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EXECUTIVE SUMMARY 

This report presents the main results and outputs of work package 6 (WP6) of the TaRDIS 
project during the first 14 months of the project.  
 
Work package 6 is responsible for developing and making available the fundamental 
technology that supports the operation and management of swarm applications. Due to this, 
WP6 is also a contributor to the TaRDIS toolbox, and produced prototypes of artefacts that 
can be integrated into the development of different swarm applications. 
 
The activity of WP6 has been conducted across the three tasks that compose WP6, with the 
following main conceptual results and activities. 
 
On task 6.1, which is focused on developing and making available membership and 
communication abstractions we have: 
 

● Studied how to generalise the services and API of decentralised overlay networks and 
communication protocols into membership and other abstractions. We have shown the 
feasibility of using these abstractions by forking the Babel framework core. We have 
noted that supporting multiple interaction models did introduce visible overhead, and 
based on this decided to rely on simplified, and less flexible, versions of these APIs in 
the TaRDIS project. 

● Based on the composition of a partial-view based membership decentralised service, 
and an epidemic-style broadcast protocols, we have proposed a novel decentralised 
global-membership abstraction. We have devised the protocol to ensure that if the 
membership of a swarm remains stable for a long enough period, and the network does 
not present partitions, then every node will observe the correct membership of the 
swarm. 

● Conducted efforts to allow the integration of the Actyx middleware into the TaRDIS 
ecosystem, by extending its operation to include novel swarm communication 
primitives into its operation. 
 

On task 6.2, which is focused on developing and making available distributed data 
management solutions for swarm applications we have: 
 

● Proposed Arboreal, a novel distributed data management solution that extends from 
cloud infrastructures to the edge. Arboreal supports hundreds of different edge 
locations, and relies on dynamic fine-grained replication, where data objects are 
automatically replicated to edge locations where they are accessed (and removed 
when they are no longer useful). The system provided causal+ consistency 
guarantees, and this is achieved by leveraging on a hierarchical approach to 
interconnect data storage replicas that extends to the data placement scheme. 

● Developed PotionDB, a geo-replicated storage system that provides strong eventual 
consistency under partial replication, where no location hosts the entirety of the data 
managed by the system.  PotionDB provides a large-scale highly performant storage 
solution that allows swarm applications to interact with the closest datacenters only. 

● Developed a set of adapters - for the Babel framework - that expose the API for 
interacting with data management systems defined by the TaRDIS consortium to 
interact with existing and legacy distributed data storage systems, including 
Cassandra, C3, Engage, and a blockchain-based system. 
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Finally, in the context of task 6.3, which is dedicated to providing the support to manage 
complex swarm systems, which include collecting telemetry and reconfigure components of 
such systems we have: 
 

● Developed mechanisms to collect - locally at each process of a swarm – different 
performance indicators and telemetry information concerning the device where the 
process executes, the application process, and even protocol-specific indicators from 
protocols that are building blocks of the application. This information is collected in a 
centralised way at each process, which enables local correlation of telemetry 
information and performance indicators and can be exported in different formats. 

● Explored how to take advantage of containerization technology, to reconfigure 
components of a swarm application by looking at these different components (i.e., 
processes) using hierarchical namespaces. We provide additional flexibility to the 
execution of these reconfigurations by enabling namespaces to be configured with 
labels, which allow reconfiguration targets to be defined based both on the hierarchy 
of namespaces, but also values of labels across components. 

 
 
In terms of artefacts and software produced during the reported period, WP6 has made 
available several prototypes. We note that some of these prototypes have been written using 
the Babel framework that had been previously developed by members of the TaRDIS 
consortium, and whose goal is to simplify the development and execution of distributed 
systems through the composition of distributed protocols. The motivation for this is that Babel 
features an event-driven development API that is compatible (and well aligned) with the 
programming model being adopted by the TaRDIS consortium. The prototypes/reference 
implementations developed and made available are: 
 

● An implementation and demonstrations of feasibility (using simple demonstrators) of 
the generic APIs for decentralised overlays and communication protocols as a fork of 
the Babel core. 

● A simplified generic API for decentralised membership and communication protocols, 
that allow protocols developed using it to be easily exchanged among them when 
implementing swarm applications. This was achieved as a library for the Babel 
framework. 

● We have two reusable decentralised and existing membership abstractions/protocols 
namely HyParView and X-BOT in the context of the Babel Framework. These 
implementations can work as reference implementations to both protocols, and they 
use the membership generic API described above. 

● We have implemented two reusable decentralised and cooperative broadcast 
protocols that operate on top of membership abstractions detailed above. A flood-
based broadcast and a gossip-based eager broadcast protocol. 

● We have implemented several adapters for existing distributed storage solutions for 
the Babel framework, that expose the API for these components being considered by 
the TaRDIS consortium. 

● We have implemented the prototype of the epidemic global view for the Babel 
framework. This prototype also serves as a reference implementation and is built by 
taking advantage (and composing) some of the components references in this list. 

● A prototype (and reference implementation) for the Arboreal Cloud-Edge data 
management system. 

● A prototype (and reference implementation) for the PotionBD geo-replicated storage 
system. 

● An implementation of adaptors to existing storage solutions based on the API selected 
by the TaRDIS consortium. This includes support for the systems Cassandra, C3, 
Engage, and a blockchain system (IBM Hyperledger Fabric). 
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● A prototype of a distributed management and configuration system based on 
hierarchical namespaces. 

● A fork of the Babel-core component that provides support for collecting and exporting 
runtime telemetry information about local protocol instances, applications, and the local 
device. 

 
 
WP6 has produced four scientific papers and has disseminated the activities of the project in 
a tutorial held at an international conference. 
 
In the next development cycle of TaRDIS, WP6 will address challenges related with security 
across two of its tasks and start to coalesce its results into tools that will integrate the TaRDIS 
toolbox, continuing to generate the runtime support for the development and execution of 
swarm applications. 
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1. INTRODUCTION 

 
This report discusses the main activities of the Work Package 6 (WP6) of project TaRDIS in 
the first 14 months of the project. Whereas TaRDIS overall mission is to develop new solutions 
and technology that lower the expertise required to develop correct-by-design swarm 
applications. Swarm applications are applications that follow a mostly decentralised design 
and where application components exist in distinct, and potentially highly heterogeneous, 
devices that might operate under independent administrative domains, but that actively 
cooperate to achieve a common goal. WP6 is responsible for dealing with the inherent 
challenges of developing and making available fundamental building blocks and runtime 
support for such TaRDIS swarm applications. 
 
The work package does so in three directions that have connections among themselves, and 
that map to the three tasks of the work package. The first task of WP6 (Task 6.1) is devoted 
to developing and making available decentralised abstractions to track the membership and 
support different communication paradigms in swarm systems. While there have been several 
contributions in the past regarding the design of scalable membership abstraction based on 
partial-views (i.e., where each element of the system is only aware of a small fraction of other 
elements of the system), understanding the trade-offs between these solutions, and verifying 
their applicability to different decentralised settings has not been systematically done in the 
past. Furthermore, from a software development point of view, typically these different 
solutions do not present a unified interface, that facilitates their interchange as components 
on concrete software pieces, which makes the reuse of (reference) implementations hard to 
achieve. Finally, in some concrete settings such as a smart factory, it is interesting to also 
support (eventually correct) scalable global membership services to support the operation of 
monitoring services that are not essential for the correctness of the system, such as to provide 
feedback - albeit imprecise - to humans or machines. 
 
Complementary to the efforts in both developing and making available different solutions for 
membership management for swarm systems, Task 6.1 also explores different communication 
primitives for these settings, with emphasis on point-to-multipoint abstractions (e.g., broadcast, 
publish-subscribe). We note that there are several proposals in the literature for different 
solutions to these problems in decentralised systems, however, and similar to membership 
solutions, they lack a common interface that simplify the decoupling between a concrete 
solution and the application logic that uses it, and existing implementations are hard to reuse 
in different contexts. Task 6.1 addresses this by devising a common interface, making 
available different implementations that can be used across different applications, and 
exploring novel solutions that provide different trade-offs in the design space of such solutions. 
Notice that many of these communication primitives operate on top of decentralised 
membership abstractions, therefore these efforts are not disconnected from each other. 
 
On top of these fundamental building blocks of swarm systems, the second task of WP6 (Task 
6.2) focuses on devising and making available integration with distributed data management 
solutions. On one hand, this task is focused on devising solutions that, although are distributed 
, operate on dedicated infrastructure that can cover the space in the cloud-edge continuum. 
Such solutions differ among them on the abstractions and guarantees that are exposed to 
applications that use them on their design. This includes different data models, different 
querying capabilities, and maybe more importantly for several aspects of application logic, 
what are the consistency guarantees that are provided when considering that for availability 
and fault-tolerance, data must be replicated by these distributed storage systems. To further 
simplify the development of swarm applications, this task also has explored how to provide 
support for integration with existing, and well-known, distributed data management systems, 
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such as Cassandra, and some of the systems previously designed by members of the TaRDIS 
consortium. 
 
Related to this aspect, but in a much more disruptive research and development direction, 
Task 6.2 is also designing and implementing novel distributed data management solutions that 
do not require dedicated infrastructure for their operation. Instead, and in a much more natural 
fashion for swarm systems, these novel distributed data management systems emerge from 
the operation of different application components in the swarm. In this context there are many 
research challenges to be addressed, for instance ensuring data durability in this context is 
significantly more challenging. Maybe more importantly, in such a setting, the activity of a 
byzantine process in the system can disrupt the operation of the distributed data management 
system, which can have daunting effects on the application's correctness. These challenges 
are going to be addressed by Task 6.2 in the second half of the TaRDIS project. 
 
Finally, the last vector being tackled by WP6 is focused on the monitoring and automatic 
control of swarm systems on its third task (Task 6.3). Due to the potential large scale and 
complexity of swarm systems, manual or human centric management can (easily) become 
unfeasible, and can easily become an error-prone task, with a non-negligible risk for the 
operation of swarm applications. To both address this problem and, in some cases, to improve 
the performance of complex swarm applications, Task 6.3 focuses on run-time support for 
autonomic management of these applications. This entails collecting telemetry information 
about the runtime operation of the system and resource consumption and performing some 
form of in-network processing and dissemination of this information towards locations that can 
make administrative decisions regarding the current system configuration. The second 
challenge to be addressed in this task, is how to coordinate the execution of reconfigurations 
of a system that might require administrative actions to be executed across many components, 
potentially scattered across different administrative domains.  
 
Task 6.3 has the most interaction with the mechanisms for decentralised intelligence being 
developed in the project (which is part of the activities of work package 5), since devising a 
plan for reconfiguration of complex systems can easily become impossible through a set of 
rules, or even heuristics, defined by domain experts. Instead, it is much more interesting to 
take advantage of distributed machine learning mechanisms to empower the definition of 
reconfiguration plans, based on the acquired telemetry. Another challenge that must be 
tackled by Task 6.3 is on the fact that reconfiguration should avoid depending on a single 
centralised entity, and instead explore mechanisms, where different segments of the system 
have autonomy to perform reconfigurations, with minimal coordination with other segments, 
as to ensure scalability of these solutions. 
 
The solutions and technology being developed and researched in the context of WP6 are 
made available, as much as possible, through open source tools and software, that also act 
as reference implementations for these solutions. Some of these artefacts (which we also 
discuss in this report) will be later integrated in prototypes of the TaRDIS use case or serve as 
the reference implementations for devising adequate components for those use cases. 
 
The reminder of this report is organised as follows: Section 2 provides both the progress report 
on the activities of each of the tasks of WP6, in particular Section 2.2 reports on the main 
results of Task 6.1; Section 2.3 summarises the main results of Task 6.2, and Section 2.4 
provides insights on the main results of Task 6.3; with Section 2.5 reporting on some of the 
immediate planned activities for these tasks. Section 3 provides pointers and brief descriptions 
or instructions on the software produced by WP6 that illustrates the results reported on Section 
2.2. Section 4 provides a state of the art revision on the fundamental fields in which WP6 acts. 
Section 5 reports on complementary activities of WP6 in terms of scientific publications and 
dissemination activities; Section 6 briefly discusses point-of-contact and relationships with 
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activities being conducted on the other technical work packages of TaRDIS; and finally, 
Section 7 concludes this document, with a summary of the main results achieved in the 
reported period. 
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2. PROGRESS REPORT AND PLAN 

2.1 OVERVIEW 

In the reported period of TaRDIS (first 14 months) WP6 has focused on the following activities, 
which we further detail in the following text. 

This deliverable, which is focused on Decentralised Membership and Communication 
Primitives, has explored generic APIs for both types of services, studying different solutions 
found in the literature to identify different types of services that these abstractions can provide. 
Based on this, we have developed within the context of the Babel [59] framework - which we 
are using in the project as a tool to develop prototypes and reference implementation - a 
simpler and pragmatic common API for this type of abstractions and implemented several 
solutions found in the literature both for partial-view based membership services (commonly 
referred as overlay networks) and application-level broadcast communication protocols, that 
are now provided as reusable (and interchangeable) components to implement swarm 
applications. To showcase the benefits of having such protocols as reusable components, we 
also designed and implemented a scalable global view membership solution that takes 
advantage of a partial-view membership protocol and a data dissemination communication 
primitive. We have also taken the existing proprietary Actyx middleware (owned by project 
partner ACT) and improved its module structure so that it can effectively and efficiently be 
consumed as an open-source building block; we have then open-sourced it and began work 
on reshaping it so that it can be used as a library instead of as a separate process. 

Task 6.2 which is focused on decentralised data management and replication, has focused its 
efforts on developing novel distributed data management solutions that operate on dedicated 
infrastructure. As detailed further ahead in this document, these solutions are Arboreal, which 
is the first distributed data management system that can extend from cloud to the edge, 
featuring dynamic data replication and offering to application (so-called) causal+ consistency; 
and PotionDB a distributed storage solution system featuring strong eventual consistency 
while taking advantage of partial replication. In addition to these two main results, this task 
also developed and made available adaptors, that conform to a generic interface for interacting 
with data management system put forward by Task 6.2, for existing storage systems, including 
the well-known Cassandra distributed no-SQL database, and system proposed by members 
of the consortium in the past. The source code for these systems is provided also in the project 
repositories for ease of access. The Actyx middleware offers reliable and durable event stream 
replication, to which we have added data retention policies in anticipation of using Actyx as 
another swarm data storage system. 

Task 6.3 which is focused on decentralised monitoring and reconfiguration focused, in the 
reported period, on developing mechanisms to systematically collect runtime telemetry from 
swarm application components, at different levels, including resource consumption at the 
device level, performance indicators from processes, individual distributed protocols, and 
applications. To do so, Task 6.3 developed a fork of the Babel framework core that provided 
the support for collection of metrics from different components of an application, and 
developed APIs for making this telemetry information available to the Babel core, allowing that 
information to be exported. The other direction in which Task 6.3 made progress in the 
reported period, was on devising a (currently centralised) solution for runtime reconfiguration 
of swarm application components based on namespaces and taking advantage of 
containerization technology to execute these reconfigurations, considering a design point 
relevant for legacy components of swarm applications that do not expose a reconfiguration 
API, an aspect in which Task 6.3 will work in the future. 
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2.2 DECENTRALISED MEMBERSHIP AND COMMUNICATION PRIMITIVES (TASK 

6.1) 

Nowadays, distributed architectures are widely used to build robust, scalable, and fault-
tolerant systems. In distributed architectures, different components of the system - typically 
materialised by a process running on some machine - cooperate with each other over a 
network to perform a specific task or achieve some goal. In this context, a network, such as 
the Internet, is composed of a set of interconnected machines (or processes) in which 
information can be exchanged between pairs of these elements [18].  
 
Systems that operate on top of a network can take advantage of a more centralised or 
decentralised approach. In a centralised system all information needs to be sent to a central 
point to be processed, thus making this central component responsible for a significant part of 
the operation.1 Alternatively, in a decentralised architecture the processes present on the 
network can interact and cooperate directly without requiring an intermediary. This is achieved 
by having processes sending and receiving messages directly among themselves.  
 
Steen and Tanenbaum discuss in [18] the difference between a distributed system and a 
decentralised system stating that both may rely on multiple machines performing a certain 
operation but in the first case “processes and resources are sufficiently spread across multiple 
computers”, e.g., an email service that relies on multiple servers as a way to distribute load 
and improve fault-tolerance, yet in the second case “processes and resources are necessarily 
spread across multiple computers” making the distribution of processes a core aspect of the 
system.  
 
A decentralised approach offers many advantages when compared to a single process or a 
group of autonomous processes that cannot interact directly between them. These include 
improved availability by avoiding single points of failure since any process (in general) can 
replace any other process that fails during the execution of the system; better scalability by 
opening possibilities for clients and data to be distributed across nodes [19, 18], hence taking 
advantage of additional computational resources (across a potential large number of 
machines); improved reliability by replicating information across different machines (and 
across different geographic locations in some cases) minimising the risk of data loss; 
potentially decentralised systems can also increase privacy and robustness to malicious 
attacks due to the lack of a single target for setting up an attack and the possibility of using the 
nodes in the network to hide the identity of users or the exchanged information among them 
[20, 21]. 

 
On the other hand, centralised systems can be considered easier to maintain as information 
only needs to be sent to a central point [18]. Consequently, they do not have to deal neither 
with the heterogeneity questions related with the characteristics of each node nor the 
membership management and communication issues regarding the distributed nature of the 
infrastructure. In fact, when comparing centralised and decentralised systems it is not 
uncommon to consider decentralised systems algorithms to be more complex and difficult to 
understand and implement than their centralised counterparts. 
 
While decentralised systems were popularised in the past by peer-to-peer systems [19], swarm 
systems can be perceived as an evolution of peer-to-peer architectures, that reap the benefits 
of having systems that are more flexible, cope well with heterogeneity, are more adaptable, 
and have improved robustness and scalability. Naturally, the foundations of the swarm 

 
1 The reader should note that the central component might only be logically centralised, in the 
sense that it might be materialised by several co-located machines, such as a service running 
on a data center. 
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systems share commonalities with peer-to-peer systems. In particular, underlying the 
operation of a swarm system, we require two fundamental abstractions: i) membership 
abstractions, that track at each moment which process are currently part of the system, 
providing to each element of the swarm information - even if incomplete - about other 
processes with whom it can cooperate and interact; and ii) communication abstractions, that 
provide to each process in the swarm the ability to exchange information with other elements 
of the swarm, potentially with different guarantees. 
 
Membership abstractions. Ideally, any decentralised system would operate with access to 
the full membership of the system at each individual device, ensuring that each process knows 
about every other process in the system. Unfortunately, in dynamic settings, where processes 
can fail, join, or leave the system concurrently, the cost to maintain such information up to date 
becomes prohibitively high [22,23,24]. 
 
To address this challenge, a common solution is to allow nodes to only maintain information 
about a small set of other participants in the system, i.e., relying on a partial view of the system 
[22, 23]. In this case, each process in this system runs an instance of a distributed protocol 
that manages the contents of its own partial view, usually called the process neighbours, 
reflecting changes to the system membership. While there are different strategies to manage 
such partial views [22,25,26] the closure of the neighbouring relationships denoted by the 
partial views of each process denote an application-level network that is often called overlay 
network in the literature [22,25,26,27,28,19]. 
 
Overlay networks can have numerous connected processes (or devices) cooperating, for 
instance, to process large amounts of data or to share information in a decentralised way, as 
in the BitTorrent [29] protocol. There are scenarios where they operate at a much smaller 
scale, consider for instance applications of Internet Of Things (IoT) related with the 
management of sensors and actuators in a house exchanging information between 
themselves [30], or industrial machines on a factory exchanging data and coordinating their 
activities [31, 32, 33], decentralised solutions for the management of energy grids [27, 45, 6], 
or swarms of satellites in space communicating and autonomously adjusting their positions to 
avoid collisions [34]. Naturally, different scenarios may benefit significantly from different 
overlay networks (or membership abstractions), since there is no silver bullet solution that will 
be able to cope with different scales, workloads, application requirements, etc. 
 
In particular, there are two main families of overlay networks that while materialising a 
membership abstraction based on a partial view, can provide additional functionalities for 
application components operating on top of them. Unstructured overlays, such as HyParView 
[22], Cyclon [25], Scamp [26] have random topologies (i.e., neighbouring relations between 
nodes are defined at random) and are good for applications that promote random interactions 
(for instance executing anti-entropy [38] between nodes to synchronise information, or execute 
gossip protocols to disseminate date [36,37]).2 In contrast, structured overlays (popularised by 
distributed hash tables) such as Chord [39], Tapestry [40], Pastry [41], Kademlia [35], rely on 
global coordination strategy to manage the contents of partial views, which allows them to 
perform efficient application-level routing, and locate nodes (or resources on nodes), while 
being more expensive to manage and less fault tolerant than their unstructured counterparts 
[19]. 
 

 
2 We note that there are also unstructured overlay solution [42,43] that while being random in nature, 
can adapt the topology of the overlay over time (in a decentralised manner) to optimise the overlay for 
some set of application-specific criteria, for instance, to promote low-latency links as part of the overlay 
to speedup the dissemination time of information executed on top of that overlay. 
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Communication abstractions. Like membership abstractions for decentralised systems 
(which, as discussed previously include both swarm and peer-to-peer systems) there are a 
plethora of possible communication abstractions that can be leveraged when building such a 
system. These can be decomposed in two main groups: point-to-point abstractions that enable 
the communication between two processes, and point-to-multipoint abstractions which provide 
a means for a process to send information to a set of other processes. 
 
