Xavier, C. Soares, Y. Chi. Communication-efficient Vertical Federated Learning via
Compressed Error Feedback. European Signal Processing Conference, EUSIPCO 24, August
26-30, 2024. https://eurasip.org/Proceedings/Eusipco/Eusipco2024/pdfs/0001037.pdf

[54] So, J., Hsieh, K., Arzani, B., Noghabi, S., Avestimehr, S., & Chandra, R. (2022). Fedspace: An
efficient federated learning framework at satellites and ground stations. arXiv preprint
arXiv:2202.01267.

[55] D3.1 - Report on the 1st iteration of the application model and APIs, 2023, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/TaRDIS_D3.1-final.pdf

[56] D3.3 - Second Report on Programming Model and APIs, 2024, TaRDIS project,
https://project-tardis.eu/wp-content/uploads/sites/101/2024/11/D3.3.pdf

[57] D4.1 - Report on the desirable properties for analysis, 2023, TaRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/TaRDIS_D4.1.pdf

[58] D4.2 - Report on the initial analyses’ toolset, 2024, taRDIS project,
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/08/Deliverable-D4.2.pdf

[59] Prokić, I., Ghilezan, S., Kašterović, S., Popovic, M., Popovic, M., Kaštelan, I. (2024). Correct
Orchestration of Federated Learning Generic Algorithms: Formalisation and Verification in CSP. In:
Kofroň, J., Margaria, T., Seceleanu, C. (eds) Engineering of Computer-Based Systems. ECBS
2023. Lecture Notes in Computer Science, vol 14390. Springer, Cham. 274-288.
https://doi.org/10.1007/978-3-031-49252-5_25

[60] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, et al., "Engineering
self-adaptive systems through feedback loops", Software engineering for self-adaptive systems,
Lecture Notes in Computer Science, vol 5525. Springer, Berlin, Heidelberg. pp. 48-70, 2009.
https://doi.org/10.1007/978-3-642-02161-9_3

[61] D7.2 - Report on preliminary validation of the toolbox, 2024, TaRDIS project

[62] ETSI Artificial Intelligence Conference - How Standardization is Shaping the Future of AI, taking
place in ETSI, Sophia Antipolis, France, on 10-12 February 2025
https://www.etsi.org/events/2451-etsi-ai-conference-2025

[63] B. Veloso, R.P. Ribeiro, P. M. Pereira, J. Gama: The MetroPT dataset for predictive maintenance.
Scientific Data 9, no. 1, 2022, https://doi.org/10.1038/s41597-022-01877-3

[64] N. Davari, B. Veloso, R.P. Ribeiro, P.M. Pereira, J. Gama: Predictive maintenance based on
anomaly detection using deep learning for air production unit in the railway industry. In: 2021 IEEE
8th International Conference on Data Science and Advanced Analytics (DSAA). pp. 1–10. IEEE,
2021, DOI:10.1109/DSAA53316.2021.9564181

[65] M. Barros., B. Veloso, P.M. Pereira, R.P. Ribeiro, J. Gama: Failure detection of an air production
unit in the operational context. In: IoT Streams for Data-Driven Predictive Maintenance and IoT,
Edge, and Mobile for Embedded Machine Learning, pp. 61–74. Springer, 2020,
https://doi.org/10.1007/978-3-030-66770-2_5

[66] W. Todo, B. Laurent, J. Loubes, M. Selmani: Dimension Reduction for time series with Variational
AutoEncoders, 2022, https://doi.org/10.48550/arXiv.2204.11060

[67] J. Xu, H. Wu, J. Wang, M. Long, Anomaly Transformer: Time Series Anomaly Detection with

 Page 101 of 102 © 2023-2025 TaRDIS Consortium

https://doi.org/10.1145/3642975.3678961
https://www.cs.toronto.edu/~kriz/cifar.html
https://eurasip.org/Proceedings/Eusipco/Eusipco2024/pdfs/0001037.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/TaRDIS_D3.1-final.pdf
https://project-tardis.eu/wp-content/uploads/sites/101/2024/11/D3.3.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/02/TaRDIS_D4.1.pdf
https://www.project-tardis.eu/wp-content/uploads/sites/101/2024/08/Deliverable-D4.2.pdf
https://doi.org/10.1007/978-3-031-49252-5_25
https://doi.org/10.1007/978-3-642-02161-9_3
https://www.etsi.org/events/2451-etsi-ai-conference-2025
https://www.etsi.org/events/2451-etsi-ai-conference-2025
https://doi.org/10.1038/s41597-022-01877-3
https://ieeexplore.ieee.org/document/9564181
https://doi.org/10.1007/978-3-030-66770-2_5
https://doi.org/10.48550/arXiv.2204.11060

TaRDIS | D5.2: Second report on Distributed AI and AI-based orchestration

Association Discrepancy, International Conference on Learning Representations, ICLR 2022,
https://doi.org/10.48550/arXiv.2110.02642

[68] F. Caldas and C. Soares. Precise and Efficient Orbit Prediction in LEO with Machine Learning
using Exogenous Variables. 2024 IEEE Congress on Evolutionary Computation (CEC),
Yokohama, Japan, 2024, pp. 1-8, doi: 10.1109/CEC60901.2024.10611996.