While point-to-point abstractions are simpler to implement, they can have different guarantees 
and information exposed to the application that can affect their operational cost. For instance, 
a point-to-point communication abstraction, might be best-effort and provide no feedback to 
the application regarding the delivery of information to a given destination, or by opposition, it 
could provide delivery guarantees in some scenarios and feedback back to the application 
when some information cannot be confirmed to be delivered successfully to the destination3. 
 
More interesting however are point-to-multipoint abstractions, since there are different classes 
of these abstractions that provide different API and promote different types of interactions 
between processes that form a swarm application. Point-to-Multipoint abstractions include 
application level and collaborative broadcast [22], multicast [104], and publish-subscribe [105], 
in turn the guarantees provided by these abstractions can be different, for instance all of them 
can operate in best-effort mode or be probabilistically reliable, allowing to explore different 
implementation alternatives in the design space that feature different operational costs and 
resource consumption. 
 
When designing communication primitives - particularly the point-to-multipoint ones - for 
swarm systems, one typically requires the use of a (decentralised) membership abstraction 
over which a distributed communication protocol can be deployed that allows to implement the 
communication primitive. Consider for instance the broadcast primitive, that fundamentally 
allows a process to disseminate information to all participants of the system that are active 
around the time of the transmission. Such a primitive can be implemented on top of an 
unstructured overlay (which typically have a low maintenance cost and high fault-tolerance as 
discussed previously) using different alternatives, such as flooding messages over a random 
graph, which will ensure that all correct processes will receive a message as long as the 
underlying overlay network is connected [22] (i.e., there is at least one path between each 
process of the system and every other process). This however might yield too many redundant 
messages being transmitted and received by processes, which consumes not only bandwidth 
but also CPU. To lower this cost, we could instead rely on a gossip-based approach [44], 
where each node will select among its neighbours a configured amount of targets (called 
typically the fanout of the protocol) to retransmit each message received for the first time. This 
can lower the communication cost, but the guarantee that all processes receive a message 
that is broadcasted becomes probabilistic and dependent on the value of the fanout parameter. 
A different alternative is to take into consideration the feedback of the dissemination process 
of previous messages to select to which neighbours to transmit a new message, generating 
emergent structures [45,46] or even spanning trees in a fully decentralised manner [47,37]. 
While this tends to minimise the global bandwidth and CPU cost by lowering the number of 
redundant messages, such approaches might not be suitable for scenarios where the 
membership of the system changes frequently. Furthermore, such approaches can lead to 
unbalanced in the load imposed to individual nodes in the system, where a small fraction of 
processes are responsible for forwarding the largest fraction of messages, although there have 
been efforts in the past to devise solutions that mitigate this effect while also improving fault-

 
3 Notice that while these abstractions have a relationship with transport protocols such as TCP, UDP, 
or QUIC, the concepts discussed here go beyond the layer 3 of the classical OSI model, since we are 
considering retransmissions and feedback mechanisms back to the application which are not part of the 
interface exposed by such protocols.  
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tolerance, by combining different interior-node disjoint emergent trees with network-coding 
[48]. 
 
Task 6.1 Objectives. A key insight to extract in relation to both membership and 
communication abstractions is that the design space for these primitives, in the context of 
decentralised systems in general and swarm systems in particular, is quite large.  
 
Moreover, different designs explore trade-offs between guarantees, operational costs, and 
assumptions regarding the execution environment. Identifying the correct membership and 
communication abstractions and specific implementations for a given swarm application is 
therefore not a trivial task.  
 
To further complicate this, many designs of these abstractions rely on specialised APIs, with 
the consequence that if a swarm application is developed on top of a particular abstraction, it 
will become hard to switch that abstraction by a different one in the future.  
 
Considering this, Task 6.1 has the overall mission of designing and validating decentralised 
membership and communication primitives that can address the requirements of the different 
swarm applications, including the use cases and solutions developed across the TaRDIS 
project. 
 
in more detail this task develops and validates: 
 

● Underlying abstractions for supporting the development and efficient operation of 
higher-level data management (Task 6.2) and reconfiguration services (Task 6.3). 
 

● Decentralised membership services that are responsible to maintain information about 
the active elements (e.g., devices/processes) in a swarm system. Such services can 
optionally authenticate participants in a system. 
 

● Decentralised communication primitives that operate on top of the membership 
services to provide point-to-point and point-to-multipoint communication primitives with 
different guarantees (e.g., reliability, feedback to programmer) supporting different 
programming models (including support for publish/subscribe models, application-level 
multicast/broadcast). 
 

● Provide a comprehensible suit of different abstractions that can be used as much as 
possible in an interchangeable fashion to develop swarm applications. 

 
In the following we report on the results produced by Task 6.1 in the first year of the TaRDIS 
project:  
 

● Section 2.2.1 reports on our initial efforts to devise generic APIs for decentralised 
overlay and communication primitives that decouple the logic of swarm applications 
from the concrete abstractions being employed to support the operation of the system.  

 
● Section 2.2.2 reports on the initial design of a scalable global membership service that 

is built on top of a partial view membership abstraction and a decentralised broadcast 
primitive. Such a primitive can be used by swarm systems to collect and monitor the 
evolution of the membership of (medium scale) swarm systems, being of practical use 
for instance for the use case of a smart factory put forward by Actyx.  

 
● Section 2.2.3 reports on the effort of getting the Actyx middleware ready for inclusion 

into the TaRDIS toolbox: we plan on extending and improving it with the swarm 
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communication primitives detailed above as well as using it as the communication 
medium underlying the workflow based TaRDIS communication model described in 
deliverable D3.1. 
 
 

2.2.1 A Generic API for Decentralised Overlay and Communication Protocols 

2.2.1.1 Overview and Motivation 

As discussed previously, decentralised and swarm applications typically rely on, or more 
precisely are built on top of, decentralised protocols, that provide abstractions and (distributed) 
services that simplify the design of the application.   
 
These applications interact with decentralised protocols and their services through interfaces 
exposed by them. Many protocols have been proposed, in the context of peer-to-peer 
architectures, that provide, in different ways, abstractions related with membership 
management and support for different communication primitives between peers. 
Unfortunately, each protocol, even if it can be seen as offering a given type of service, typically 
exposes different interfaces, which leads application implementations to be fully entwined with 
the protocols used during their development, and additionally, makes it very hard to change 
the implementation to use a different protocol. 
 
Considering the (extensive) literature in peer-to-peer systems, overlay networks can be used, 
as discussed previously, to provide a membership service. In fact, various examples of 
protocols that build and manage overlays networks exist, such as Chord [39], Kademlia [35], 
Freenet [20], HyParView [22], among others [50, 25, 51, 52, 37]. Examining these protocols it 
is easy to identify two classes of protocols based on the way peers are organised and 
connected between them leading to different network topologies: structured and unstructured 
overlay networks. The first ones are defined by enforcing pre-defined restrictions on the 
connections between peers, thus leading the overlay network to evolve towards a specific 
topology (e.g., nodes can form a ring, a tree, among others). The second ones do not enforce 
any type of network topology, allowing nodes to organise freely in a flexible way (usually 
randomly) [19, 42].  
 
In addition to the lack of standard interfaces that are materialised by protocols offering an 
equivalent abstraction (e.g., membership, broadcast), there is the additional difficulty that a 
single protocol can actually offer different types of services as part of their operation, when we 
refine these abstractions beyond the high level functionalities of membership and 
communication. For instance, consider a distributed protocol such as Chord or Kademlia. As 
part of the operation of the protocol, it maintains (locally at each node) information about other 
active processes in the system, hence it provides a membership service - that ideally should 
be exposed by a common membership - but since these protocols are DHT, they are provide 
application-level routing services - which in turn should be exposed to applications though a 
common application-routing interface. 
 
Therefore, the motivation for this activity comes from the need of identifying and defining new 
generic abstractions that can effectively support swarm applications, namely the ones related 
with membership management and communication, and their subtypes. These abstractions 
should be related with the services provided by protocols to applications, in opposition to the 
current protocol-dependent ones to decouple application implementations from concrete 
distributed protocol offering these abstractions as much as possible. 
 
The main contributions that resulted from this activity were:  
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● A study of multiple decentralised protocols with the objective of identifying common 
functionalities/services provided by them, thus allowing the definition of a set of 
protocol-independent interfaces to expose that functionality. 
 

● A proposed architecture that integrates and maps the defined protocol-independent 
interfaces to different distributed protocols, which allows decentralised and swarm 
applications to be developed focused on the abstractions they use instead of the 
concrete protocol that materialises those abstractions. 
 

● We developed a reference implementation, based on a fork of the Babel framework 
(discussed in further ahead) in Java , of this proposed architecture. This reference 
implementation includes some well-known decentralised protocols implementations to 
illustrate the capabilities of the proposed architecture. 
 

● A set of use-case simple applications that illustrate the benefits of using the protocol-
independent interfaces that we have identified. 
 

● An experimental evaluation that on one hand shows the decrease in complexity of 
implementing decentralised applications using our proposal and shows that our 
architecture introduces minimal overhead at runtime. 

2.2.1.2 Identifying Decentralised Abstractions and Interfaces 

There is many decentralised protocols, many of which provide similar functionality but relying 
on different approaches more suitable for specific execution scenarios or operational 
conditions. We considered a set of such distributed protocols to identify common functionalities 
provided by them and derive protocol-independent interfaces for these functionalities (that we 
dub decentralised services) 
 
As an example, consider the pairs of protocols Kademlia [35] and Chord [39], and HyParView 
[22] and Cyclon [25]. By comparing the first two it is possible to note that both protocols 
implement a functionality able to provide applications with the node (or the set of nodes) whose 
identifier(s) are closer to a given identifier. In the second case both HyParView and Cyclon are 
able to provide a sampling of peers that are part of the system. In both pairs of protocols we 
can derive a single interface that exposes these functionalities that are independent of the 
protocol, uniformizing the way applications can take advantage of that decentralised service. 
 
Another challenge faced when building decentralised and swarm applications is related with 
the code complexity needed to instantiate and interact with underlying protocols, in particular 
when an application needs to rely on multiple protocols simultaneously. Decoupling 
applications from specific protocols requires that the selection of the concrete protocol that will 
materialise a given abstraction can be delayed until the application executed, ideally with that 
selection being independent of the application code (this can be useful for instance, if a new 
protocol appears that provides a service used by the application that is better suited for that 
application later).  
 
This can be achieved by allowing applications to only define the decentralised services they 
require, the properties/guarantees of those services, and a set of parameters related with the 
instantiation and operation of protocols that can provide that service. These parameters can 
include, for instance, their own network address or the contact nodes to be used when joining 
the network. 

2.2.1.2.1 Generic decentralised Services Interfaces 

Following the design of Babel [59] that is being used in TaRDIS to implement prototypes of 
solutions derived in WP6, we assume an event based interface. When designing the interfaces 
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for each service, we not only considered the operations that are made available to applications 
(through events of type Request, that can optionally generate events of type Reply), but also 
consider Notifications. Aligned with Babel, we define notifications as information that 
applications/protocols can receive (asynchronously) from (other) decentralised protocols, 
through each service interface, but that are not a direct result of a requested operation, e.g., a 
notification about a suspicion that some other process in the system has failed. 
 
We also considered the existence of service-related properties in each interface, such as the 
type of overlay (structured or unstructured) in which a protocol, implementing the interface, 
relies on. As a result, a set of properties were defined for each service. These properties are 
optional and each protocol, providing a set of services and therefore implementing a set of 
interfaces, can then define which properties they have and  their respective values. Service-
related properties can be used to guide applications in choosing the most adequate protocol 
to materialise a decentralised service. 
 
Before presenting protocol-independent interfaces identified by us, it is important to offer 
explanations for the type of interface we present and some parameters that are widely used 
in the description of their operations. In some operations we rely on parameters of the type 
Host. This type can be considered as the information required to identify and contact a given 
device or process in a swarm system, e.g., a pair IP:Port. Some operations also contain a 
parameter, called requestId, with a type byte array. This parameter makes it easier to use the 
asynchronous event-driven Request/Reply interface, by guaranteeing that the identifier 
provided on the request is returned on the reply, therefore allowing applications to easily match 
a reply with the respective request. 
 
For this work we have considered most of the protocols referenced up to this point, and based 
on their analysis we have identified four distinct decentralised services - membership 
management, data dissemination, application-level routing, and resource storage - which we 
define more precisely in the following and for which we devised protocol-independent 
interfaces that we also present. 
 
Membership Management 
 
The Membership Management service interface is related with the network management 
operations that are provided by decentralised protocols. We expect that almost all protocols 
need to implement this interface as they are required to provide a management service with 
operations for joining or leaving a network and getting either logical neighbours or samples of 
other processes in the system. This is the fundamental service (and interface) of protocols that 
provide a peer sampling service [54], like HyParView or Cyclon since these protocols were 
fundamentally designed to provide a partial view (stable or dynamic) to local peers. We now 
present the interface that we derived for this decentralised service divided into Operations 
(Requests, some of which might generate replies) and Notifications. 
 
Operations  
 
Join(Set<Host> contacts) The Join operation is responsible for allowing a node to join a 
network given a set of process identifiers (defined here with the Host data type) are used as 
contact (a process that is already part of the system and that can be contacted to introduce 
the new participant into the system). The way each protocol takes advantage of this set for 
joining the network is protocol-dependent, e.g., a protocol can use only the first node on the 
set (eventually contacting other ones if some fail to reply), multiple nodes with no specific 
order, or multiple nodes by the order they appear on the set. 
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Leave() The Leave operation allows a node to leave the network. This operation does not 
require any parameters and protocols can either rely on an implementation that executes tasks 
to gracefully leave the system, minimising the impact on the system, for instance, by 
transferring information to other nodes; or an empty implementation will make that a node that 
leaves the network intentionally to be treated as if it has failed. A node that leaves the system 
through the leave operation should be able to join again latter using the Join operation.  
 

GetNeighborsSample(byte[] requestID, Integer t) → (byte[] requestID, Set<Host> sample) 

The GetNeighborsSample operation allows to obtain from the membership management 
service a set of process identifiers that are part of the system. The returned process identifiers 
depend on the logic of the protocol implementing this abstraction. The GetNeighborsSample 
operation takes as parameters the requestId and t. The requestId parameter is a unique 
identifier that identifies the request, and t is an optional Integer parameter allowing to define 
how many processes should be returned. This operation must generate a reply that contains 
the requestID and a set of process identifiers with a size of at most t, if t was defined in the 
request. 
 
Notifications 
 
NeighborUp(Host h) We considered the NeighborUp notification to be asynchronous 
triggered by a protocol when a new peer becomes known, i.e., when a new process can now 
be returned by the GetNeighborsSample operation, if no limitation on the set size is requested. 
The notification only has one field of type Host, containing the identifier of the new peer. 
 
NeighborDown(Host h) We considered the NeighborDown notification to be triggered by 
protocols that implement the membership management service interface when a process in 
the system is detected as no longer being available, i.e., that process can no longer be  in the 
set returned by the GetNeighborsSample operation. The notification only has one field, 
represented here with the Host data type, containing the information about the removed 
process. 
 
Properties 
 
A set of properties, related with the Membership Management service interface, was also 
defined in our solution. As explained before these properties are optional and assist 
applications in choosing the best protocol, considering their specific requirements, between all 
protocols providing the same service. Therefore, protocols may or may not provide values to 
those properties. The properties considered for this service are presented below. 
 
View Type The View Type property defines the type of network view, Global or Partial, of a 
given protocol. If a protocol maintains a partial view of the network, a mechanism needs to 
exist to update it, more details on this are provided below when describing the Peer Sampling 
Type property. 
 
Peer Sampling Type This property can be used by peer sampling protocols to define its peer 
sampling service as Static or Dynamic. We consider that a peer sampling protocol provides a 
static sampling service when the set of nodes returned by the GetNeighborSample operation 
does not change across executions of that operation if no nodes join or leave the system. 
Conversely, a peer sampling protocol can be considered as dynamic if the sample of nodes 
returned suffers changes over time, even if no nodes were added or removed from the 
network.  
 
Request Nodes This property is closely related with the numNeighbors parameter of the 
GetNeighborsSample operation and is defined as a boolean value. If the property is set as 
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true this means that the protocol supports the definition of a maximum number of nodes to be 
returned when performing the GetNeighbors operation, i.e., considers the numNeighbors 
parameter. If the property is set as false, the protocol does not consider the numNeighbors 
parameter. 
 
Overlay Structure This property allows the classification of a protocol as structured or 
unstructured, based on the type of overlay network maintained by the protocol.  
 
Application-level Routing  
 
The Routing service interface provides the operations related with the capability of obtaining 
a node, or a set of nodes, present on the network, based on the proximity of their logical 
identifier to some other identifier, therefore effectively allowing routing information to a 
particular node. DHT protocols, like Kademlia and Chord, provide this service by returning the 
nearest nodes to an identifier based on a protocol-dependent distance notion. 
 
Protocols focused on resource location both based on exact-match queries, like Kademlia or 
Chord, and non-exact match queries, like Gnutella [55] or Gia [52], can materialise this 
interface. 
 
Operations 
 

FindNodes(byte[] requestID, byte[] searchData) → (byte[] requestID, Set<Host>) The 

FindNodes operation is the foundation to route information to a given node or set of nodes. 
The operation receives two parameters, requestID and searchData. The requestID parameter, 
defined as a byte array, is used to match requests and corresponding replies, whereas the 
searchData parameter contains the query to be verified when performing the routing operation. 
With the objective of maintaining the operation as generic as possible, we do not make any 
assumption on the data type of queries that can be sent to protocols to perform the routing 
operation and, as so, we consider the searchData parameter as being a byte array. Thus, 
protocols implementing the operation are responsible for processing the query data received 
in accordance with their specific operation, e.g., protocols like Gnutella or Gia may consider 
the searchData to be a textual representation of a resource, whereas protocols like Kademlia 
or Chord can perform a hash on the data provided and use the result to return the nearest 
nodes based on some distance metric. The operation returns the requestId provided and a set 
of nodes (defined here with the Host data type) containing the result of the routing operation. 
The use of a set as a return value is explained by the necessity of maintaining the operation 
as generic as possible, to allow it to be implemented by different protocols designed 
independently and that operate under different assumptions. 
 
Notifications 
 
We have identified no asynchronous notification that would make sense in this class of 
decentralised services. 
 
Properties 
 
Multiple Results The Multiple Results property consists of a Boolean value specifying if a 
protocol can return multiple nodes when performing the FindNodes operation, i.e., if the 
returned set may contain more than one element, or otherwise, if the protocol returns at most 
one element. 
 
Resource Storage 
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The Resource Storage service interface provides operations that can be leveraged by 
protocols implementing mechanisms for resource storage and location, which is a common 
usage of Distributed Hash Tables (or DHTs). Many protocols that provide the Routing service, 
will also provide Resource Storage, however we consider that both services have significant 
differences regarding their operations and can be presented as two distinct services. 
 
Therefore, while the Routing interface identifies a set of processes through a query, the 
Resource Storage operations are related with the ability of providing decentralised resource 
storage, independently of the underlying mechanisms.  
 
Operations 
 
PutResource(byte[] key, byte[] data) The PutResource operation allows storing a new 
resource on the system. Our interface defines two parameters for this operation: the key 
parameter, used as key for the resource (e.g., the name of the resource), and the data 
parameter, which contains the content. As we do not make any assumption about the key or 
data types, we consider both fields as being an array of bytes. Protocols implementing this 
operation should then store the resource in some node(s) present on the network allowing 
later retrieval. We note that this interface does not prescribe or exposes any replication 
strategy which is relevant for ensuring content availability in face of failures. Such mechanisms 
are implementation dependent.  
 

GetResource(byte[] requestID, byte[] key) → (byte[] requestID, Boolean found, byte[] key, 

byte[] data) This operation allows the retrieval of a resource, stored on the decentralised 

system, by providing the respective key. We propose two parameters for performing this 
operation: a requestID parameter, defined as a byte array, to facilitate the use of this operation 
in asynchronous environments; and a key parameter, a byte array which contains the identifier 
of the resource to be retrieved. The operation should return the requestID, a boolean found 
indicating if the requested resource was obtained, the key identifying the resource that was 
queried, and the content (defined as a byte array named data), whose value only has meaning 
if the found field is set to true. 
 
RemoveResource(byte[] key) The RemoveResource operation allows for the removal of a 
resource stored on the system, given its identifier. The operation only receives a key 
parameter, defined as a byte array, which represents the identifier of the resource to be 
removed. 
 
Notifications 
 
NewResource(byte[] key) The NewResource notification should be triggered within a 
particular process of the system when a resource is stored (or updated) at that node (at the 
protocol implementing the resource storage interface). The notification contains the key of the 
inserted resource.  
 
RemovedResource(byte[] key) The RemovedResource notification should be triggered 
within a particular process when a resource is removed from that node. The notification 
contains the key of the removed resource.  
Dissemination 
 
The Dissemination service interface supports a fundamental point-to-multipoint 
communication primitive. This interface should be implemented by protocols that are able to 
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disseminate (e.g., broadcast or multicast typically in a collaborative way) a message 
throughout all participants of the system. 
 
Protocols responsible for the dissemination of information, such as push-based gossip 
protocols [24], Plumtree [37], GoCast [56], or Araneola [57], are examples of protocols that 
can implement this interface to make available to applications (and other protocols) a 
dissemination service. 
 
In this work we consider the existence of a Disseminate operation that should be implemented 
by protocols providing the service.  
 
Operations 
 
Disseminate(byte[] data) The Disseminate operation allows to delegate the dissemination of 
data to some dissemination decentralised service by an application (or other protocol). The 
guarantees of this communication primitive are protocol dependent. The operation considers 
only one parameter, data, which contains the information to be disseminated. As we do not 
make any assumption on the type of information that can be disseminated by protocols 
providing this service, the data parameter can be considered as an array of bytes. 
 
Notifications 
 
DataReceived(byte[] data) A DataReceived notification can be triggered by protocols, to 
applications/other protocols that consume information received from the Dissemination 
service. The notification is triggered whenever  new data, disseminated by any node on the 
network, is received. The DataReceived notification contains only the data field, a byte array 
responsible for storing the disseminated data. 

2.2.1.3 Architecture and Implementation 

In this section we briefly discuss the proposed architecture and components to provide generic 
decentralised services that can be instantiated only at runtime, removing the dependence of 
applications from specific protocols. Our solution consists of multiple components, working 
together to provide an abstraction layer between applications and decentralised protocols. The 
purpose of this abstraction layer is to provide a generic, standard, and simple way for allowing 
applications to interact with decentralised protocols, where only the generic interfaces 
(presented above) are exposed. 
 
Additionally, the solution presented here also aims at simplifying the choice and instantiation 
of the most adequate protocol, providing the decentralised services required by an application, 
as well as allowing a simple management of the multiple decentralised protocols being 
executed simultaneously to provide the required services within a single process. 
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Our solution consists of four main components, illustrated in the figure above, that also 
captures the main interactions between these components. The main components of our 
solutions are the following (which we present in more detail in the following). 
 

● The Protocol Manager, which is the core of our solutions that bridges and mediates all 
other components; 
 

● A set of generic interfaces for allowing applications to interact with decentralised 
protocols; 
 

● The decentralised protocols providing a set of services, which is an extensible set of 
protocol implementations; 
 

● The applications that require services provided by the protocols, where for generality 
we assume that multiple applications can be executed within the context of the same 
process. 

 

2.2.1.3.1 Protocol Manager 

The Protocol Manager component is responsible for managing all the other components. In 
our solution we consider that for each process only one instance of the Protocol Manager 
exists. All other components interact with the local Protocol Manager to request and access 
resources or information about the system. We have implemented a simple prototype and 
demonstrator of this approach, as an extension to the Babel framework, hence the listings 
below are in Java (the programming language used to develop Babel) but the described 
approach can be implemented in any programming language. 
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Among other relevant information, the Protocol Manager maintains information about: 
 

● The available decentralised protocols, as well as the services provided by each one; 
● The available services (and interfaces) for interacting with decentralised protocols; 
● The decentralised protocols running at a given moment; 
● The generic interfaces instantiated, at a given moment, to enable the interaction 

between the applications and each executing protocol; 
● Global configuration parameters and properties requested by application. 

 
The Protocol Manager provides applications (and other protocols) the means for instantiation 
of a new decentralised protocol. This can be achieved by providing the protocol name (e.g., 
Kademlia) or the service interface required by the application/protocol (e.g., Routing). The 
interfaces exposed by the Protocol Manager to allow protocol instantiation are presented in 
the two listings below.  
 

 

 
 

The main difference between these two API is that on the first one, the programmer indicated 
a specific protocol to be instantiated (parameter protocol), while on the second the programmer 
provides a set of Services that the protocol should provide. The latter is the more interesting 
one, since it fully decouples the logic of the code being written of any specific protocol. 
 
We note that, both methods require the requester to provide an integer named protocolId, 
Applications, as well as other system components, can rely on this identifier to refer to that 
specific instance of the protocol, which for instance allows for different instances of the same 
protocol to co-exist at runtime, using different parameters, and used for different purposes. 
 
These methods return the protocolId and a set of service APIs, since a single protocol, as 
discussed previously, can implement more than one decentralised service. The requester can 
then use these APIs to interact with the multiple services provided by the protocol. 
 
In addition to the parameters discussed above, these APIs all allow present the following 
parameters: 
 
useExisting The useExisting parameter can be used by applications to indicate what should 
happen if an instance of the requested protocol is already running. If this parameter is set to 
true and an instance of the requested protocol is already running, the Protocol Manager does 
not create a new instance of the protocol and, instead, returns information about the existing 
one. If this parameter is set to true, applications should check the identifier of the protocol 
returned (protocolId) as a result of the newProtocol operation, because it might not be the one 
requested if another one is already running. 
 
host The host parameter allows applications to specify the host information, e.g., IP address 
and port, that the protocol should use for its operation. If the useExisting parameter is set to 
true and a protocol instance is already running, this parameter is ignored. 
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runProperties The runProperties parameter allows to specify the static configurations that a 
protocol should use when running. 
 
requiredProperties The requiredProperties parameter enables applications to provide a set 
of properties to be used when choosing the protocol to be instantiated, between all protocols 
that provide the services requested in the servicesSet parameter. The properties provided in 
the requiredProperties parameter differ from the ones in runProperties: whereas the first ones 
are related with each decentralised service and allow choosing the most appropriate protocol 
for a specific scenario, the second one is related with the protocol execution, as explained 
before. 

2.2.1.3.2 Generic Interfaces and Different Programming Models 

The generic interfaces are special protocols (using the Babel terminology) that mediate the 
interaction between applications and specific decentralised protocols. Each interface consists 
of a set of operations, notifications, and properties, related with a specific decentralised 
service. While we can consider several services, in our prototype we consider the service 
interfaces presented previously (see Section 2.2.1.2.1). 
 
When a protocol is instantiated (by any of the mechanisms discussed above), all service 
interfaces associated with the protocol are also created (remember that a single decentralised 
protocol can provide multiple decentralised services, for instance Chord support Application-
level Routing, Membership Management, and Resource Storage). 
 
If a different application or protocol needs to access the service exposed by a protocol already 
in execution, it must request the instance of that decentralised service using the protocol 
identifier from the Protocol Manager. All interactions with that concrete protocol will be made 
through the appropriate service interface. 
 
While Babel, and the strategy currently put forward by the TaRDIS project and discussed in 
Deliverable D3.1 [58], is to take advantage of a programming model based on state machines, 
where the interaction between components happen through asynchronous events, this 
approach is sometimes cumbersome to programmers, particularly when two components 
interact using a request-reply model, where component A requests something of component 
B that it requires to complete the task it is currently executing. 
 
Consider the following concrete example. A gossip-based protocol - say protoA - receives a 
request from an application to disseminate a message m. However, to do this, protoA will have 
to interact with a Membership Management service (another protocol) - say protoB - to get a 
sample of other participants in the system to whom it can forward message m. To achieve this, 
since the interaction between protoA and protoB is achieved exclusively through 
asynchronous events, it will force protoA to: 
 

1. Upon receiving the application request to disseminate m, protoA must store m, 
generate a requestID which is also stored associated with message m. 

2. Issue a GetNeighborsSample request to the Membership Management service API 
that will be asynchronously delivered to protoB. 

3. When protoA receives the GetNeighborsSample reply from protoB at some point in the 
future it will have to extract the requestID in that reply, match that requestID to the 
message m that he previously stored, and forward that message to the elements in the 
sample also contained within the GetNeighborsSample reply. Only after this is the 
handling of the application request completed. 

 
While this interaction model allows protocols to handle other requests while additional 
information is gathered from other components and allows to create a complete isolation 
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between the state managed by each individual protocol, this is from a programming point of 
view, time consuming, verbose, and error prone. To overcome this limitation of this 
programming model, we have decided to experiment with supporting three distinct interaction 
models between components (in this case protocols) using a single implementation and 
dealing with this at the Generic Service Interface. Therefore we support the following three 
interaction patterns: 
 

● A fully asynchronous interaction based on event-driven mechanisms with requests and 
replies; 

● A Promise-based interaction where requesters receive a promise (or future) and can 
execute other tasks until they block until the promise can be resolved (i.e., they can 
block their execution until the reply is received; 

● A synchronous (blocking) interaction where the requester always waits until the 
operation is complete whenever they execute a request to another component. 

 
Considering a wide range of interaction mechanisms provides programmers with different 
possibilities of interaction. This also shows that it is possible to have adaptors that 
transparently expose a different interaction model, while the asynchronous event-based model 
is used to implement and govern the execution of different protocols. 
 
Under the fully asynchronous interaction model, protocols and applications are implemented 
by creating and registering handlers that are automatically triggered whenever any event 
happens. These events can be a request received from some other component, or a reply 
received form a protocol in response to a request that had been previously triggered, or an 
asynchronous notification that something relevant has happened4. 
 
The promise-based interaction model allows implementations to take advantage of the 
constructions present in many programming languages, such as Java [21], Scala [24], C++ 
[20], or Rust [22], where an asynchronous operation can return a Promise (or Future) that can 
later be tested (or blocked on) for completion. This allows applications to control the amount 
of concurrency and defer the execution of operations, e.g., by requesting an operation, 
obtaining a Promise, performing some additional computations, and verifying later if the 
operation is completed and the results are available to continue its execution. 
 
In the synchronous interaction model, applications will immediately block and wait for the 
completion of a request operation that generates a reply. This mechanism, although not 
allowing any type of concurrent execution, provides developers with a simpler and less error-
prone model of interaction as they do not need to define handlers for the results of 
asynchronous operations nor deal with Promises. 
 
Even though, as stated before, three types of application-interface interaction models are 
possible within our solution, some operations, due to its nature, might not provide all interaction 
options. As an example, we can consider the Disseminate operation of the Dissemination 
service interface. This operation does not return any value to the application requesting it, as 
it triggers the dissemination of data throughout the system by delegation of that task to a 
protocol. In this case, in general, only one option is available for requesting the operation, as 
there is no distinction between synchronous and asynchronous implementations.  

 
4 There is also an additional type of event that we consider in Babel [59] named timers. Timers allow a 
protocol to execute some behaviour (i.e., execute an event handler) when some timeout or periodic 
timer occurs. 
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2.2.1.3.3 Decentralised Protocols 

The decentralised protocols are the providers of functionality (i.e., the components that 
effectively materialise decentralised services). As an example, if we consider the Kademlia or 
Chord protocols they can provide the operations related with the Application-level Routing 
service (among others). Considering our implementation in Babel, existing decentralised 
protocol implementations had to be modified to make them compatible with our approach, we 
now briefly explain what are the main requirements for protocol implementation to use our 
approach. 
 
Protocols need to implement the logic to handle requests, process them, and return results, 
trigger the notifications exposed by the service interface, and handle any other type of events 
(potentially generated by other protocols) that are essential to ensure their correct operation. 
Although not mandatory, properties related with each implemented service also need to be 
defined and exposed by the protocol logic, to guide applications in choosing the most suitable 
protocol for their operation.  
 
Some additional restrictions are also applicable to the implementation of methods and 
parameters used when instantiating the protocols. These restrictions depend on the 
implementation of the Protocol Manager and are related with how the necessary parameters 
are transmitted to the protocol, e.g., the protocol identifier, the host information, or the 
configurations related with the protocol operation. In fact, although this might be 
implementation-dependent, we expect the way each protocol is instantiated, i.e., the 
mechanisms used on instantiation and the initialization, to be the same across all protocols 
instantiated by a process of a given swarm. 
 
As with all other components in the system, protocols can also rely on the Protocol Manager 
to obtain run-time information about the system operation, namely information about other 
running protocols, system configurations, access to generic interfaces to interact with other 
protocols, among others. 

2.2.1.3.4 Applications 

The applications are the system components that primarily5 act as a client for a set of 
decentralised services, provided by decentralised protocols. Applications obtain from the 
Protocol Manager (references for) instances of protocols providing the services required for 
their operation, both by requesting a new instance to be created, or by obtaining references 
for a previously instantiated protocol. Applications, as well as any other component, can also 
request from the Protocol Manager relevant run-time information about the system operation. 
 
As explained before, applications interact with the decentralised protocols by issuing events 
that are of  the type Request and registering handlers, through the generic interfaces provided, 
that handle events generated as responses to those requests, or asynchronous notifications. 
Consequently, application programmers can change the protocol providing a given service to 
another one, just by modifying the instantiation call to the Protocol Manager, and without 
making other changes on their code, as all interactions with protocols are executed through 
generic (and protocol-independent) interfaces. This requires a discipline on developing 
application code, where applications never interact directly with protocols and, as such, 
requests for obtaining a protocol instance or to execute an operation must always be 
performed, respectively, through the Protocol Manager or the corresponding generic service 
interfaces. 
 

 
5 We remind the reader that a decentralised protocol itself might use a decentralised service exposed 
by another decentralised protocol, akin to how protocols in the OSI network stack can use the 
functionalities provided by other protocols in lower layers of the OSI stack. 



TaRDIS | D6.1: Report on the first iteration of TaRDIS toolbox components 

 

 Page 28 of 100 © 2023-2025 TaRDIS Consortium 

2.2.1.4 Experimental Validation 

The architecture and solution described here was implemented as a Java prototype by 
modifying the Babel framework - we discuss this framework in Section 3.2 - by creating a fork 
of Babel which we provide. We further discuss the implementation of this solution in Section 1 
of this report. We note that the results reported here have guided the evolution of tools for the 
main version as Babel, that we also discuss in Section 1. 
 
We now present the performance evaluation of our approach by comparing both routing and 
dissemination-based applications against their respective versions that only rely on the Babel 
framework [59]. To evaluate the performance of our solution each application was executed 
for a predefined amount of time and a set of relevant performance metrics, described in detail 
in each of the following sections, were measured. The results presented for each of the test 
conditions were, in all cases, obtained from an average of multiple test executions and, when 
deemed necessary, the confidence intervals (with a level of confidence of 95%) are also 
presented. Also, the retrieval of the metrics for each test was performed by parsing the logs 
obtained from each execution, after the test has been completed, to not contaminate the 
execution of the tests with the load of computing or storing metric-related data.  
 
A comparison between initialization times was also performed to assess the impact of the 
Protocol Manager and the Generic Services programming interfaces. We consider the 
initialization time as the period between the request for the instantiation of a protocol, both 
through the Protocol Manager or directly by interacting with the Babel core, and the moment 
when the protocol is available to be used by an application.  

2.2.1.4.1 Routing Application 

We have developed a simple routing application that is responsible for performing routing 
requests of randomly generated queries through a swarm system, by relying on a routing 
protocol like Kademlia. The application expects to receive the set of nodes matching the query 
provided. In our evaluation the Kademlia protocol was executed with the following 
configurations: 𝑘 𝑣𝑎𝑙𝑢𝑒 = 20, 𝑎𝑙𝑝ℎ𝑎 = 3, and the timeout for node lookups was configured with 
a value of 10 seconds. The routing requests were carried out by the application, in a closed-
loop, for 4 minutes with a start and cooldown period of 2 minutes each (hence each experience 
had a total duration of eight minutes). 
 
Evaluation Metrics 
 
When evaluating the performance of the routing application, the following metrics were 
considered.  
 
Number of requests sent The number of requests sent by the application for performing 
routing operations, each with a different randomly generated query.  
 
Number of results received The number of results received, from the routing protocol, 
containing the set of nodes that result from executing the provided query. 
 
Average Latency The average latency, in milliseconds, for receiving the routing results in 
relation to the time at which the request was performed.  
 
Throughput The throughput is presented in responses per second and represents the rate of 
routing responses arriving in a given time interval (1 second in this case). The throughput was 
obtained by dividing the number of results received by the period of testing (in seconds). 
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Recall The recall represents the fraction of values that are considered correct across all results 
that were returned by the routing protocol. This metric was calculated by verifying, for each 
result obtained, if the returned set of nodes was correct and, then, dividing the number of 
correct results by the total number received results.  
 
Results 

 
The experiments with the routing application were performed by running independent Java 
processes in a computational cluster. We executed experiments with 192, 384, and 576 
processes split, respectively, by 3, 6 and 9 machines running 64 nodes each. Each test was 
executed three times and presented results are averaged across executions. The comparison 
of latencies between the versions of the routing application, with and without relying on the 
developed abstractions is presented on the figure above at left, whereas the figure at right 
provides a comparison between the initialization time of both application versions. The 
initialization time was obtained by calculating an average of the initialization times considering 
192 nodes split into three machines. The results concerning the remaining metrics collected 
in these experiments are provided in the table below.  
 

 
 
Through the analysis of the results presented in the table and the rightmost figure it is possible 
to conclude that, although the use of our solution incurs in a slight increase on latency and, 
therefore, a reduction in throughput, the overall impact is quite small. In fact, when considering 
the confidence interval, both solutions might even be considered equivalent performance-wise. 
This result is not surprising, since the impact of the network on these performance metrics is 
expected to be orders of magnitude above the overhead introduced by our solution. We note 
that the recall value of 1.0, obtained on all experiments confirms that both the implemented 
decentralised protocols and all other components of our solution are exhibiting a correct 
behaviour, hence, as expected, our approach has no effect on the correctness of protocols. 
 
Regarding the time required for protocol initialization, the results show that the time to initialise 
a protocol using the proposed abstraction is, not surprisingly, slightly above than the one 
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measured when using the unmodified Babel framework. This is expected since the 
mechanisms for protocol instantiation are more complex in our solution, however, as shown 
before this impact on the overall performance becomes negligible since instantiation of 
protocols happens, most of the time, only once when a new participant is joining the swarm 
system. 
 

2.2.1.4.2 Dissemination Application 

We also have developed a simple dissemination application to further evaluate our solution. 
This application operates by having each process in the swarm system to periodically request 
the dissemination of a message with a configurable size. The application generates an 
identifier for each message (an UUID) and logs the moment when the dissemination request 
was performed. Then, when a message is received, the identifier is obtained and logged 
together with a timestamp. 
 
For this application we leveraged on Plumtree as dissemination protocol and on HyParView 
as the underlying peer sampling protocol. The Plumtree timeout, for considering a connection 
as failed, was configured to 7 seconds, while the timeout for awaiting a GRAFT response was 
defined to 3.5 seconds. The HyParView protocol relied on active and passive views of size 5 
and 12, respectively. The application performs the dissemination of a message every 30 
seconds, with a size of 100 KB, during a period of 4 minutes with a start and cooldown period 
of 2 minutes each (similarly to the previously reported experiments, each of these experiments 
lasted for a total of eight minutes). 
 
Evaluation Metrics 
 
When evaluating the performance of the dissemination application, the metrics described 
below were considered: 
 
Number of messages sent The total number of messages requested by the application to be 
disseminated throughout the network, relying on the underlying protocols. For each request, a 
payload with the pre-configured size was disseminated. 
 
Total delivered messages The total number of messages delivered on the various instances 
of the dissemination application (across different processes). As an example, if a message is 
disseminated by a node on a network containing 8 nodes, and all of them receive the message, 
we consider the total delivered messages is 8. 
 
Average Latency The average latency was considered as the average of the maximum 
latencies obtained for each disseminated message. To retrieve this metric the maximum 
latency for each message was obtained by calculating the difference between the moment 
when the message was last delivered and the moment when the dissemination request was 
made. Then, an average of the maximum latencies was performed to obtain the final result. 
 
Throughput The throughput is presented in messages per second and represents the rate of 
messages delivered on the system in a given time interval (1 second in this case), averaged 
across all nodes in the system.  
 
Reliability The reliability represents the fraction of disseminated messages that are correctly 
delivered to nodes present in the swarm system. In our evaluation we calculated the reliability 
for each message by dividing the number of nodes on which the message was delivered by 
the total number of network nodes. An average of the reliability values was then performed to 
obtain the result. 
 



TaRDIS | D6.1: Report on the first iteration of TaRDIS toolbox components 

 

 Page 31 of 100 © 2023-2025 TaRDIS Consortium 

Results 

 
The evaluation of the dissemination application was performed by executing 192, 384, and 
448 processes distributed across 3, 6, and 7 machines respectively, in a computational cluster. 
Each test was repeated ten times and the results presented here, for each set of test 
parameters, are the average of the results obtained across these independent executions. The 
higher number of tests performed, in comparison with the routing application, is explained by 
the higher variation in the obtained results. The figure at the left above shows the comparison 
between the latency values of both implementations of the dissemination application, with and 
without relying on our solution, whereas the figure to the right presents the comparison 
between the initialization time of protocols on both implemented versions (considering 192 
processes split across three machines). Finally the table below summarises the results 
obtained for the remainder measure performance indicators. 
 

 
 
Considering the results in the table and figure to the left it is possible to observe similar results 
to the ones previously discussed for the routing application. There is no significant difference 
in the performance of both implementation alternatives, although as expected the additional 
mechanisms of our solution to enforce the generality of interfaces exposed by concrete 
decentralised protocols do introduce a small overhead that can be can be observed on the 
results, and that grow slightly with the size of the system, which makes sense, since messages 
will have to be forwarded a larger number of times for larger systems, which increases the 
effect of the overhead of our architecture. 
 