[69] F. Caldas, C. Soares. Machine learning in orbit estimation: A survey. Acta Astronautica, Volume
220, 2024, Pages 97-107, ISSN 0094-5765, https://doi.org/10.1016/j.actaastro.2024.03.072.

[70] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, Journal of Computational Physics, Volume 378, 2019, pp 686-707,ISSN
0021-9991,https://doi.org/10.1016/j.jcp.2018.10.045

[71] Izzo, D., Acciarini, G., Biscani, F. (2024). NeuralODEs for VLEO simulations: Introducing
thermoNET for Thermosphere Modeling. 29th International Symposium on Space Flight Dynamics

[72] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Conference on artificial intelligence and
statistics, AISTATS. PMLR, 2017, pp. 1273–1282.

[73] J. Tirana, D. Tsigkari, G. Iosifidis, and D. Chatzopoulos, “Workflow optimization for parallel split
learning,” in Proc. of IEEE International conference on computer communications, INFOCOM,
2024.

[74] Liu, X., Deng, Y. and Mahmoodi, T., 2022. Wireless distributed learning: A new hybrid split and
federated learning approach. IEEE Transactions on Wireless Communications, 22(4),
pp.2650-2665. doi: 10.1109/TWC.2022.3213411.

[75] Workflow optimization for parallel split learning, retrieved December 15, 2024,
https://github.com/jtirana98/SFL-workflow-optimization

[76] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
learning, 2011, doi: 10.1561/2200000016

[77] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan. Preemptive scheduling of a single
machine to minimize maximum cost subject to release dates and precedence constraints.
Operations Research, vol. 31, no. 2, pp. 381–386, 1983

[78] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778

[79] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014

[80] D. Belson, “State of the Internet Q4 2016 report,” Akamai Technologies, vol. 9, no. 4, 2017.

[81] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available:
https://www.gurobi.com

 Page 102 of 102 © 2023-2025 TaRDIS Consortium

https://doi.org/10.48550/arXiv.2110.02642
https://doi.org/10.1016/j.actaastro.2024.03.072
https://doi.org/10.1016/j.jcp.2018.10.045
https://github.com/jtirana98/SFL-workflow-optimization
https://www.gurobi.com

	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	1.1OVERVIEW
	1.2RESULTS SUMMARY
	1.3DELIVERABLE STRUCTURE

	2ADVANCES ON FRAMEWORK SUPPORTING AI/ML MODELLING PRIMITIVES
	2.1THE FLOWER-BASED FL TOOL
	2.1.1THE FLOWER-BASED FL TOOL DEMONSTRATION
	2.1.2DISTRIBUTIONALLY ROBUST FL
	2.1.3ANOMALY DETECTION
	2.2SPLIT LEARNING
	2.3PTB-FLA AND MPT-FLA
	2.3.1PUBLISHED RESULTS AND VIDEO DEMONSTRATION
	2.3.2PTB-FLA DEVELOPMENT PARADIGM ADAPTATION FOR CHATGPT
	2.3.3MPT-FLA DISTRIBUTED LAUNCHER
	2.3.4MPT-FLA VALIDATION AND EVALUATION
	2.3.5DISTRIBUTED APPLICATIONS FOR MNIST NN TRAINING AND TESTING/INFERENCE ON PTB-FLA AND MPT-FLA
	2.3.6TOWARDS FORMAL VERIFICATION OF FEDERATED LEARNING ORCHESTRATION PROTOCOLS ON SATELLITES
	2.4FEDRA: ADVANCING DECENTRALISED FEDERATED LEARNING
	2.4.1INTRODUCTION AND CONCEPTUAL FRAMEWORK
	2.4.1.1Key Innovations:

	2.4.2CONCEPTUAL ARCHITECTURE OF FEDRA
	2.4.3LOW-LEVEL FEDRA'S ARCHITECTURE AND PROCESS - ARCHITECTURAL COMPONENTS IN DETAIL
	2.4.3.1P2PHandler (handler.py)
	2.4.3.2DataLoaderHandler (process.py)
	2.4.3.3Operations (operations.py)
	2.4.3.4NetworkState (state.py)

	2.4.4THE FEDERATED LEARNING PROCESS IN FEDRA
	2.4.5ADVANCED FEATURES AND FUTURE DIRECTIONS

	3ADVANCES ON AI-DRIVEN PLANNING, DEPLOYMENT AND ORCHESTRATION FRAMEWORK
	3.1PEERSYMGIM: AN ENVIRONMENT FOR SOLVING THE TASK OFFLOADING PROBLEM WITH REINFORCEMENT LEARNING
	3.2FAUNO: FEDERATED AI NETWORK ORCHESTRATOR
	3.2.1 FAuNO Overview
	3.2.2 FAuNO orchestration mechanism
	3.2.3 Preliminary Results
	3.2.3.1 Baselines
	3.2.3.2 Metrics
	3.2.3.3 Testing scenarios