When considering the results regarding the initialization time, presented in the right-most 
figure, we can observe similar results to the ones discussed for the routing application. By 
comparing the initialization times of both implementations of the dissemination application it is 
possible to conclude that the initialization of a new protocol on the implementation relying on 
our solution takes slightly longer than the native Babel counterpart.  
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2.2.1.4.3 Code complexity evaluation 

 

 
 

For comparing the code complexity between the application versions with and without relying 
on the programming interfaces and management mechanisms proposed here, we performed 
an analysis over the number of lines of code required for implementing each version of the 
applications. Here we consider two additional applications that we have developed, a first one 
that is based on providing sample of nodes in the swarm (Peer Sampling) and another, which 
is more complex, that allows nodes to store, access and edit files that are stored on a DHT, 
which notifies nodes that accessed the file whenever it is updated by using a dissemination 
service (Resource Storage). 
 
When counting the lines of code required to implement each version of the applications the 
blank lines and comments were not considered as well as the lines related with imports and 
package definitions in Java classes. In the comparison between both versions of the resource 
storage application, the lines related with the user interaction for performing the operations 
were also not considered. 
 
The results regarding the code complexity of each application are presented on the table 
above, which shows that  overall the number of lines of code required to implement each 
application using our approach is indeed smaller than when using the native Babel (the table 
indicated the percentage of lines of code reduction). This improvement is explained by the 
simple mechanisms for protocol instantiation as well as the common programming interfaces 
exposed, providing multiple synchronous and asynchronous interaction mechanisms between 
protocols and applications. 
 
As an example, when considering the Routing application, the version relying on the 
abstractions developed can launch a thread, active on the period during which the routing 
requests should be performed, to issue FindNodes operations in a closed-loop. The code 
leverages on the Futures-based interaction mechanism, requesting the operation and blocking 
on the returned future until the return value is available or a timeout expires. The simple 
instantiation of a protocol just by calling an operation exposed by the Protocol Manager, 
therefore obtaining the programming interfaces to interact with it and perform the necessary 
operations is also an advantage. Additionally, being able to implement the application without 
having to interact with the Babel mechanisms simplifies the development both by reducing the 
learning curve for the programmer and the complexity of code, as no initialise methods, 
specific constructors, nor event handlers are required because the application does not need 
to be implemented as a Babel protocol. 
 
Conversely, the version of the application that does not rely on the abstraction layer, due to 
the necessity of development as a Babel protocol, needs to implement all logic based on the 
asynchronous mechanisms, exposed by Babel, through the implementation of handlers 
responsible for dealing with the replies from the FindNodes operation. The application is also 
required to register those handlers in Babel. To implement the same closed-loop behaviour, 
the handler should send the next FindNodes request to the protocol when the last one is 
received. Moreover, the start and stop of the routing requests needs to be managed by a Babel 
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timer, which requires the development of one more Java class and the respective timer 
handler. 
 
When considering more complex examples, like the Resource Storage application, the 
advantages of our solution become even more evident as not only the number of lines of code 
is reduced, but also the implementation of the application becomes significantly easier for the 
developer. As an example, when a node wants to add a new file a set of operations might 
need to be performed that include instantiating a protocol to disseminate the notifications 
related to the file, performing a Join operation in the dissemination protocol using the nearest 
nodes to the file identifier as contact nodes, and disseminating the notification throughout the 
network. 
 
Implementing the logic described before requires coordination between distinct protocols and 
operations. An example of coordination is obtaining of the nearest nodes to the file identifier, 
which needs to be done before requesting the Join operation from the dissemination protocol, 
as the nodes retrieved will be used as contacts. The coordination between different operations 
leverages on the blocking operations exposed by our solution instead of dealing with an 
asynchronous interaction model that requires more complex logic and is more error-prone. 
 
Additionally, in more complex applications that require multiple decentralised protocols to work 
properly, having a single component for managing all of them (in our proposed solution the 
Protocol Manager) is also an advantage. Moreover, relying on generic interfaces for interacting 
with the services provided by the protocols not only simplifies the development, but also 
contributes to the maintainability by allowing the change from one protocol to another without 
profound application changes. 

2.2.1.5 Summary 

In this activity we performed a study over a set of decentralised protocols, that strived to identify 
decentralised services provided by them. For each of these services we identified which 
operations and properties could fully capture their operation in a protocol-independent way. 
Based on this we devised a set of generic abstractions (or programming interfaces) that can 
be leveraged to interact with decentralised protocols using a service-based approach instead 
of a protocol-based one. Our solution provides multiple interaction mechanisms for requesting 
operations from decentralised protocols, employing both synchronous and asynchronous 
approaches. Programmers can also request a decentralised service to be provided even 
without knowledge of the specific protocols providing it, as the instantiation of protocols can 
be requested just by defining the service(s) and (optionally) the properties required. In 
summary, by combining the devised interfaces with the mechanisms developed for managing 
decentralised protocols running on a system, a middleware solution based on multiple 
components was developed. 
 
We provided a reference implementation of the solution proposed, developed in Java, based 
on the Babel framework. Finally, an evaluation was performed, leveraging on the 
implementation mentioned before, to assess the impact of the solution on the performance 
and code complexity of applications. The results showed that the improvements in terms of 
code complexity are noticeable without a relevant impact on key performance indicators of 
applications. 
 

2.2.2 An Epidemic and Scalable Global Membership Service 

While scalability and availability are primary concerns in swarm systems, and this is usually 
achieved by avoiding a central point of control and taking advantage of decentralised and 
scalable membership services [19,22,25,26], in some scenarios, non-essential tasks could 
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benefit from having an eventually correct notion of a global membership. This can be useful 
for instance to collect statistics from the operation of the system, or to feed information for 
consoles that report the status of the system to human operators. Unfortunately, we have not 
found in the literature a decentralised membership service that could provide an eventually 
correct view of the system membership to nodes in the system, Eventually correct in this 
context means that the global view reported by the system will be correct after a long enough 
period with no changes to the membership and where the network behaves in a synchronous 
way (i.e., there are no network partitions, and nodes can effectively communicate within an 
arbitrary large configurable time window). 
 
To overcome this limitation, and because this functionality has been identified as being of 
relevance for industrial use cases of smart factories [96] we developed a new solution that has 
interesting features. In particular, in addition to providing a global (i.e., complete) eventually 
correct membership view to each node, our protocol takes advantage of a partial view based 
membership abstraction, and a decentralised broadcast communication abstraction. We do 
not prescribe what should be the concrete membership and communication protocol that 
should be employed for the operation of this novel membership service, being sufficient that 
the membership service ensure global connectivity at the random graph denoted by the 
overlay maintained by that service, and the broadcast protocol provides probabilistic atomic 
broadcast with a configurable high probability [22], meaning that with a high probability all 
broadcast messages are eventually delivered by all correct processes. We named this new 
protocol Epidemic Global View. 
 
 

 
 

2.2.2.1 Protocol State and Initialization 

Algorithm 1 (above) shows the proposed interface, internal state, and the special init event 
handler (we assume that when an instance of this protocol is started in some process, the init 
event is automatically triggered, providing the protocol with runtime configuration parameters). 
The protocol exposes the simplified membership protocol interface that we derived from the 
work presented previously on Section 2.b.i. We have simplified the proposed interface to make 
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it more convenient and less intrusive for developers, and we materialised this interface in the 
Babel framework [59] (which we discuss further ahead on Section 3.b). The API has a single 
request, which is to request a sample of elements in the current membership with a size of up 
to ss (Alg. 1, line 3) which has a corresponding reply that can be generated by the protocol 
(Alg. 1, line 5). Additionally, the protocol can emit notifications NeihgborUp and NeighborDown 
(Alg. 1, lines 7-8) which respectively indicated that the protocol has become aware of a new 
peer in the system or suspects that a previously known peer has failed (in this protocol, the 
flag suspect of the NeighborDown notification is always true), respectively.  
 
The protocol state is quite simple, and the design of the protocol is inspired by the design of 
some conflict-free replicated data types (CRDTs) [] where elements that were previously on 
the set are kept as metainformation to avoid their incorrect radiation to the set by a delayed 
past operation. In our protocol this translates to the following design. Each node identifier (we 
recall that typically these identifiers provide the information necessary to contact some process 
in a network, such as IP, port, transport protocols that can be used to contact the node, and 
potentially a logical identifier) is enriched with a numerical timestamp, that acts like a logical 
timestamp, initially this timestamp is set to zero (Alg. 1 line 15), and the timestamp for a 
particular peer p can only be incremented by p (i.e., when a process identifier is forwarded 
among peers, they maintain the timestamp associated with that identifier). 
 
The (current) local view of a process of the system membership is kept on the membership 
set that contains process identifiers (enriched with the logical timestamp) including the one for 
the local node (Alg.1 line 16). Processes that have been previously known (i.e., at some point 
their identifier was in the membership set) but that meanwhile have been suspected of failing 
(we detail how this happens ahead) are moved to the tombstone set. Notice that when moving 
a process identifier from the membership set to the tombstone the timestamp associated with 
that process is kept unchanged. A process identifier (independently of the timestamp value 
associated with it) can only be in one of the membership or tombstone sets of a process (which 
means that at any given point in time a process will, for processes that they have been aware 
at some point, either believe it to be correct or faulty. The last instruction in the Init event 
handler of Algorithm 1 (line 18) is to setup a periodic (local) event that allows the protocol to 
do actions, with the period of this action being a parameter of the protocol. 
 

2.2.2.2 Protocol Operation 

Algorithm 2 (below) shows the event handlers of the other events associated with the operation 
of the Epidemic Global View protocol. We start by the actions that are taken periodically by 
every process executing this process which is captured by the event handler of the 
keepAliveTimer (Alg. 2, lines 7 – 11). This periodic action has two complementary objectives, 
the first is to increment the timestamp associated with the identifier of the local process and 
broadcast it throughout the network in a ALIVE message. This serves the purpose of making 
the local process known to other processes that have joined the system recently (i.e., after the 
last broadcast of the local process), and to prove to other processes in the system that the 
local process remains active. The other purpose is to suspect processes that have not 
disseminated an ALIVE message for a long enough period. For simplicity we assume this to 
be 3 times the value keepAliveTimer period, although this could be adjusted, for instance to 
allow different processes to broadcast their ALIVE message less frequently, by issuing with 
this message the period over which that identifier should be considered valid after reception. 
If a process suspects a process of being faulty due to lack of observable activity by that process 
it broadcasts a SUSPECT message throughout the system containing the identifier of the 
suspected process (which we remind the reader contains the last observed timestamp for that 
process). 
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The core of the operation of the protocol is related with the way that processes handle the 
reception of ALIVE and SUSPECT messages respectively. Upon receiving an ALIVE message 
(Alg. 2 lines 16 – 26) a process will execute the following steps. If process being announced if 
the ALIVE message is already part of the local process membership process and the 
timestamp of the identifier in the membership set is lower than the timestamp of the identifier 
within the ALIVE message, the process updates its local membership set to reflect the higher 
timestamp value (and it also records the time of reception of this message, this was omitted 
from the pseudo-code for readability). If the process identifier was contained within the 
tombstones set (i.e., that process had been suspected) with a timestamp value below the 
timestamp value of the identifier within the ALIVE message, then the local process removes 
the identifier of the process that issued the ALIVE message from the tombstones set and adds 
the received identifier to the membership set. This implicitly means that the process is no 
longer suspected of being faulty. Finally, the process that broadcasted the ALIVE message 
was not in the local membership nor the tombstones sets, this means that this process was 
unknown until this point, and the received identifier is added to the membership set. 
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The reception of a SUSPECT message (Alg. 2, lines 27 – 42) has a somewhat symmetric 
behaviour to that of the ALIVE message, where if the process being suspected, was known, 
and already suspected, and the received message contains an identifier with a higher 
timestamp value we update the tombstones set to reflect that (Alg. 2, lines 39 – 40), and if the 
node whose identifiers is being carried on the SUSPECT message was previously in the 
membership set, with a timestamp lower or equal to the one of the received identifier, that 
node is moved from the membership to the tombstones set and becomes locally suspected 
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(Alg. 2, lines 34 – 38). There is another case which is a node that was previously unknown, 
which is simply added to the tombstones set, but without triggering the local NeighborDown 
notification (Alg. 2, lines 41 – 42). 
 
More importantly, and a key difference in relation to the ALIVE notification, is that if a process 
receives a SUSPECT notification for itself, it immediately takes corrective measures (Alg. 2, 
lines 28 - 33). In particular, if this happens the process will start by increasing the timestamp 
associated with its own identifier until it surpasses the timestamp in the identifier carried by the 
SUSPECT message. After this it immediately propagates an ALIVE message for himself with 
its identifier updated, to ensure that any process in the system that delivered (or will deliver) 
the incorrect SUSPECT message keep the local process as part of their membership sets, 
and consequently as part of the system. 
 

2.2.2.3 Future Work 

We note that the algorithm presented here - and that we implemented in Babel as reported 
further ahead on Section 3.8 - will be evolved in the future. As discussed above, the 
mechanism to suspect that a process is faulty is based on a local perception of time, but this 
requires every process to propagate ALIVE messages using the same period of time, which 
might not be beneficial in several application domains. We have some ideas on how to allow 
additional flexibility in our solution. Another relevant aspect to be tackled in the future is that 
the proposed protocol does not feature security mechanisms, there are several aspects to be 
considered, namely the fact that processes can impersonate other processes issuing ALIVE 
messages in their name, an aspect related with identity verification in decentralised systems 
that we will tackle in the future by taking advantage of asymmetric cryptography to manage 
identities. The other evident attack vector is that a malicious node could disseminate 
SUSPECT messages for another node using an arbitrary timestamp associated with that 
identifier. This can be mitigated by having identifiers be signed by the node itself, which is 
feasible since only a process can increase the timestamp associated with its own identifier. 
This however still allows malicious or faulty processes to incorrectly disseminate SUSPECT 
messages using valid identifiers received through ALIVE messages. This must be tackled by 
further research in the future. 
 
Finally, an aspect that will be addressed in future work is the experimental evaluation of this 
solution on different settings, as to measure the communication and computational overhead, 
and ascertain in which conditions can the protocols become stable (i.e., where in a steady 
state the local perception of nodes regarding elements in the membership remains 
unchanged). 
 

2.2.3 Integrating the Actyx middleware: reliable and durable event broadcast 

The Actyx middleware [101] is a proven software product for the automation of non-real time 
high-level workflows on the factory shop floor. It became clear within the first six months of this 
project that Actyx would be a suitable tool to be added to the TaRDIS toolbox. Initially it was 
proprietary software owned by the project partner ACT, commercially licensed to its customers, 
which includes both factories and factory automation software providers. To more effectively 
support TaRDIS, ACT has released Actyx under the Apache 2 open-source licence in October 
2023, with the source code being available on GitHub. 
 

2.2.3.1 Overview of the Actyx middleware pre-TaRDIS 

The deployed artefact of Actyx is comparable to a database: the application uses the Actyx 
SDK to communicate with an external Actyx process to publish events for dissemination 
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among the other Actyx nodes, and to query the locally stored events, which includes events 
published on other nodes. The events are labelled with a set of tags at the time of publishing, 
allowing queries to select specific substreams of events pertaining to any given item or 
workflow that is modelled on top of this system — this can be compared to the topics in a pub–
sub system like Kafka or Redis, with the difference that Actyx permits an event to carry multiple 
tags and gives queries the freedom to select arbitrary combinations of tags. 
 
There are Actyx SDK implementations for the Typescript and Rust programming languages, 
with Typescript being the preferred language by ACT’s customers — this notably includes the 
customer with which the TaRDIS evaluation use case will be implemented. Most 
communication patterns in this use case are expressed using the Actyx machine-runner library 
[102] that is built atop the Typescript SDK and stands to be extended by included into the 
TaRDIS toolbox as part of work packages 3 and 4 — it implements the workflow-based 
communication abstraction described in deliverable D3.1. 
 
Actyx itself is implemented using the Rust language, with data stored using sqlite3 and swarm 
communication performed using the libp2p library. The stored data structures are persistent 
trees with a large branching factor and summary information regarding timestamps and tags 
at every level — this allows quick and efficient access to exactly those events that are selected 
by a given application query. The tree nodes are content-addressed and sent between Actyx 
nodes using the IPFS [103] suite of protocols, which nicely matches the append-only log 
structure used to realise durable and reliable delivery of events across the whole swarm. 
Updates regarding the event log contents are sent to other swarm nodes using the gossip 
subprotocol that comes with libp2p by regularly advertising the current root node’s hash of the 
local node’s event log tree. Added resilience and indirect event dissemination is achieved by 
also advertising the root hashes known by the local host for other nodes’ trees. This design 
has proven to be extremely resilient in factory applications. 
 
The Actyx system does not model different access or security rights for each swarm node, the 
application in factory use cases usually does not require such multi-tenancy since all 
participating edge devices are owned and operated by the same commercial entity and are 
protected (physically and virtually) by the factory IT department according to the factory’s 
needs. In other words, an Actyx swarm forms a single trust and security domain — on the Actyx 
level this is expressed by a shared secret (a pre-shared cryptographic key) known to all 
devices belonging to a given deployment. 
 

2.2.3.2 Adaptations required for Actyx integration into TaRDIS 

The Actyx middleware described above provides a solid foundation on which a TaRDIS tool 
will be built, but it does require adaptations, which fall into the following broad categories: 
 

● internal modifications to make it possible to use the other results described in this 
document in the implementation of the Actyx services; 

● modifications of the external presentation of Actyx to the developer to conform to the 
TaRDIS APIs, models, and development methodology. 
 

In the first group fall refactoring’s of the internal component structure, decoupling the current 
libp2p usage from the core Actyx abstractions (i.e. the append-only log and local query 
engine). New interfaces need to be created and installed for swarm membership (joining, 
monitoring, querying), update dissemination (broadcasting log summaries), and event data 
exchange (synchronising log changes between pairs of nodes). 
 
The second group contains changes to the offered API that range from cosmetic name 
changes to the addition of new facilities (e.g. for security aspects like key management). It also 
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contains the larger effort of making it possible to use Actyx as a library instead of as a separate 
process. This is necessary to reliably provide the communication services to apps on 
smartphones, which are notorious for denying background processes to keep running to 
conserve battery. We will achieve this by restructuring the code modules into a dynamically 
linked library with a C interface and native bindings for the languages used by TaRDIS use 
cases that employ Actyx (candidates are Typescript/JavaScript, Kotlin/Java, and Python). 
 

2.2.3.3 Current state and future work 

The effort expended so far has been used to get the Actyx codebase on GitHub into shape for 
open sourcing, including setting up the CI pipeline on GitHub actions (as is customary in the 
relevant developer communities). We then changed the internal module structure such that it 
can be published on the standard Rust software repository https://crates.io/ without undue 
difficulty (previously the codebase consisted of a large number of separate crates with complex 
interdependencies, as open-source publishing had been no design constraint). The result is 
that the Actyx service binary can be installed using cargo install ax as is expected from 
a Rust tool. The main functionality is bundled in the ax-core crate, which is used as a library 
from the ax crate, albeit without finalised API design and separation of concerns. This work is 
ongoing and remains to be completed before external developers can effectively embed Actyx 
in their own applications. 
 
The work of installing TaRDIS interfaces within Actyx and presenting TaRDIS APIs to the 
exterior has not yet begun, as this very deliverable is part of the required specification guiding 
such efforts. 

2.3 DECENTRALISED DATA MANAGEMENT AND REPLICATION (TASK 6.2) 

Task 6.2 focuses on developing the data management support for building TaRDIS platform 
and applications. In this context, several challenges have been identified. 
  
First, TaRDIS intends to support heterogeneous settings, composed of nodes with different 
resources, ranging from powerful cloud nodes to small client devices and edge nodes. 
Furthermore, some nodes of the system may experience limited connectivity during some 
periods. For addressing this challenge, it is necessary to develop data replication algorithms 
that adapt to these heterogeneous settings. 
  
Second, TaRDIS intends to support dynamic settings, where nodes’ interests and location can 
change over time. To address this challenge, it is necessary to develop partial replication 
algorithms, where each node only stores part of the data. Furthermore, these algorithms need 
to support dynamic replication, as the objects that need to be replicated at each node will vary 
over time. 
  
Finally, TaRDIS intends to support nodes with Byzantine behaviour – this behaviour can be 
the result of software bugs, node malfunction or a security breach in which a node becomes 
under the control of an attacker. For addressing this challenge, we will need to develop 
algorithms for Byzantine fault tolerance. 
  
During the first year of the TaRDIS project, the work in this task has focused mostly on the first 
two challenges. The main results produced are the following: 
 

●   Section 2.3.1presents Arboreal a data management system for supporting edge 
computing, in which applications move from the cloud to the edge of the network. 
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Arboreal is designed for being deployed in a system that includes a wide variety of 
devices, from cloud nodes to edge nodes with different levels of resources and 
client devices. Besides supporting heterogeneous settings, Arboreal replication 
algorithms are also designed to support dynamic partial replication to support client 
mobility. 

  
●   Section 2.3.2 presents the status of PotionDB a data management system 

designed to be deployed in a small number of nodes, potential geo-distributed, and 
with support for partial replication. Unlike Arboreal, PotionDB supports a 
transactional API, thus providing a more powerful API for the application. Still under 
development, it is the support for materialised views over geo-partitioned data, 
providing a mechanism for supporting recurrent queries that are common in 
applications. 

  
●   Section 2.3.3reports on the initial effort for allowing the integration of third-party 

storage solutions in the TaRDIS ecosystem. 
 

2.3.1 Arboreal: Extending Data management from Cloud to Edge leveraging 

Dynamic Replication 

Computing infrastructures have been extending from the cloud to the edge to support low 
response times and high availability. By bringing computations closer to clients, edge 
computing addresses the demands in everyday services, such as social media or online 
shopping, while enabling novel latency-critical services, such as location-based games, 
autonomous vehicles [74], and live video analytics [75]. 
 
Deploying application logic on edge nodes has limited benefits if requests require fetching data 
from the cloud. However, extending cloud data storage solutions to address the challenges of 
the edge is non-trivial. Edge nodes often have limited resources, storing only a subset of an 
application's data. Combined with dynamic data needs at each edge location, this renders 
traditional data partitioning techniques unsuitable. Additionally, the significantly larger number 
of edge locations and their higher susceptibility to failures require a scalable data replication 
solution capable of handling entire edge location failures. Addressing these challenges to 
enable fully-fledged applications at the edge requires new data replication solutions tailored 
specifically for this environment. 
 
We have been working in Arboreal, a novel distributed data management system with a 
decentralised data replication protocol designed specifically for edge environments. The 
replication protocol dynamically replicates data across edge locations, enabling applications 
to be deployed at the edge with complete local data access, resembling a cloud deployment. 
Simultaneously, it ensures global causal+ data consistency, preventing data anomalies. We 
now detail Arboreal. 
  

2.3.1.1 Towards Stateful Edge Applications 

To fully leverage the potential benefits of edge computing, providing low latency and reducing 
centralised component loads, application requests need to be fully processed in client nodes. 
To this end, the application logic on edge nodes needs to have read and write access to local 
replicas of application data. To support this stateful edge application model, storage systems 
must extend from data centres to edge locations, addressing the following challenges, distinct 
from those faced by traditional cloud storage systems [63,60,62]: 
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Partial and dynamic replication. Applications with large user bases are expected to leverage 
a considerable number of edge locations. These edge locations, characterised by less 
powerful and reliable computational resources compared to core data centres, pose unique 
challenges, as it is imperative for application components to have unrestricted data access 
while maintaining consistent guarantees, regardless of executing in the cloud or at the edge. 
Achieving this requires a data storage solution supporting fine-grained partial and dynamic 
replication. This means that the set of data objects replicated at each edge location evolve 
over time to reflect the access patterns of clients accessing the applications in that location. 
The underlying replication protocols must dynamically adapt to ensure timely propagation of 
data updates to the correct locations, preventing components and clients from encountering 
stale data, and ensuring operations become visible across the system. 
  
Scalable consistency. To maintain application logic mostly unchanged across different 
execution locations, ensuring some form of data consistency is crucial.  While strong 
consistency simplifies application logic by avoiding data anomalies, it proves impractical for 
edge settings due to latency and availability issues arising from coordinating numerous 
replicas. In edge environments, it is more suitable to rely on a weak consistency model, which 
relaxes consistency for better availability and response times. To mitigate anomalies in 
eventual consistency models, many solutions adopt causal+ consistency [64,67] which 
provides the strongest highly available possible consistency guarantees. 
  
Causal+ consistency is based on the happens-before [67] relationship, where a write operation 
can only be made visible in a replica after all writes that causally precede it. Concurrent writes 
can be made visible in any order, as long as all replicas eventually converge to the same state. 
The key challenge lies in tracking the happens-before relationship among operations. 
Common approaches use vector clocks [68], but scalability is limited as metadata grows 
linearly with the number of replicas. Other approaches, like tree-based topologies [76], avoid 
growing metadata costs but are sensitive to changes in the replica set, having weak fault 
tolerance. Some solutions [77] rely on centralised components, limiting the benefits of using 
multiple edge locations. This work presents a scalable solution for tracking causal 
dependencies across write operations that can scale to hundreds of locations, in a context 
involving dynamically replicated data objects, and in a way that can deal with frequent replica 
set changes and be fault tolerant. 
  
Client mobility. Applications benefiting most from the envisioned stateful edge applications 
involve users dispersed across different locations. Examples include collaborative applications 
(e.g. Google Docs), autonomous vehicles, smart-city applications, multiplayer mobile games, 
or stateful serverless computing [78]. In these applications, where low response times are 
crucial, users may change locations while using the application. When doing so, users should 
be able to migrate from interacting with an application component on one edge location to a 
closer one without data consistency anomalies. This emphasises the need for a distributed 
data storage solution capable of handling mobile clients without compromising consistency 
guarantees. 
  
Next, we present the design of Arboreal which, to the best of our knowledge, is the first 
distributed storage system providing causal+ consistency while supporting fine-grained partial 
and dynamic replication. It can scale to hundreds of different locations, is fault-tolerant, and 
effectively supports mobile clients. This unique combination of features makes Arboreal 
especially well-suited for deployment in edge environments. 
  

2.3.1.2 Arboreal Design 

Arboreal is a distributed data management system designed for the edge, featuring a novel 
scalable replication protocol that ensures causal+ consistency. Scalable to hundreds of edge 
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locations, Arboreal seamlessly adapts to membership changes and effectively manages faults 
and network partitions. Arboreal is designed to support extending cloud applications to edge 
environments, employing dynamic partial replication. This enables edge nodes to 
automatically adjust the set of locally replicated data objects in response to changes in client 
access patterns while allowing clients to move across edge locations without compromising 
consistency guarantees. All of this is achieved in a fully decentralised manner. 
  
System model: Our solution assumes a set of cloud data centres spread across different 
geographic regions, in which a distributed (geo-replicated) NoSQL database is deployed. 
Deployment specifics of this database (e.g., replication protocol, partitioning scheme) are 
orthogonal to this work. We consider a set of edge locations equipped with computational 
resources. Arboreal extends the database from the cloud data centres to edge locations within 
respective regions. For this, an instance of Arboreal is deployed both in each data centre and 
each edge location. We assume that an edge location may consist of one or multiple edge 
nodes, however, it is always treated as a single node, with a single instance of Arboreal being 
deployed in each edge location. No assumptions are made about replication and data 
partitioning schemes within each edge location, focusing instead on data replication across 
edge locations. To accommodate diverse scenarios and applications, we assume that, at any 
time, Arboreal can be dynamically deployed, along with application components, in new edge 
locations and that edge locations may fail, or Arboreal may be decommissioned from them. 
Applications deployed on edge nodes rely on Arboreal for consistent local data access to 
execute client operations. Clients, potentially mobile, can migrate between edge locations at 
any time, and have dynamic workloads, with the set of accessed data objects possibly 
changing over time. 
  
Data Model: Arboreal offers a key-value store interface, akin to other highly available 
distributed databases [63], where each data object is identified by a unique key. Client’s issue 
read or write operations on data objects without constraints, and Arboreal ensures that: (1) 
data objects are replicated transparently to the edge locations where they are accessed; (2) 
write operations are propagated to all locations currently replicating the modified data object; 
and (3) clients always observe a state respecting the causal order of operations. Arboreal 
makes no assumptions about how data is stored in each node. For convergence, a last-writer-
wins policy is used, relying on operation (logical) timestamps. 
  

2.3.1.2.1 Replication 

As discussed earlier, a key challenge of this work is overcoming limitations in replication 
protocols providing causal+ consistency, in a way that is suitable for a large-scale edge 
environment. To address this challenge, it is crucial to enable edge locations to synchronise 
(propagate operations and data objects) directly with each other while simultaneously ensuring 
that metadata, essential for enforcing causality and supporting (object-grained) dynamic 
replication, does not grow linearly with the number of edge locations. 
  
2.3.1.2.1.1 Hierarchical Approach 

For this, Arboreal employs a hierarchical design, with each edge location hosting an instance 
of Arboreal. These edge locations define a tree structure rooted at their regional data centre, 
establishing the region's control tree. Figure 2.3.1.1 shows a geo-distributed example of an 
Arboreal deployment with three data centres, each having its control tree. The management 
of the control trees is fully decentralised, with nodes communicating solely with their parent 
node and children. Nodes only retain detailed information about their children and minimal 
information about their ancestors (i.e., nodes in the path between itself and the root of the 
control tree). This decentralised structure allows for latency-sensitive tasks, such as failure 
recovery, mobile client handling, and creating replicas of data objects to be performed in a 
localised fashion, involving as few nodes as possible. 
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Figure 2.3.1.1 - Design of Arboreal, with 3 geographic regions. 

To establish the control tree, when an instance of Arboreal is deployed on an edge location, it 
uses a heuristic to connect to the most suitable existing instance in the control tree of its region. 
Note that the goal of Arboreal is to replicate data to applications running on edge locations and 
is not an orchestrator that decides where and when to deploy the application. To accommodate 
diverse edge scenarios, both the heuristic defining the control tree and the information used 
by the heuristic are configurable by the application developer. 
  
Given the significance of geographic locality in edge computing, our Arboreal implementation 
employs geographic distance between edge locations as the primary metric for forming the 
control tree. However, depending on the application, various metrics can be used, such as 
latency between edge nodes, client locations, or even predicting future demand for the 
application. 
  
2.3.1.2.1.2 Enforcing causality 

For tracking causal dependencies between operations, vector clocks are commonly used, but 
their cost is prohibitive for large-scale systems, especially with partial replication. Even 
solutions that attempt to minimise this cost require, in the worst case, metadata that grows 
linearly with either the number of partitions or data centres [68]. Thus, we need a solution 
providing causal+ consistency using metadata that does not grow linearly with either. 
  
Causal Dissemination: We start by leveraging the hierarchical topology of Arboreal, which 
allows achieving causal consistency without requiring metadata [76]. For this, nodes form the 
control tree by establishing FIFO channels to their parent node and children. When a node 
receives a write operation from a channel (i.e., from a parent or child), it atomically executes 
the operation locally and puts it on the outgoing queue of every other channel. Additionally, 
local operations from clients are atomically added to the outgoing queues of all channels. This 
ensures operations are always enqueued (and thus, executed) after all their causal 
dependencies. While ensuring causal consistency, this approach assumes clients always 
issue operations to the same node and a static control tree, which are unrealistic assumptions 
for the edge. 
  
Timestamping: To overcome these limitations, Arboreal additionally utilises Hybrid Logical 
Clocks (HLCs) [79] to enforce causal consistency. HLCs combine physical time for monotonic 
advancement in each node with logical clocks for capturing causal relationships between 
operations despite physical clock anomalies. When a client's write operation is received by a 
node, it is tagged with a timestamp from the local HLC. This timestamp is propagated with the 
operation through the tree and is stored with the object data in each node. Additionally, 
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Arboreal employs the notion of Branch Stable Time (BST). A BST is computed individually by 
each node as the minimum between its current HLC time and the BST of each child. The BST 
captures that no operation with a lower timestamp will be generated by any node in its branch 
(a branch consists of the node itself and its descendants in the control tree). Nodes periodically 
propagate their BST to parents and children, including the BST of all ancestors when 
propagating to children. This ensures each node tracks the BST of its children and all 
ancestors. Combined with the causal dissemination technique, BSTs allow Arboreal to provide 
causal consistency in every scenario, including failure recovery (as explained later). 
  
2.3.1.2.1.3 Dynamic and Partial Data Replication 

An essential aspect of edge computing is that edge locations cannot be expected to have 
resources to replicate the entire dataset of an application. As such, partial replication becomes 
a key aspect of Arboreal. Moreover, to support a wide range of applications, Arboreal must 
adapt not only to changes in client access patterns but also to mobile clients that can change 
the connected edge location at any time. Unlike cloud-based data management systems that 
typically use static data partitions, Arboreal needs to allow edge nodes to dynamically change 
the set of replicated data objects at any time with fine granularity. However, keeping track of 
which nodes replicate which data objects across a large-scale system can be costly and 
require substantial metadata propagation, especially with dynamic sets of nodes and data 
objects. To address this challenge, we rely on the hierarchical topology. 
  
In Arboreal, each data object is individually replicated to a subset of edge nodes. This is done 
in a way that ensures any node always contains the data objects its children replicate, resulting 
in each data object forming a subtree of the control tree, which we refer to as the replication 
tree of an object. Figure 2.3.1.2 illustrates the evolution of an Arboreal deployment with two 
objects replicated on different sets of edge nodes that change over time. 
  
While this restriction in data object replication may seem limiting, forcing edge nodes to 
replicate data objects that their current clients may not be interested in, it is actually a beneficial 
design decision for three reasons: (1) as a subtree of the control tree, an object's replication 
tree inherits causal dissemination guarantees, providing causal+ consistency globally across 
all objects; (2) when the control tree is repaired after node failures, the replication trees 
involving the faulty nodes are also repaired, enabling the system to quickly recover from 
failures with minimal client impact; and (3) it aids client mobility. When a client migrates to 
another node, even if that node does not replicate the required data objects, there is a high 
chance that one of its close ancestors does, allowing the client to quickly resume its operation. 
This design ensures replication trees form in a decentralised manner based on client needs. 
Each node only needs to track the objects it replicates and the objects each of its children 
replicates. This mechanism assumes that storage capacity increases moving up the control 
tree, closer to cloud data centres, which we believe to be a reasonable assumption for an edge 
environment. 
  

 
Figure 2.3.1.2 - Dynamic partial replication in Arboreal. 
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Replica creation: When a client requests a data object not replicated in its connected edge 
node, that node sends a request to its parent node, asking to be added to the object's 
replication tree. If the parent node is part of it, it sends the current object version to the child 
node and keeps track that this child node is now replicating the object. If the parent node is 
not part of the replication tree, it forwards the request to its own parent, and so on, until the 
request reaches a node replicating the object (or the cloud data centre, replicating all objects). 
This node then sends the object to its child node, and the process repeats until the object 
reaches the node that initially requested it. This process is illustrated in the figure above, where 
node A (and consequently, node E) is added to the replication tree of a. 
  
Garbage Collection: Due to the possible large number of data objects and limited storage in 
edge nodes, Arboreal employs a garbage collection process. Each node tracks the last time 
each data object was accessed and periodically removes objects not accessed for a 
configurable duration. When removing a data object, a node informs its parent that it no longer 
replicates that object. Nodes can only garbage collect objects not replicated to any children to 
prevent breaking the replication tree.  Figure 2.3.1.2 shows object a being garbage collected 
in nodes D and G, as their clients are no longer accessing it, being removed from its replication 
tree. 
  
The decentralised design of Arboreal's replication protocol allows it to scale to a large number 
of edge nodes while supporting fine-grained replication of data objects. This allows each node 
to only track metadata proportional to the number of objects it replicates, avoiding linear growth 
with the total number of edge nodes and data partitions/objects. 
  

2.3.1.2.2 Fault Tolerance 

Unlike cloud environments, where individual nodes can fail but it is unlikely that an entire data 
centre does, in edge environments, we need to assume that entire edge locations can fail or 
become partitioned at any time. Therefore, Arboreal must not only be capable of recovering 
from failures but also provide data persistence guarantees when they occur. 
  
2.3.1.2.2.1 Data Persistence 

Arboreal provides a mechanism allowing applications using it to specify the persistence level 
of write operations. Effectively, this allows applications to specify how many nodes upstream 
in the replication tree a write operation must reach before it is considered to be persisted. This 
mechanism is especially beneficial for applications requiring data persistence guarantees in 
more volatile edge locations. Its design prevents scalability issues by avoiding extra 
communication steps between nodes and the need for nodes to track the origin of each 
operation. 
  
Persistence ID: Before forwarding a local write operation to its parent, a node assigns a 
persistence ID to the operation. Upon receiving a write operation from a child, a node assigns 
its own persistence ID to the operation, mapping it to the child's persistence ID, and then 
propagates the operation to its parent. The persistence ID is essentially a local counter for 
each node, incremented whenever a node assigns it to an operation. The left side of Figure 
2.3.1.3 illustrates this mechanism in action. A client issued 3 write operations in node A, with 
the first 2 reaching the data centre, and the last one only reaching node E. Additionally, an 
operation in node F reached the data centre. The figure depicts the mappings by each 
intermediate node. For example, the data centre operation with persistence ID H3 originated 
in node A with persistence ID A2. Importantly, nodes lack information about the origin of each 
operation, enabling Arboreal to scale by avoiding storing metadata for a large number of 
nodes. 
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Persistence level notifications: Periodically, each node communicates to its children the 
persistence level of their operations through a list of pairs (persistence ID, persistenceLevel). 
Each pair signifies that all child operations up to persistence ID have been persisted in 
persistenceLevel nodes. Upon receiving this list from its parent, a node maps the persistence 
ID of each pair to the persistence ID of the child, increments the persistenceLevel of each pair 
by one, and, if operations from the child are missing, adds an entry with the highest of those 
operations and a persistenceLevel of 1. The persistenceLevel of operations reaching the data 
centre is conveyed as infinite. This mechanism is depicted in Figure 2.3.1.3, where node A 
receives acknowledgment that its operations up to A2 have been persisted in the data centre 
and A3 in one level above it. This persistence level information is periodically sent to children 
piggybacked on the BST messages. Upon receiving confirmation that an operation has been 
persisted in the data centre, nodes can forget all persistence information related to that 
operation. Regardless of the requested persistence level, this mechanism is always active for 
all operations to ensure no loss of operations during fault recovery. 
  

 
Figure 2.3.1.3 - Data persistence in Arboreal. 

  
2.3.1.2.2.2 Fault Handling and Recovery 

Due to the nature of edge environments, decentralised fault handling and recovery are 
essential for Arboreal. The main challenges involve: (1) rebuilding the control tree after node 
failures; (2) ensuring consistency during the rebuilding process; and (3) maintaining data 
persistence through failures and reconfiguration. 
  
To address the first challenge, each node, being aware of all its ancestors, can independently 
rebuild the control tree after detecting a failure. Nodes attempt to connect to their grandparents 
if their parents fail, falling back to the great-grandparent and so on, until reaching the data 
centre. Since every ancestor of a node replicates a superset of its data, this simple approach 
automatically repairs not only the control tree, but also any disconnected replication trees. 
  
For the second challenge, when connecting to a new parent, Arboreal employs a 3-step 
protocol to synchronise with its new parent, ensuring no violations of consistency guarantees: 
 
(1) The (to-be) child node sends a Sync Request to the (to-be) parent node, including its 
current BST and a list of replicated objects with associated timestamps; 
 
(2) The parent node registers the child as a new child, checks if it has any outdated objects, 
and replies with a Sync Response containing the child's new ancestor list, BSTs, and a list of 
updates for the child's outdated objects; 
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(3) The child updates its ancestor list and BSTs and instals the outdated objects. It sends the 
parent requests for any pending replica creation requests and client write operations. Finally, 
the child propagates a Reconfiguration Message to its children, containing their new ancestor 
list and BSTs, which is propagated to its entire branch. 
  
To address the third challenge, after the synchronisation, both the child and every node in its 
branch re-propagate local write operations with pending persistence requests, as the 
persistence mechanism may break down during reconfiguration. 
  
Though the synchronisation protocol may seem complex, it allows each node to reconnect 
itself to the control tree without centralised coordination. This decentralised approach enables 
Arboreal to recover from multiple failures in parallel. 
  
Regarding clients, failures can affect them in two ways: 
 
(1) If a client's connected node remains operational, but one of its ancestors fails, the client 
can continue normal operation. The only noticeable effect is that persistence confirmations 
may be delayed as they will only arrive once the current node reconnects to the control tree; 
 
(2) If the node to which the client is connected fails, the client must reconnect to a new node. 
Operations with persistence confirmation are guaranteed to be visible in the new node, but 
those without may have been lost. The client can then re-execute lost operations or perform 
read operations to verify the persistence of those operations. 
  

2.3.1.3 Client Mobility 

In edge application scenarios with mobile clients, such as users with smartphones, Arboreal 
must seamlessly support clients moving from an edge node to a closer one while maintaining 
consistency guarantees. Notice that in this context, clients can attach to the closest edge 
location by taking advantage of DNS services that reply with the closest instance, or by being 
explicitly redirected by other nodes in the system. This is a non-trivial task as the new node 
may not have any information about the client's previous node (which may even have failed). 
Therefore, we assume that the nodes involved in this procedure are unable to communicate, 
with the client storing all required information. 
  
Client state: Clients of Arboreal track two pieces of metadata: (1) the list of ancestors of its 
current node; (2) a timestamp with its current causal dependencies. This timestamp is updated 
upon receiving responses to operations, and always contains the highest timestamp seen. 
Read operations return the timestamp of the object read, while write operations return the 
timestamp assigned to them by the client's node. Figure 2.3.1.4 shows the BST of nodes and 
the timestamp and list of ancestors of a client in an example deployment. 
  