	4ADVANCES ON LIGHTWEIGHT, ENERGY-EFFICIENT ML TECHNIQUES
	4.1PRUNING
	4.2EARLY EXIT OF INFERENCE
	4.3KNOWLEDGE DISTILLATION
	4.4DEXIT FRAMEWORK: A COMPREHENSIVE ANALYSIS
	4.4.1THE PROBLEM SPACE
	4.4.2DEXIT HIGH-LEVEL ARCHITECTURE
	A diagram of a software system

Description automatically generated with medium confidence

	4.4.3DEXIT CORE ARCHITECTURAL COMPONENTS
	4.4.3.1Edge Device
	4.4.3.2Cloud1 Node
	4.4.3.3Cloud2 Node
	4.4.3.4Network layer (libp2p)
	4.4.3.5Network state management

	4.4.4DEXIT KEY SOFTWARE COMPONENTS
	4.4.4.1P2PHandler (network/handler.py)
	4.4.4.2NetworkState (utils/state.py)
	4.4.4.3CIFARDataLoader (data/dataloaders.py)
	4.4.4.4Early Exit Models (early_exit/)

	4.4.5DEXIT WORKFLOW
	4.4.6KEY FEATURES AND ADVANTAGES
	4.4.6.1Adaptive Computation
	4.4.6.2Decentralised Architecture
	4.4.6.3Flexibility and Heterogeneity
	4.4.6.4Reduced Latency and Bandwidth Usage
	4.4.6.5Enhanced Privacy and Security

	4.4.7CHALLENGES AND FUTURE DIRECTIONS
	4.4.7.1Dynamic Load Balancing
	4.4.7.2Model Consistency and Updates
	4.4.7.3Privacy-Preserving Techniques
	4.4.7.4Fault Tolerance and Recovery
	4.4.7.5Standardisation and Interoperability

	4.4.8CONCLUSION
	4.5COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK

	5POSITIONING OF ML/AI TOOLS IN TARDIS
	5.1OVERVIEW AND RELATION WITH TARDIS REQUIREMENTS
	5.2INTERACTION WITH TARDIS PROGRAMMING ABSTRACTIONS
	5.3INTERACTION WITH TARDIS PROPERTY VERIFICATION TOOLS
	5.4INTERACTION WITH TARDIS DATA MANAGEMENT AND DISTRIBUTION PRIMITIVES
	5.5INTERACTION WITH TARDIS IMPLEMENTATION AND EVALUATION
	5.6INTERACTION WITH TARDIS DISSEMINATION, EXPLOITATION AND STANDARDISATION

	6ML MODELLING OF TARDIS USE CASES
	6.1ACT USE CASE
	6.1.1AUTOENCODER-BASED OUTLIER DETECTION AND K-MEANS
	6.1.1.1Algorithm 1
	6.1.1.2Algorithm 2

	6.1.2THE EXPERIMENTAL DATASET
	6.1.3RESULTS AND DISCUSSION
	6.1.3.1Results on Experiment 1
	6.1.3.2Results on Experiment 2
	6.1.3.3Scalability and computational aspects

	6.2GMV USE CASE
	6.3EDP USE CASE
	6.4TID USE CASE

	7DISCUSSION AND FUTURE WORK
	7.1CONTRIBUTIONS TO TARDIS PROJECT OBJECTIVES
	7.1.1Flower-based FL tool contributions to the TaRDIS project objectives
	7.1.2PTB-FLA and MPT-FLA contributions to the TaRDIS project objectives
	7.1.3FAuNO and PeersimGym contributions to TaRDIS project objectives
	7.1.4Fedra and lightweight ML tools contributions to TaRDIS project objectives

	7.2CONTRIBUTIONS TO WP5 OBJECTIVES
	7.2.1Flower-based FL tool contributions to the TaRDIS WP5 objectives
	7.2.2PTB-FLA and MPT-FLA contributions to the TaRDIS WP5 objectives
	7.2.3Fedra contribution to the TaRDIS WP5 objectives
	7.2.4Orbit determination ML algorithms contributions to the TaRDIS WP5 objectives
	7.2.5FAuNO and PeersimGym contributions to the TaRDIS WP5 objectives
	7.2.6Lightweight ML techniques contribution to the TaRDIS WP5 objectives
	7.2.7Communication efficient vertical federated learning contribution to the TaRDIS WP5 objectives

	8CONTRIBUTION TO TARDIS KPIS
	8.1KPIS FOR THE FLOWER-BASED FL TOOL (T-WP5-01/02/03)
	8.2KPIS FOR THE PTB-FLA AND MPT-FLA (T-WP5-04)
	8.3KPIS FOR THE FAUNO TOOL (T-WP5-05)
	8.4KPIS FOR THE FEDRA FRAMEWORK (T-WP5-09) AND LIGHTWEIGHT ML TOOLS (T-WP5-06/07/08)

	9CONCLUSION
	REFERENCES