 
Figure 2.3.1.4 - Client mobility in Arboreal. 
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Mobility procedure: The combination of the client-side timestamp and list of ancestors with 
the node-side BST enables Arboreal to support quick client migrations without compromising 
causality. When a client connects to a new node, it sends a migration request to the new node, 
containing its current timestamp and list of ancestors. The new node then compares the 
received list with its own list of ancestors, leading to one of the following cases: 
 
(1) If the new node was not in the client's list of ancestors, signifying a horizontal migration to 
a new branch of the control tree}, the new node identifies its closest ancestor that is also in 
the client's list of ancestors. It responds to the client only after receiving a BST from that 
ancestor greater than the client's timestamp. This ensures that the new node responds to the 
client only when it is certain that it has observed all operations the client depends on. In Figure 
2.3.1.4, if the client migrates to node F, it waits until F receives a BST of 10 from H (the closest 
common ancestor). 
 
(2) If the new node was in the client's list of ancestors, indicating a vertical migration, the new 
node identifies which of its children is an ancestor of the client's old node (or the node itself). 
It responds to the client once it receives a BST from that child that is equal or greater than the 
client's timestamp. In Figure 2.3.1.4, if the client migrates to E, it waits until E receives a BST 
from A with at least 10 (which should be quick, as the BST of A is already 10). In cases where 
the client migrates to the parent of a failed node, the new node immediately accepts the 
migration as there is nothing to wait. 
  
After this process, the client receives an updated list of ancestors. The metadata stored in the 
client only needs to be readable by Arboreal and may be opaque (e.g., encrypted) to the client 
itself, preventing information leakage about the internal organisation of the system. 
  
The duration of the migration process increases as the client moves farther from its old node, 
requiring the new node to wait for a BST from a more distant node in the control tree. However, 
in typical scenarios, clients migrate to close-by nodes, resulting in swift migrations. 
  
This mechanism might be overly cautious. For instance, if the client aims to migrate to F, it 
depends on the BST of H, which, in turn, relies on the BST of B. However, node B might not 
have participated in any operation observed by the client, causing potential delays in migration 
completion. While we recognize this cautious approach may introduce unnecessary delays, 
alternatives that accelerate migrations typically involve additional metadata or explicit 
migration messages sent through the tree. Such approaches could compromise Arboreal's 
scalability and fault tolerance. 
  

2.3.1.4 Evaluation 

In this section, we study the performance of a prototype of Arboreal using an edge environment 
setup. We compare Arboreal with other solutions that provide causal+ consistency on the 
edge, namely a decentralised solution using vector clocks (Engage [80]) and solutions using 
a centralised topology to enforce causality (Colony [70]). For the former we use the provided 
code, while for the latter, as the code is not available, we mimic their centralised topology by 
implementing a version of Arboreal, named centralised, where all edge locations connect 
directly to the data centre. We also compare Arboreal against Cassandra [81], a cloud 
database that due to its configurable partial replication and peer-to-peer synchronisation can 
be used in edge settings.  
 

2.3.1.4.1 Experimental Setup 

We conducted experiments in a cluster of 10 machines, each having 2 AMD EPYC 7343 
processors with 64 threads and 128 GB of memory, connected by a 20 Gbps network. We 
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deployed a docker swarm across all machines, with an overlay network connecting all 
containers. A container with no resource restrictions on one machine serves as the data 
centre, while up to 200 containers distributed across the others, with resources restricted to 2 
virtual cores and 4 GB of memory, represent edge nodes. Each container executes an instance 
of Arboreal. 
 
To emulate a geographic region, we randomly distributed the 200 nodes across a virtual 2-
dimensional space, representing edge locations, with the data centre at the center. We used 
Linux tc to emulate latency between nodes based on their Euclidean distance, with a maximum 
latency of 150ms from an edge node to the data centre. Experiments were conducted 3 times 
on 3 such distributions using either 20 or all 200 nodes. Figure 2.3.1.5 shows an example 
distribution with the formed control tree, using the deep layout. Additionally, we deployed 200 
client containers, distributing them across the same virtual space and setting the latency 
between each client and edge node using the same method, with a minimum latency of 10ms. 
 
 

 
Figure 2.3.1.5 - Example node distributions in a geographic region. 

 
 

2.3.1.4.2 Performance 

In our performance benchmarks, we evaluate the performance of Arboreal in terms of 
operation throughput and visibility times, comparing it against other causal+ solutions, 
Cassandra, and using different control tree layouts. 
 
In these experiments, clients connect to their closest edge node and perform operations on 
data objects based on their location. The geographic region is divided into 8 equal segments, 
with each being assigned a data partition. Clients perform operations on data objects in their 
segment and the 2 adjacent segments. This setup assesses the performance of Arboreal with 
data locality, where clients are more likely to access nearby data objects. As the replication of 
data in Arboreal is dynamic and based on client access patterns, this results in each edge 
node replicating data objects from at least 3 partitions, with the data centre replicating data 
objects from all 8 partitions.  
 
For Cassandra, as partial replication is based on a static placement, we configured each edge 
node as an independent cluster (datacenter in Cassandra terminology) and created partitions 
(keyspaces in Cassandra terminology) so that each edge node replicates all data objects from 
the 3 partitions accessed by clients, while the data centre replicates all 8. A similar approach 
was used to distribute partitions in Engage. 
 
2.3.1.4.2.1 Throughput 

Figure 2.3.1.6 shows the throughput of Arboreal compared to Engage and a centralised 
topology solution, varying the number of nodes and the number of distinct data partitions. We 



TaRDIS | D6.1: Report on the first iteration of TaRDIS toolbox components 

 

 Page 51 of 100 © 2023-2025 TaRDIS Consortium 

show the throughput of write operations only, as read operations execute locally in all 
solutions. Due to weak consistency allowing nodes to respond to clients without coordination 
with other nodes, measuring throughput on the clients is unreliable, as operations may be 
processed in their local nodes at a higher rate than they are replicated to other nodes. As such, 
the values displayed represent the maximum throughput measured in the data centre node for 
each solution.  
 

 
Figure 2.3.1.6 - Throughput of Arboreal versus causal+ solutions. 

 
Two main conclusions can be drawn from these results: (1) Unlike existing causal+ solutions, 
Arboreal scales to hundreds of nodes without performance degradation. This is a result of 
avoiding both vector clocks (used in Engage) and centralised topologies (as the ones used in 
[70]) for causality enforcement, opting for a decentralised hierarchical topology. Despite the 
expectation that a seemingly infinitely resourced data centre could handle a centralised 
solution with a large number of edge nodes, this is not the case, as causality enforcement 
requires some form of (partial) serialisation of operations, limiting parallelism; (2) Increasing 
the number of data partitions (by specialising data objects accessed by clients) and nodes 
(increasing the number of replicas for each data object) increases the throughput of Arboreal. 
This happens since each added node removes load from existing ones, allowing more 
operations to be processed in parallel. This is a key advantage of Arboreal's dynamic 
replication mechanism, distinguishing it from state-of-the-art solutions. 
 

 
Figure 2.3.1.7 - Throughput of Arboreal versus Cassandra. 

 
 
Figure 2.3.1.7 shows throughput for Arboreal and Cassandra as observed by clients, varying 
the number of nodes and the read/write ratio. Note the Y axis is in log scale. For more reliable 
measurements, we use infinity persistence in Arboreal and quorum consistency in Cassandra, 
ensuring that writes are only acknowledged to clients after being replicated to the data center 
and a majority of edge nodes, respectively, preventing artificial throughput inflation. The 
quorum consistency level in Cassandra also ensures that clients observe the latest value of a 
data object, which provides some consistency guarantees (although different from Arboreal, 
as it can violate causality), making the comparison with Arboreal fairer.  
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In write-only scenarios (0% reads), Arboreal achieves higher throughput by leveraging its 
hierarchical topology and persistence mechanism. Nodes that Cassandra must send each 
write operation to all other nodes replicating the data object, then await acknowledgement from 
a quorum. In contrast, Arboreal sends write operations only to the parent (and any children 
replicating the object) and waits for the persistence acknowledgement. This greatly reduces 
message complexity, allowing higher throughput. With increased read operations, by 
processing reads locally, Arboreal outperforms Cassandra, which requires coordinating with a 
quorum before responding. While Cassandra can avoid coordination, sacrificing data 
consistency guarantees, to increase its throughput, Arboreal can process reads locally while 
providing causal+ consistency. Regardless, Figure 2.3.1.7 shows that the hierarchical 
topology of Arboreal is much better suited for edge environments than traditional solutions 
designed for cloud environments. 
 
2.3.1.4.2.2 Visibility Times and Tree Layouts 

In this section, we explore the impact of different control tree layouts in Arboreal's hierarchical 
topology on the visibility times of operations and compare them with a centralised topology.  
 
Using the same setup as the previous experiment, with 200 nodes and only write operations, 
Figure 2.3.1.8 presents the results through a boxplot, where each box shows the distribution 
of the visibility times of operations in the different topologies. Arboreal deep and Arboreal wide 
represent tree layout where the first has deep branches and a small number of children per 
node and the latter has the depth limited to 4, with each node with a large number of children 
The figure depicts visibility times for the closest remote node (1), the 5th closest, and all nodes. 
The values for 1 and 5 are crucial in an edge environment as clients in geographical proximity, 
connected to different but close-by edge nodes, are likely to access the same data objects. 
 

 
Figure 2.3.1.8 - Visibility times of different topologies. 

 
Results indicate that using a hierarchical topology with the deep layout is optimal for achieving 
low visibility times, enabling rapid operation propagation to nearby nodes. However, reaching 
all nodes requires traversing a significant number of hops, resulting in higher visibility times. 
In contrast, the centralised topology always requires propagating operations directly to the 
data centre, resulting in much higher visibility times. The hierarchical wide layout serves as a 
balanced compromise, enabling quick propagation to nearby nodes while matching the speed 
of the centralised topology in reaching all nodes. Overall, these findings show that a 
hierarchical topology is better suited for edge environments than a centralised one.  

2.3.2 PotionDB: Strong Eventual Consistency under Partial Replication 

Partial replication is important in different settings, from cloud computing to edge and peer-to-
peer systems. In cloud computing, it is common to geo-replicate data for providing low latency 
to users spread across the globe. As both the data managed by these systems and the number 
of data centres increases, fully replicating data leads to problems. First, storing all data in all 
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data centres imposes a large overhead in terms of storage and may be unnecessary, as some 
data is only needed at some geographic locations. Second, increasing the number of replicas 
makes replication more complex and costly, as each update needs to be propagated to all 
replicas. 
  
In edge computing, an even larger number of edge nodes exist, making partial replication the 
only approach that can be used. The same happens in the case of peer-to-peer systems, in 
which it makes no sense to have all data in every replica. 
  
Replicated databases [60,61,62] that provide strong consistency give the illusion that a single 
replica exists, requiring coordination among replicas for executing (update) operations. This 
leads to high latency and may compromise availability in the presence of network partitions. 
Databases that provide weak consistency [63,65] allow any replica to process a client request, 
leading to lower latency and high availability. Consequently, these databases expose 
temporary state divergence to clients, making it more difficult to program a system. 
  
As discussed above, causality allows to avoid data anomalies derived from week consistency, 
which is relevant for developing applications, since the programmer does not need to define 
explicit logic to mask the effects of such anomalies when they happen. PotionDB is a geo-
replicated memory key-value store with support for partial replication.  PotionDB provides 
causal+ consistency, for improved latency and availability, with transactional causal 
consistency [68], for improved consistency. We note that while we have already presented a 
storage solution based on a distributed key-value store, PotionDB and Arboreal have 
significant differences that make them suitable to support different swarm applications. 
Arboreal extends the replication towards edge locations dynamically, and hence is more 
suitable for latency sensitive applications. PotionDB operates only across data centres, but 
provides support for transactions, therefore being more suitable for applications that need to 
manipulate several data objects in an atomic fashion. 
  

2.3.2.1 System Overview 

PotionDB is a distributed database designed for supporting global services deployed at 
multiple locations. In these settings, (some) data items are only needed at some geographic 
locations. As a running example, we consider a large e-commerce site with online stores for 
different countries and clients spread across the world. The service includes data for products, 
with some products available only at some locations. The service maintains information about 
customers and their purchases, with clients being associated with one online store. 
  
In this context, fully replicating the whole dataset might become too expensive. Additionally, 
as most data is tied to some geographic location, one can expect that the majority of accesses 
occur in that location. PotionDB adopts partial geo-replication, with data items being replicated 
only at some locations. This allows PotionDB to reduce replication cost when compared to 
solutions featuring full replication, saving on both storage, processing, and networking costs. 
  
While the vast majority of application operations access data objects that are available at the 
local replica (e.g. user, product, or purchase objects), some operation may access objects that 
are not locally replicated (e.g. a user placing an order for a product that is not available  
in the local region). 
  

2.3.2.2 Data model 

PotionDB is a distributed key-value database. The database stores a set of objects, and we 
define that the database state, DB, is composed of the set of objects stored by the database, 
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DB = Objs. Objects are uniquely identified by a tuple id = (key, bucket, type). Objects are 
stored in buckets, which are the unit of replication in PotionDB. Buckets are further logically 
grouped in containers. An object has a key inside the bucket. 
  
PotionDB supports objects of different data types, including registers, counters, averages, sets 
and maps. Objects are implemented as CRDTs [69], guaranteeing that object replicas 
converge to a single state in the presence of concurrent updates. 
  

2.3.2.3 Interface 

PotionDB offers a key-value transactional interface that we summarise in this section. An 
application issues interactive transactions, by executing begin(clk), where clk is used to 
enforce causality between consecutive transactions. 
A transaction proceeds with a sequence of operations: get(txId, id), which returns the 
full state of the object; read(txId, id,op), which returns the result of read-only operation 
op executed in the object; and upsert(txId, id,op), which updates object id by executing 
operation op, or creates the object if it does not exist. 
  
Operations defined in each object are type-specific - e.g. a set has a contains(e) operation to 
check if value e belongs to the set, and an add(e) and remove(e) to add or remove e from 
the set. A transaction ends with a commit(txId) for committing the transaction, making 
updates durable, or rollback(txId) to abort the transaction. 
  
PotionDB also supports one-shot transactions, oneShotTx(clk, (id, op)+), that include 
a sequence of read or write operations. 
  
PotionDB's data definition API includes operations to create and delete buckets. Even if 
buckets have no associated data type, i.e., any object type can be stored in any bucket, we 
expect that applications store objects of the same type in each bucket.  A document or a table 
row can be stored in PotionDB as a map CRDT, with each element of the map having its own 
type. 
  

2.3.2.4 Consistency 

PotionDB is a weakly consistent database that provides Transactional Causal Consistency 
(TCC) semantics [68]. Intuitively, in TCC different replicas may execute transactions in 
different orders. A transaction accesses a causally consistent database snapshot taken in the 
replica where the transaction executes at the time the transaction starts. As in snapshot 
isolation [70], the snapshot reflects all updates of a transaction or none. Moreover, if a 
transaction t is included in the snapshot, all transactions that happened-before [67] t are also 
included in the snapshot. Unlike snapshot isolation, and similarly to parallel snapshot isolation 
[71], it is possible for two concurrent transactions to modify the same object, with updates 
being merged using CRDT rules. 
  
For completeness, we now precisely define the guarantees provided by TCC. 
  
We consider a database composed of a set of objects O. Each object is replicated in a subset 
of database replicas.A transaction ti is composed by a sequence of read and update operations 
to objects in the database. A database snapshot, Sn, is the state of the database after 
executing a sequence of transactions t1,…,tn in the initial database state, Sinit, i.e., Sn = 
tn(…(t1(Sinit))).  The set of transactions reflected in snapshot S is denoted by Txn(S), e.g., 
Txn(Sn) = t1,…,tn. 
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Under TCC, a transaction t executes initially in a database snapshot S. The transaction 
executes in isolation, independently of other transactions concurrently being executed. Thus, 
the result of a read operation, ri, performed in transaction t, is obtained by executing ri against 
the state uj(… (u1(S)), with u1,…,uj the sequence of update operations executed previously in 
t. After the transaction t commits, the sequence of updates of the transaction are applied in 
the relevant replicas (as the database is partially replicated, a replica may execute only a 
subset of the updates of the transaction). 
  
We say that a transaction ta happened-before transaction tb executed initially in database 
snapshot Sb, ta < tb iff ta ÎTxn(Sb). Transaction ta and tb are concurrent, ta || tb iff not ta < tb and 
not tb < ta [67]. 
  
For an execution of a set of transactions T, the happens-before relation defines a partial order 
among transactions T = (T,<). We say T' = (T,<’) is a valid serialisation of T = (T,<) if T' is a 
linear extension of T, i.e., <’ is a total order compatible with <. Under TCC, only database 
snapshots that result from the execution of a valid serialisation of transactions to the initial 
database state can be used, i.e., a transaction is always executed in a causally consistent 
snapshot. 
  
Transactions can execute concurrently, with each replica executing transactions according to 
a different valid serialisation. To guarantee state convergence, we use CRDTs [69,71], which 
guarantee that after executing the same set of transactions according to a valid serialisation, 
objects will have the same state (by relying on the deterministic conflict resolution policies 
defined in the CRDT used for each database object). 
  

2.3.2.5 Architecture 

We designed PotionDB with partial geo-replication in mind. Thus, we assume PotionDB 
instances to be spread at different locations across the globe (Figure 2.3.2.1). Each location 
only replicates a subset of the whole data. The system administrator has control over where 
each object is replicated. This allows account for data locality to ensure fast access to data, 
while keeping replication and storage costs controlled. Objects without locality on their access 
pattern can be replicated everywhere if desired. We detail this more in Section Replication. 
 

 
Figure 2.3.2.1 - PotionDB architecture. 

Clients communicate with the nearest PotionDB location to ensure low latency. A client's 
transactions are locally executed in the PotionDB's location the client is connected to. Updates 
are propagated asynchronously to other locations. If a client's transaction accesses objects 
not locally replicated, other locations with said objects are contacted and involved in the 
transaction. We note this should be an exceptional case, not the norm. 
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The internal architecture of each PotionDB server is inspired by Cure [68] and is split into three 
main components. 
  
First, the Transaction Manager coordinates transaction execution, implementing a 
transactional protocol. Second, the Materializer stores the objects on their latest version, 
alongside the necessary data to generate previous versions when necessary. Garbage 
collection ensures data related with versions that are too old is eventually discarded. Third, 
the Replicator ensures that committed transactions are replicated asynchronously to other 
PotionDB instances. It is also responsible for receiving remote transactions and forwarding 
them to the Transaction Manager for local execution. 
  

2.3.2.6 Transaction and replication protocols 

This section presents the protocols used to maintain the state of objects and execute 
transactions with TCC in PotionDB. The transaction processing and replication algorithms are 
an adaptation of Cure protocols [68] to partial replication. 
  

2.3.2.6.1 Objects 

PotionDB stores CRDTs [69]. CRDTs are replicated objects that are guaranteed to converge. 
after applying the same set of operations. In particular, PotionDB uses operation based 
CRDTs, in which the convergence of replicas is guaranteed if operations are causally applied. 
This is the case in PotionDB, as a valid transaction serialisation must respect the happens-
before relation. 
  
Our prototype supports the following CRDTs: last-writer-wins register, for storing opaque 
values; add-wins set, for keeping a set where adding an element wins over a concurrent 
removal of that same element; add-wins map, for maintaining a map of values; and counter, 
for maintaining a number that accepts concurrent increment and decrement operations. 
 

2.3.2.6.2 Sharding 

PotionDB adopts a sharded model, where objects replicated in a location are split into multiple 
shards. For durability, each shard could be replicated in multiple servers using some 
replication protocol [72]. 
  
In each server, a shard has a dedicated thread, adopting an approach used in other 
database systems, such as H-store [73]. This avoids using locks when accessing objects, 
simplifying the implementation and avoiding issues such as lock contention. 
  

2.3.2.6.3 Metadata 

Let L1, ..., Ln be the set of locations in the system. Each replica Lj keeps a global vector clock 
vcG, with one entry for each Lk Î {L1, ..., Ln}. This clock represents the latest snapshot available 
in Lj, summarising the transactions integrated in the snapshot. Each shard shi also keeps a 
local vector clock vci. The local vector clock represents the latest snapshot available in shi, 
which may be different from vcG. Any shard can access the server's physical clock, pc. 
  
A transaction t has an associated read vector clock, t.rc, that represents the snapshot to be 
read by the transaction. On commit, a transaction is assigned a commit clock, t.ct, consisting 
in a pair (timestamp, location identifier).  A transaction with commit clock (n,ri) is in snapshot 
vcG  iff vcG[ri] <= n. 
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Each shard maintains a hybrid logical clock (HLC) used to assign timestamps. An HLC uses 
the physical clock of the computer to generate the next timestamp, unless the physical clock 
is smaller than a timestamp previously generated/observed. In this case, it returns the 
maximum previously observed timestamp plus one. This guarantees that timestamps 
generated are monotonically increasing. 
  
Each shard shi also maintains a list of prepared transactions, prepi, and a list of commits on 
hold, holdi. 
  

2.3.2.6.4 Transaction processing 

A client executes a transaction by interactively contacting a PotionDB server. The transaction 
execution is coordinated by the Transaction Manager (TM). 
  
When the TM receives a begin operation, it decides which snapshot the transaction will 
access, i.e., the latest snapshot available at the current location, which is represented by the 
global vector clock vcG. 
  
When receiving an update operation, the TM asks the Materializer to execute the update in a 
private copy of the object for the transaction snapshot. When receiving a read operation,  the 
TM asks the Materializer to execute the read operation in the private copy  of the object - if no 
update has been executed before in the object, a shared copy with the version  of the 
transaction snapshot is used. We represent by t.WS and t.RS the sets of objects updated and 
read in transaction t. 
  
When the TM receives a commit, it needs to assign the commit timestamp to the transaction. 
For assigning the commit timestamp, the TM runs a two phase protocol with the shards of the 
objects updated in the transaction. 
  
In the first phase, the TM sends a prepare message to all shards in t.WS. A shard shi replies 
with a timestamp proposal, (n,i), where n is the timestamp generated by the shard's local HLC 
and i is the shard identifier. Additionally, the shard adds the information about the transaction, 
including the proposed timestamp, to the list of locally prepared transactions, prepi. 
  
The TM collects the replies and sets the commit timestamp of the transaction, t.ct = (mts, j), 
with mts the largest received timestamp, and j the location identifier. A commit message is 
sent to all shards in t.WS with the commit timestamp. 
  
When receiving a commit message for transaction t, a shard proceeds as follows. First, it 
checks if the commit can be applied, by checking that no prepared transaction or commit on 
hold has a  smaller timestamp. If so, updates from t are marked as committed and the shard's 
local vector clock vci[j] is updated with t.ct. Otherwise, the commit is queued to be applied later, 
as other transactions may commit with a lower ct than t.ct. In either case, the transaction is 
removed from prepi. If t's proposed value was the lowest, then the Materializer verifies if any 
commit on hold can now be executed. 
  
The client is informed of the commit as soon as all shards in t.WS acknowledge the commit 
message, even if some shards queued the commit. Additionally, the TM sends information to 
update the global vector clock to include the timestamp of the committed transaction. Updating 
the local entry of the global vector clock with the timestamp of committed transactions 
immediately promotes freshness, as new transactions will always use the latest committed 
snapshot. 
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However, this raises a problem, as some shards (not involved in the committed transaction) 
may still have transactions to commit with smaller timestamps.  If a transaction that starts in 
the most recent snapshot issues a read (or update) operation on object o in a shard that has 
pending transactions with smaller timestamps, the operation needs to block if there is a 
transaction prepared or on hold that had modified o. 
  

2.3.2.6.5 Operations on objects not locally replicated. 

As PotionDB is partially replicated, a transaction may access an object o that is not locally 
replicated. 
  
When an operation is executed in an object o that is not locally replicated, the shard that should 
hold o fetches a copy of the object from a remote replica. The version of the object requested 
is that of the transaction snapshot, t.rc ignoring the entry for the current location. It is important 
to ignore the current location to guarantee a quick reply. Otherwise, as updates are propagated 
asynchronously, the remote replica would need to wait to receive all transactions from Li 
reflected in the transaction snapshot before returning a copy of o. After receiving the copy of 
the object, the shard will apply any updates performed to o at Li. Typically, there will be no 
updates, as Li does not replicate o. After this, the transaction accesses the object as any other 
locally replicated object. When the transaction commits, the updates to the object are 
propagated in the context of the transaction. 
  

2.3.2.7 Replication 

Buckets are the unit of replication in PotionDB.  Each location decides which buckets to 
replicate. In our e-commerce example, there is a bucket for the customers of each online store.  
The container customers include all customer buckets. The EU customers bucket is replicated 
in the EU location and in one or more additional locations for fault tolerance. 
  
PotionDB adopts an operation-based replication approach, where transaction updates are 
propagated to other replicas. To be more precise, in the context of CRDTs, an update executed 
in a CRDT generates an effects operation, and it is this effect update that is propagated and 
applied in relevant replicas. We start by describing how the replication process guarantees 
that transaction updates are propagated to all relevant locations. In the end, we discuss the 
special case of NuCRDTs. 
  
When a transaction commits at a shard, that shard sends its part of the transaction to the 
replicator. Given how transactions are committed at a shard, it is guaranteed a shard sends 
the transactions ordered by commit timestamp. If the shard processes no transaction for some 
time, it notifies the replicator that there are no parts of transactions for the shard until the 
current timestamp, obtained from the shards' HLC. 
  
The replicator processes the parts of transactions received from shards in timestamp order.  
For each transaction, the replicator groups the transactions' updates and repartitions the 
updates, one for each updated bucket. The new transaction parts are then queued for 
replication, one part for each bucket, being propagated in order to all other locations that 
replicate the bucket.  Note that a location has a logical stream of updates not only for all 
buckets the location replicates, but also for the buckets that a local transaction has updated 
an object. 
  
The replicator integrates remote transactions as follows. A replicator subscribes to the logical 
streams of updates for the buckets it replicates from all other locations. For the logical streams 
of each location, it processes transaction parts in timestamp order. For a given timestamp, the 
replicator groups the parts of the transaction t and verifies if the causal dependencies of the 
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transaction are satisfied by checking whether t.rc <= vcG. If true, the replicator forwards the 
transaction updates to the local shards for execution. After all shards involved in a transaction 
t end, the global vector clock is updated to include the timestamp of t. If false, then some 
transactions from other locations need to be applied before executing it. So, the replicator 
continues by processing the logical streams from other locations. Furthermore, the replicator 
piggybacks to other locations the information about locally executed transactions. For fault-
tolerance, a location forwards updates from a failed location to other locations. 
  

2.3.2.8 Status 

PotionDB is under development, and we expect to report the evaluation of the prototype in the 
next deliverable. Additionally, we expect to report the integration of support for recurrent 
queries and the integration of Potion under the generic API proposed in the context of TarDIS. 
 

2.3.3 Integration of Storage Solutions into the TaRDIS Ecosystem (Blockchain, 

C3, Engage) 

2.3.3.1 Overview 

Integrating third-party storage solutions into a system poses a range of challenges, 
emphasising the intricacies of aligning external tools with specific project requirements. 
Moreover, due to the complexity of distributed storage solutions, having a common interface 
that could be used by different applications that may wish to rely on different storage solutions 
proves to be a difficult task, especially in terms of compatibility and interoperability. Achieving 
seamless compatibility, while offering flexibility to the developer, demands meticulous planning 
and expertise. The process requires a delicate balance between customization to meet 
specific requirements and leveraging the capabilities of the external tool.  
 
To address this challenge, we created a set of adapters, implemented in the Babel framework, 
that aims to integrate different storage solutions into the TaRDIS Ecosystem. To enable this, 
we created a set of abstractions (derived from the APIs presented in Deliverable 3.1 [58]) that 
offer common interfaces to applications that wish to use any of the different storage solutions 
provided by TaRDIS and integrate distributed systems protocols into their protocol stack. 
 
The common abstractions aforementioned (materialised as a set of support common classes) 
support the interaction between well-known classes of distributed protocols by making APIs of 
these protocols to be generic, allowing implementations to be agnostic to the concrete protocol 
that materialises a given abstraction. These abstractions are divided into three main 
categories: data management, dissemination, and membership. These common abstractions 
are further explained throughout Sections 3.d, 3.e, and 3.f.. 
 
With these abstractions in place, we developed a set of adapters by leveraging on the 
interfaces offered in the data management package, namely, the requests and replies 
abstractions, used to issue operations to the storage layer and to receive their response, 
respectively. With these abstractions, an application can instantiate any of the client-side 
adaptors of their choice and communicate seamlessly with the picked storage solution.  
 
As one could expect however, due to the different nature of different storage solutions (i.e., 
inserting a row in Cassandra presents different semantics from executing a transaction on the 
HyperLedger Fabric blockchain solution), we offer some flexibility to the developer by allowing 
different types of operations payloads (materialised as abstract classes) when executing an 
operation. Further details are given in Section 3.11 and in the public repository 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters. 
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2.3.3.2 Storage Abstractions 

To provide a common interface to different storage solutions, we devised a set of storage APIs 
which enable an application to interact (i.e., order the execution of operations and obtain their 
results) with stored data. Following the API style exposed by Babel (that we discuss in further 
detail on Section 3) the interface to interact with storage abstractions is divided into two 
different categories: requests and replies, which allows to execute operations (e.g., create a 
key space, delete a record, etc.) and receive results from these operations asynchronously, 
respectively. In more detail, the following abstractions are offered: 

Requests 

● CreateDataspaceRequest: Request to create a dataSpace in a data management 
protocol, with a given set of properties. 

● CreateKeySpaceRequest: Request to create a keySpace(akin to a table) in a 
specific dataSpace in a data management protocol, with a given set of 
properties. 

● ExecuteRequest: Request to execute an operation on a specific dataSpace and 
keySpace. 
The operation in question is specified through the abstract class CommonOperation 
which can be instantiated with a specific operation type (i.e., 
BlockchainOperation, PayloadOperation, etc.). 
Each of these operations follows the design needs of the solution storage being used, 
namely, the parameters to execute an operation. Additional operation types can be 
added to accommodate new protocols integrated into the TaRDIS toolbox. 

● DeleteDataspaceRequest: Request to delete a dataSpace. 
● DeteKeySpace: Request to delete a keySpace in a dataSpace. 

Replies 

● CreateReply: Generated in response to a CreateDataspaceRequest or 
CreateDataspaceRequest, with the status of the operation. 

● ExecuteReply: Generated in response to a ExecuteRequest, with the status of the 
operation and the response data (e.g., a payload). 

● DeleteReply: Generated in response to a ExecuteRequest,DeleteKeySpace or 
DeleteDataSpace, with the status of the operation. 

● NotSupportedReply: Generated in response to a request for an operation that is not 
implemented in the underneath data management protocol. 

2.3.3.3 Current Integrations 

At the moment, we provide the adapters for the following storage solutions: 
 

● Arboreal: 
This adapter implements Arboreal client-side. 
Arboreal is a generic solution for data management in the edge, that provides causal+ 
consistency while scaling for a large number of edge nodes (presented in detail in this 
report on Section 2.c.i). 

 
● Hyperledger Fabric (Blockchain): 

This adapter implements Hyperledger Fabric client-gateway, the component in charge 
of invoking transactions on smart contracts deployed in the fabric blockchain network. 
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Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a 
modular architecture delivering high degrees of confidentiality, resiliency, flexibility, and 
scalability. 
 

● C3: 
This adapter implements C3 client-side. C3 [99] is designed to extend existing storage 
systems by integrating the designed replication schema to enforce causal+ 
consistency. At the moment this adapter implements C3 integration with Cassandra. 

     
● Cassandra: 

This adapter implements Cassandra client-side. Cassandra is a highly performant 
distributed database, providing high availability and proven fault-tolerance. 

 
● Engage: 

This adapter implements Engage client-side. Engage [80] is a storage system that 
offers efficient support for session guarantees in a partially replicated edge setting. 
 

2.3.3.4 Work In Progress  

The adapters shown are currently in development. We expect to add more functionalities to 
each one (according to the specification on the underlying protocol) as well as provide 
additional documentation, testing, and examples while following the APIs described above. 
Additionally, we plan to integrate more data storage solutions into the presented model (e.g., 
PotionDB that was also presented in detail in this report). 
 

2.3.4 Integrating the Actyx middleware: data management for event streams 

The Actyx middleware (discussed already in Section 2.3.2) offers not only communication 
services: by providing durable and reliably replicated event streams it also is used and useful 
as a data management system. Its focus on recording events in an immutable fashion — using 
append-only logs — makes it ideal for process auditing, process mining, business intelligence, 
etc. To this end the included Actyx Query Language (AQL) allows the precise selection of data 
as well as its transformation, filtering, aggregation, and enrichment using sub-queries. These 
facilities operate on a more fine-grained level than the data management tasks described for 
the basic TaRDIS abstractions described in the sections above; it would not be practical to 
store events that carry just some hundred bytes of information (in many cases less!) directly 
in a decentralised key–value store, the overhead for managing this storage would be 
forbiddingly high. 
 

2.3.4.1 Overview of data management within the Actyx middleware 

Events in Actyx are stored in log slices, where each Actyx node is the sole editor for a set of 
such slices. A log slice is a sequence of events ordered by their insertion, meaning that each 
new event is inserted exactly at the end of the log, becoming the successor of the previously 
latest event. Which slice an event is added to is determined by the tags it carries. This has 
been used by Actyx internally e.g. to write metrics events into a slice that is separate from 
application events. 
 
Actyx uses IPFS [103] to store event data within the swarm, which is a method that identifies 
and localises data using the cryptographic hash of the data’s binary representation. This way, 
no names need to be managed and agreed upon, storing some binary block of data yields the 
same hash (called Content Identifier or CID) regardless of which node is performing the store 
operation. Finding data by CID requires communication with the rest of the swarm unless the 
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data are already found locally, which means that applying this method to single events is very 
expensive. Therefore, Actyx created the banyan library [106] that partitions the log slice into 
runs of events and stores each one of these as an IPFS block. Not only does this lead to using 
fewer CIDs (which leads to less management overhead), it also allows sequences of events 
to be compressed together before being encrypted, yielding a much better compression ratio 
than treating each event separately. For illustration, we found that grouping events into blocks 
such that the compressed size is roughly 100kB leads to a reduction in size by about a factor 
of 40 — this is due to the fact that events from the same source tend to share common syntax 
and contained data (like IDs or property names) which can then be exploited by the zstd 
compression algorithm. 
 
Finding events within the compressed data blocks requires indexing information, which is 
stored in the banyan tree data structure one level above the leaves. The index contains all 
directly queryable aspects of each event, which includes timestamps (physical & logical) as 
well as the attached tags and the ID of the application that emitted the event. 32 blocks can 
be summarised by one branch node, after which the branch nodes are themselves 
summarised by higher-level branch nodes. The single top-most branch node is referenced 
from a dedicated root node that contains the encryption configuration for this tree, allowing a 
log slice to be made readable only to a subset of the swarm nodes — although this is not yet a 
feature application programmers can use. 
 

2.3.4.2 Adaptations required for Actyx integration into TaRDIS 

Some of the swarms targeted by TaRDIS use cases are intended to keep running for extended 
time periods, leading to the problem that storage requirements scale linearly with the time a 
swarm has been active. On the other hand, not all details of what some swarm participant did 
are relevant for ongoing operations many months later — in some cases short-lived workflows 
are only relevant on the current day or within the current hour. While it remains beneficial to 
keep some replicas of the full event streams (e.g. in the cloud) for auditing, process mining, 
and business intelligence, it is also required to free up storage space on the edge devices as 
soon as possible. To this end, the capability of forgetting some prefix of a log slice needs to 
be added to Actyx — the event log structure stays immutable, but the actual data of some initial 
portion of the log may be forgotten. This feature is called ephemeral event streams. A directly 
related feature is the configurable routing of events into log slices because forgetfulness can 
only be configured at the granularity of a log slice. Pre-TaRDIS Actyx had a fixed set of rules 
basically separating internal administrative events from application events; this needs to be 
opened so that the administrator of each Actyx node can decide which events to keep for how 
long. This declaration will be based on timestamps and event tags. 
 
The above can be done independently of new TaRDIS tools. Once such tools become 
available, they will also be used to implement a smarter version of the banyan storage format, 
analogous to using TaRDIS communication primitives instead of the existing libp2p approach. 
This implies the introduction of TaRDIS interfaces within the Actyx middleware to decouple the 
core logic of offering fine-grained event streams based on coarse-grained block storage in the 
swarm from the currently used IPFS implementation. Once this is done, TaRDIS data 
management can be introduced seamlessly, including intelligent partial replication with 
dynamic reconfiguration. 
 

2.3.4.3 Current state and future work 

So far, we have invested the effort in Actyx to release the ephemeral event streams and 
configurable event routing features. Like for the communication aspect, we can only start 
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introducing the TaRDIS interfaces once those have been sufficiently stabilised and initial 
implementations are available for evaluation. 

2.4 DECENTRALISED MONITORING AND RECONFIGURATION (TASK 6.3) 

The overall goal of this task is to address the fundamental challenges to create the support for 
autonomic6 swarm systems. This requires developing solutions for monitoring and 
reconfiguration within the TaRDIS toolbox, thus providing support for running swarm 
applications and the system in highly dynamic environments, where runtime adaptation is 
relevant, but cannot be executed (at least exclusively) by human operators in an effective way.  
 
The task is being carried out in three parts by designing and developing: 

1. decentralised solutions for acquiring telemetry information from components of the 
deployed system; 

2. mechanisms to aggregate and propagate telemetry information to continuously train 
and enhance ML models via provided APIs, specifically designed for this purpose;  

3. solutions for supporting reconfiguration of application components at runtime (e.g., 
parameters, communication patterns, add/remove components). 

 
In addition to these goals, this task will also focus on the integration with Task 6.1 and Task 
6.2 within the same working package, thus allowing seamless integration within the toolbox 
itself. With Task 6.1, the integration will be carried out in a way to propagate configuration to 
the nodes and gossip the data to other nodes in the cluster. Integration with the Task 6.2 will 
be carried out to propagate configuration to the nodes, and store specific configuration 
elements to the decentralised database, for system and/or application needs. 
 
All developed elements will be carried out using open-source tools, with emphasis on the 
cloud-edge collaboration. 

 

2.4.1 Distributed Management of Configuration based on Namespaces 

Distributed systems are usually designed to be able to run multiple applications at the same 
time (i.e. multi-tenancy) [6]. Such complex systems usually require dynamic configuration 
based on numerous factors. Dynamic configuration is essential for both effectively managing 
this large-scale complex shared infrastructure, but also for managing components of complex 
distributed applications, such as swarm applications, to ensure that they operate correctly and 
within acceptable performance despite external events. 
 
To be able to provide such functionality, platforms add various isolation mechanisms for 
available resources, to ensure that one application does not monopolise resources, and starve 
other participants, a problem widely known as noisy neighbours [7]. Running applications in 
isolated environments (e.g. containers, virtual machines, unikernels, etc.) goes a long way to 
ensure that during the application running time, resource spread will be fair and as described 
by clients. 
 
On the other hand, we must ensure that the system does not even come to the point that these 
applications create problems on start, but also to allow collision-free naming that is usually 
overlooked. The system should provide logical isolation of both resources and naming on 
various objects that exist in the system. 
 

 
6 Autonomic is a term popularised in a seminal work of IBM [107], that captures that notion of a system 
that can self-manage and self-optimise. 
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Since namespaces allow the system to isolate applications and their artefacts, this could be 
useful for other parts, for example, configuration and telemetry acquisition. With different 
strategies, users can configure applications running inside logical isolation, or namespace, 
differently than applications in other namespaces. This allows the system to be able to run, 
configure, and manage virtual clusters/swarms inside physical clusters/swarms based on 
different criteria. At the same time, it allows the system to extract telemetry information based 
on usage in every single namespace and allows different data transformations on smaller 
chunks of data when needed. 
 
The last benefit that namespaces bring is the ability for users to test their applications in a 
contained real-world environment. With this, users are allowed to do experimentation with their 
applications on small, isolated spaces, and new users can practise, and get to know the 
system. 
 
Based on this we have developed a mechanism, which we integrated with docker 
containerization environments, where we can manage components of different distributed 
applications based on hierarchical namespaces. To do this we allow different components of 
a system to be both associated to a namespace and be characterised (by the developer) by a 
set of labels, which can be used to determine whose components of the application will be 
affected by reconfiguration/management actions. 

 
Labels represent an arbitrarily long array of key-value pairs, usually attached to many 
application components (or more generally, objects) in the system. This idea is usually used 
to provide easy and rich query mechanisms, in complex systems operating on many nodes, 
running multiple applications on these nodes with many other abstractions (e.g. configurations, 
secrets, actions, etc.) coexisting on these nodes at the same time. Kubernetes [1] uses these 
ideas to specifically identify attributes of objects that are meaningful and relevant to users but 
do not directly imply semantics to the core system. 
 
The main goal of labels is relatively simple, their existence allows users to simply map their 
own organisational structures onto abstract objects provided by the system, in a loosely 
coupled fashion [1, 2]. Clients are not required to store these mappings. Labels can be added 
to object creation [2], but can also change during the object lifecycle, at any point in time. 
 
They shine in complex systems, because of their loosely coupled nature [3], allowing both 
system and users to easier track, query, and manage multiple objects, sometimes even at the 
same time [4]. The users submit their tasks to the system, and the system will do a selector 
query to find the right infrastructure objects, based on provided labels, and tie everything 
together in one working unit, a technique known as infrastructure as software [5]. 
 
With labels, we can point a system to propagate a message directly to the node, or group of 
nodes without any direct knowledge of where that node is. This could be applied furthermore 
to any other object running on the node, or group of nodes. Message propagation could be 
implemented in event-based fashion using open-sourced industry standard tools such as 
Apache Kafka, NATS etc. 
 
One interesting effect from this approach is that extension is relatively easy. The user needs 
to hint to the system where to look for infrastructure objects, and based on the provided labels, 
the rest of the system can run the same type of operations – query provided labels. Hinting 
information to the system is relatively easy, since every infrastructure object has a unique 
name, representing that exact resource, the system can get a proper pool of resources and 
do the rest of the query on existing labels and provided selector. 
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2.4.2 Telemetry Acquisition for Decentralised Systems 

Currently developers of swarm and decentralised applications have no standard and easy way 
to collect runtime telemetry information about the operation of these applications, meaning 
developers must log and then parse all relevant information that could give them an insight 
into the correctness or effectiveness of their developed solution, which is impractical. 
Alternatively, they could integrate existing metrics collection systems which is time consuming 
and may not provide optimal results as the existing solutions and architecture (e.g., Nagios, 
Prometheus) are not tailored for the particularities of decentralised systems, meaning they 
may not suit the needs of developers or may cause performance issues when handling metrics 
from a large number of application nodes. 
 
To overcome this lack of support, we have conducted in this activity the development of new 
mechanisms with the goal of allowing developers to instrument their applications to monitor 
application/protocol specific runtime indicators, general hardware, and arbitrary metrics, while 
minimising the interference of these mechanisms with the code of distributed protocols and 
applications. 
 
To achieve this, our proposal must, not only, provide support for the most common metric 
types, such as, counters, gauges, and histograms, but also, offer sets of ready to use metrics 
depending on the type of protocol or application being developed. For example, if the 
developer is creating a variation of the Paxos [84] agreement protocol, they may be interested 
in collecting metrics that are relevant for general agreement protocols, such as the average 
time or number of messages needed to reach agreement, and as such we want them to be 
able to have these metrics easily accessible to use. 
 
The collected metrics must then be exported, so they can be used to observe the behaviour 
of the system. These can be exported using a multitude of methods, such as exposing it 
through HTTP endpoints, exporting it to a log file, publishing them to a Message Queue to be 
processed, etc. In the future, these metrics might be fed to a distributed subsystem that 
analyses them and based on that, and potential machine learning derived models of a concrete 
application, makes automatic management decisions. 
 
Since exporting can take place using varying methods, the system must support different 
formats to structure the metrics to be exported. These should include widely used formats, 
such as Prometheus Text Format and OpenTelemetry Format, enabling developers to use this 
system with existing monitoring tools which they may already be using, but also allow 
developers to specify their own formatting. 
 
This solution will also include an application that serves as monitor to receive and display the 
exported metrics, which will initially be centralised. However, this is incompatible with 
decentralised applications that feature large numbers of nodes working together. As such, 
another key feature of this solution will be network aggregation, meaning nodes exporting 
metrics will also act as receivers of metrics from other nodes, aggregating the received 
information with their own, propagating aggregated metrics information along the network, 
allowing for multiple points of monitoring of the system. 

2.4.2.1 Architecture 

In this section we present the architecture of our proposed solution for the problem of collecting 
and exporting metrics in decentralised systems. The solution is based on the following design 
principles: 
 

● The system must be able to collect metrics from different protocols, as decentralised 
systems are composed of different protocols that interact with each other; 
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● The system must be able to export the collected metrics in different formats, as different 
systems may require the metrics to be exported in different formats; 

● The system must enable developers to create and use new exporters, so as to adapt 
to many types of monitoring systems; 

● The system must be able to be reconfigured without the need to recompile the code, 
as the number of nodes in a decentralised system may be large;  

● The system must be able to be used to collect insight about different types of 
decentralised systems, as the metrics collection and exporting system should be as 
general as possible; 

● The system architecture must allow for the system to be replicated in many 
programming languages, as decentralised systems are implemented in different 
programming languages. 

 
Taking into account these principles, we propose a solution based on the following 
components, which are described in more detail in the following sections: 
 

● The Metrics Manager, the core of the solution, responsible for managing and mediating 
interaction with the other components; 

● A set of types of metrics, such as Counters, Gauges and Histograms, which are used 
to collect different types of data; 

● A set of Metric Registries, which store, for each protocol, the metrics to be collected 
and exported; 

● A set of Exporters, responsible for exporting samples of the metrics.  
 
Metrics Manager: 

 
As previously mentioned, the Metrics Manager component is responsible for managing and 
mediating interaction with the other components that comprise the metrics collection and 
exporting system. As such, all user interactions with the system are performed through this 
component. There must only be one instance of this component per process. 
 
This component is responsible for the following tasks: 

● Registering metrics in the Metric Registry with the given id, as requested by a user, 
creating the registry if one with the given id wasn’t yet created; 

● Registering exporters, either when the corresponding method is called by the user or 
using configuration files; 

● Instantiating the registered Exporters, by assigning a thread to each one; 
● Responding to requests for metric samples by Exporters by asking Metric Samples to 

be generated by the corresponding Metric Registries. 
 
The choice to allow for configuring the exporters to be registered and initialised using both 
method calls, and configuration is explained by the fact that using configuration files allows for 
a more flexible and dynamic system, as it allows for the system to be reconfigured without the 
need to recompile the code, which is useful in systems where the number of nodes is large.  
 
On the other hand, using method calls allows for a more controlled and predictable system, as 
the method signature and the compiler will enforce the correct parameters are being used to 
initialise the exporters. 
 
Metric Registries: 

 
The need for placing metrics within what is known in this system as Metric Registries stems 
from the fact that decentralised systems require interactions between different protocols to 
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achieve their desired purpose, such as Membership Protocols, which keep track of which 
nodes are part of the system, and Agreement Protocols, which allow nodes to agree on the 
order of operations to execute. -> (maybe i need citations for what are membership and 
agreement) 
 
Since each protocol has its own set of metrics, which we may be interested in collecting at 
different times or using different methods, each instance of a Metric Registry keeps all metrics 
for a specific protocol we want to monitor. 
 
When an Exporter requests a sample of the metrics of a certain protocol, the Metrics Manager 
asks the corresponding Metric Registry to generate a sample of the metrics, which is then 
returned to the Exporter. 
 
EpochSample: 

 
The EpochSample is a data structure that contains a set of MetricSample collected from a 
single protocol, and an associated timestamp, such timestamp is not expressed in seconds 
but in epochs, an arbitrary time measurement that is increased each time the metrics of a 
certain protocol is collected. Notice that epochs do not have to be globally synchronized across 
all nodes in the swarm. 
 
This choice is justified by the fact that using physical time in systems where we have large 
numbers of nodes to correlate whether the metrics were collected in that same timeframe is 
not possible, thus we use the notion of epoch. 
 
Metrics and Metric Samples: 

 
Metrics currently fall into 3 categories:  

● Counters, a value that only goes up; 
● Gauges, a value that can go either up or down;  
● Histograms, used to divide observations in customizable intervals; 
● Simple registers that can have a non-numerical value (potentially out of a list). 

 
When each metric is collected a MetricSample is generated, which encompasses the current 
value of the metric, or an aggregation of those values if requested, and a timestamp. 
 
Exporter: 

 
The Exporter component is an abstract component that provides the base for the 
implementation of different types of exporters. It offers ways to collect metrics samples from 
the Metrics Manager for one or more protocols and to load configurations related to the 
exporter using configuration files.  
 
Since each exporter must implement the method that is run within the thread assigned to each 
exporter by the Metrics Manager, they are fully in control of how frequently the samples are 
generated and how those samples are exported.  
 
This allows for the developers to implement the exporters in a way that is best suited for the 
system they are working on, as they can choose the best way to export the metrics.  
 
The system includes a set of exporters that are already implemented, such as the 
TimedLogExporter, which exports the metrics to a log file at regular intervals, and the 
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HTTPExporterPrometheus, which exposes the metrics in a format that can be scraped by a 
Prometheus server. 

2.5 PLAN AND FUTURE ACTIVITIES 

Up to this point we have reported on the main completed activities in the context of the different 
tasks of WP6. As stated before, in the reported period WP6 has focused on providing 
fundamental support for the development of swarm applications across the several directions 
covered by WP6, namely membership and communication abstractions, distributed data 
management, monitoring and autonomic control. Across these directions we explored new 
directions and novel solutions, and made available reusable components of previous existing 
solutions to simplify their integration in the development of swarm applications within the 
TaRDIS ecosystem. 
 
In the remainder of the project, WP6 is going to continue to develop and integrate technology 
within these main vectors, by addressing challenges such as security, and the integration of 
runtime support technology across the other components of the development cycle, such as 
verification of correctness. The focus of each of the WP6 tasks in the next cycle of development 
of TaRDIS is discussed in the following. 

 

2.5.1 Task 6.1 

Task 6.1 will focus on addressing aspects related with security on membership and 
communication abstractions. This will entail defining mechanisms for dealing with challenges 
such as identity management at the membership layer, which will require any element of a 
swarm to prove that it is part of the swarm before being accepted at the membership layer, 
and hence before having access to any swarm service or functionality of the application. 
Security questions will also be addressed in the context of communication abstractions, due 
to the need to ensure integrity and privacy over the information exchanged between different 
participants of the swarm. These efforts are planned to have an impact on the evolution of the 
Babel framework, as it will force us to rethink the operation of the framework as to expose 
adequate abstractions to simplify the development of distributed protocols and applications 
that require security mechanisms. An interesting application of these efforts will be to devise 
novel decentralised membership services and communication mechanisms based on publish-
subscribe that can provide privacy to support open markets, such as the one in the context of 
the EDP use case. 
 
An important aspect that was not yet tackled by WP6 is the definition of membership 
abstractions based on partial information of the system that can consider application specific 
proximity metrics. Such membership abstractions are important for several reasons, one of 
them being efficiency, since if we operate on top of a membership service that provides 
geographical proximity, for instance, most interactions on the swarm will be more reliable and 
incur in a lower operational cost. Similarly, if we consider a proximity metric based on 
administrative domains, interactions among nodes in the same administrative domain might 
benefit from the fact that some information can be shared with lower concerns for privacy or 
ownership. As detailed on Deliverable 2.2 [96], application-specific proximity bias on 
membership services is relevant in different swarm application scenarios. 
 
Another direction that will be explored in the context of Task 6.1 in the future is to define novel 
solutions for decentralised publish-subscribe, data streaming, and multicast. This is a 
necessity for coming up with mechanisms to aggregate and propagate monitoring information 
that will govern the self-adaptation of complex swarm systems (in task 6.3). Within this content, 
we are also interested in identifying mechanisms that could provide some form of privacy or 
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anonymity for participants using point-to-multipoint communication abstractions such as 
publish-subscribe or multicast. 
 

2.5.2 Task 6.2 

The solutions developed so far in the context of Task 6.2, and reported here, have been 
restricted to distributed storage solutions that operate in dedicated infrastructures, that while 
being useful to several swarm applications, limits its applicability to settings where an 
infrastructure is permanently in place and available. In the next development cycle of TaRDIS, 
Task 6.2 will focus on developing decentralised storage management solutions, that are 
achieved by the combined efforts of other components of a swarm application, not requiring a 
specialised dedicated infrastructure. Evidently, achieving this will require research, since such 
a system must face clear challenges related with the durability and availability of shared data 
across different swarm components. Moreover, such a solution will require proactive 
replication of data to deal with these challenges, which can be challenging in settings where 
the number of available resources across different swarm components are limited (in contrast 
with the virtually unlimited resources of cloud infrastructures). 
 
Similarly to Task 6.1, Task 6.2 in the next cycle of development of TaRDIS will address issues 
related with security in the context of distributed storage management systems. In this context 
it is relevant to consider what are the implications for a swarm system when a participant in a 
distributed storage system can exhibit a byzantine behaviour. Typical cloud-based, and even 
edge-based, solutions assume that components of the distributed storage systems operate on 
devices that can be somewhat trusted, whereas the operator can look at the data, but will not 
delete or modify that data stored arbitrarily (this is aligned with the curious but honest fault 
model). To address this challenge, we plan to consider the implications of byzantine nodes (at 
the replica level) on consistency models and replication protocols, allowing us to devise novel 
decentralised solutions that provide clear guarantees in the context of swarm systems. 
 
Finally, also in alignment with efforts to be pursued in Task 6.1 and described above, we plan 
to explore a novel location-centric data model and replication strategy, where we associate to 
data objects of a swarm application a location property that becomes a primary descriptor of 
the data elements (akin to the timestamp in time series databases) which can then be used to 
govern processes such as data placement, replication protocols, consistency guarantees 
offered to different entities manipulating that data, in a way that is automatically defined based 
on the location associated to data elements and the location of the entity accessing the data. 
Evidently, location here can be a geographical location, which makes sense on global scale 
systems, but it can also be a logical location reference, such as an administrative domain. 
 

2.5.3 Task 6.3 

In the next development cycle of TaRDIS, Task 6.3 will focus its efforts on three 
complementary and related tasks. In relation to the acquisition of telemetry at runtime from 
swarm systems, this task will explore scalable mechanisms to make the data available on 
locations where it can be used to, on one hand, train machine learning models that can guide 
the management of systems under evolving conditions; and on the other hand, to locations 
that effectively can plan reconfiguration actions over the system and coordinate those actions 
across small segments of the system (as to avoid expensive, and many times unfeasible, 
global coordination mechanisms). 
 
A second direction to be explored in the context of Task 6.2 is to develop decentralised 
approaches to manage swarm systems components. The solution discussed in this document, 
while organising the system components on hierarchical namespaces, still relies on a 
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centralised control architecture. In the next development cycle of TaRDIS, we plan to distribute 
the control component also following the hierarchical organisation of these namespaces, as to 
minimise the need for coordination, and to allow the system to be able to evolve, even in 
scenarios where some components are not reachable (for instance, due to a transient network 
partition). Such an approach will also limit the scope where telemetry information is required 
to guide the self-management process. 
 
Finally, Task 6.3 will make efforts to integrate with decentralised machine learning 
mechanisms, such as to enable the training of models with information that produces different 
logical areas of the swarm, without needing to concentrate that information at a single location, 
which could not be feasible due to the large amount of information that might be required for 
these processes. 
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3 SOFTWARE 

3.1 OVERVIEW 

In addition to conduct the research and development of novel solutions to address 
decentralised membership and communication primitives (Task 6.1), novel distributed data 
management solutions (Task 6.2), and new techniques to acquire telemetry on the execution 
of swarm systems to coordinate its runtime adaptation moving toward self-managed swarm 
systems (Task 6.3), WP6 also is responsible for producing and making available software 
pieces. These software pieces serve as demonstrators of the advances produced by the 
project in these directions, and that can serve as reference implementations for these 
solutions, which can assist the community in developing their own implementations of these 
systems specially tailored for their execution environments. Some of these demonstrators will 
be integrated into the TaRDIS toolbox, as discussed on Deliverable 2.2 regarding 
requirements [96] and Deliverable 3.1 regarding envisioned APIs [58]. 
 
This section provides pointers and small descriptions of the software artefacts that are part of 
this deliverable, point to the public repositories of where this software can be accessed, and 
provide - when applicable - descriptions of how to use it. We start by discussing some software 
pieces that have supported our development of these artefacts (Sections 3.3 - 3.12). In the 
following sections we discuss the software artefacts of the results reported previously in 
Section 2, and additional development that we did to support the integration of these artefacts. 

3.2 PRELIMINARIES: BABEL FRAMEWORK 

As discussed on other TaRDIS deliverables, namely Deliverable 3.1 [58], the TaRDIS 
consortium is adopting an event driven programming model. This is highly suitable for the 
development of novel decentralised protocols within the context of WP6, since as exemplified 
in this document, the specification of these protocols is many times in the literature done using 
an event-drive model (akin to actors’ models), which allow to discuss fundamental ideas and 
approaches in a way that is (mostly) independent of the programming language. 
 
However, we had to make decisions on which programming language (and environment) to 
use for building demonstrators and reference implementations to some of these solutions, 
particularly in a way that would allow these building blocks to be easily reused and composed 
to develop different swarm applications and systems. As mentioned previously in this 
document, we have decided to implement some of these components using the Babel 
Framework [59], a java framework previously developed by members of the NOVA team, 
whose goal is to simplify the development (and execution) of distributed systems, and in 
particular decentralised system, through the composition of protocols. For self-containment, 
we now provide a brief description of the Babel framework, that is required to understand some 
of the development on other WP6 artefacts.  
 
Babel is a framework that aims to simplify the development of distributed protocols within a 
process that executes in real hardware. A process can execute any number of (different) 
protocols that communicate with each other or/and protocols in different processes. Babel 
simplifies the development by enabling the developer to focus on the logic of the protocol, 
without having to deal with low level complexities associated with typical distributed systems 
implementations. These complexities include interactions among (local) protocols, handling 
message passing and communication aspects, handling timers, and concurrency-control 
aspects within, and across, protocols (while enabling different protocols within a process to 
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progress independently). Notably, Babel hides communication complexities behind 
abstractions called channels that can be extended/modified by the developer, with Babel 
already offering several alternatives that capture different capabilities (e.g., P2P, Client/Server, 
ϕ-accrual Failure Detector). Babel is implemented in Java, taking advantage of its inheritance 
mechanisms, such that developers extend abstract classes provided by the framework to 
develop their own protocols and solutions. The strong typing provided by Java allows the 
framework to easily enforce expected behaviour, while at the same time offering enough 
flexibility for the developer to implement any type of distributed protocol or system.  
 

 
 
The figure above illustrates the architecture of Babel. In the example, there are two processes 
executing Babel, each process being composed of three (distributed) protocols and two 
network channels for inter-process communication. Naturally, any distributed system operating 
in the real world will be composed of more than two processes. The Babel framework is 
composed of three main components, which we now detail. 
 

3.2.1 Protocols 

Protocols are implemented by developers (i.e., the users of the Babel framework), and encode 
all the behaviour of the distributed system being designed. Each protocol is modelled as a 
state machine (or an actor as in actor-based systems such as Scala) whose state evolves by 
the reception and processing of (external) events. For this purpose, each protocol contains an 
event queue from which events are retrieved. In the context of Babel, these events can be 
Timers, Channel Notifications from the network layer, Network Messages (most of the times 
originated from another process in the system), or Intra-process events used by protocols to 
interact among each other within the same process.  
 
Each protocol is exclusively assigned a dedicated thread, which handles received events in a 
serial fashion by executing their respective callbacks. In a single Babel process, any number 
of protocols may be executing simultaneously, allowing multiple protocols to cooperate (i.e., 
multi-threaded execution), while shielding developers from concurrency issues, as all 
communication between protocols is conducted through the asynchronous exchange of events 
with no form of memory sharing between different protocols, even within the same babel 
process.  
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From the developer’s point-of-view, a protocol is responsible for defining the callbacks used to 
process the different types of events in its queue (i.e., event handlers). The developer registers 
the callback for each type of event and implements its logic, while the execution engine of 
Babel handles the events by invoking their appropriate callbacks. While relatively simple, the 
event-oriented model provided by Babel allows the implementation of complex distributed 
protocols by allowing the developer to focus almost exclusively on the actual logic of the 
protocol, with minimal effort on setting up all the additional operational aspects, including 
handling concurrency challenges, complex asynchronous interactions, among others. 

3.2.2 Core 

The Babel core is the central component which coordinates the execution of all protocols within 
the scope of a process. 
 
As illustrated in the figure on the previous page, every interaction in Babel is mediated by the 
babel core component, as it is this component’s responsibility to deliver events to each 
protocol’s event queue. Whenever a protocol needs to communicate/interact with another 
protocol, it is the core that processes and delivers events exchanged between them. When a 
message is directed to a protocol in another process, the core component delivers it to the 
network channel used by the protocol, which then sends the message to the target network 
address. That message is then handled by the babel core of the receiving process that ensures 
its delivery to the correct protocol. 
 
Besides mediating interaction between protocols (both inter and intra process), the core also 
keeps track of timers configured by protocols and delivers an event to a protocol whenever a 
timer defined by that protocol is triggered. This avoids complex (and potentially operative 
system dependent) tasks to schedule the execution of actions by time. 

3.2.3 Network 

Babel employs an abstraction for networking named channels. Channels abstract all the 
complexity of dealing with networking, and each one provides different behaviours and 
guarantees. Protocols interact with channels using simple primitives (openConnection, 
sendMessage, closeConnection), and receive events from channels whenever something 
relevant happens. These events are channel-specific and are handled by protocols just like 
any other type of event (i.e., by registering a callback for each relevant channel event). 
 
For instance, the framework provides a simple TCPChannel which allows protocols to 
establish and accept TCP connections to/from other processes. This channel generates 
events whenever an outgoing connection is established, fails to be established, or is 
disconnected, and whenever an incoming connection is established or disconnected. Other 
examples of provided channels include a channel with explicit and automatic 
acknowledgement of messages, a channel that creates one connection for each protocol 
running in different processes, and a ServerChannel that does not establish connections, only 
accepts them, and its corresponding counterpart, the ClientChannel which behaves in a 
symmetrical fashion. We also provide a TCP-based channel that implements the ϕ-accrual 
failure detector [97], which notifies protocols that registered a callback whenever another 
process is suspected. 
 
The Babel framework also allows developers to design their own channels if they need to 
enforce some specific behaviour or guarantee at the network level for a protocol to function 
correctly. Network channels are implemented using Netty [98], which is a popular Java 
networking framework. However, the typical developer of Babel does not have to interact with 
Netty directly. 
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A protocol can use any number of channels, and a channel can be shared by more than one 
protocol. In the example shown in the previous figure, two channels were instantiated by Babel. 
Channels within a Babel process is instantiated on demand by the Babel core when protocols 
are instantiated. Upon protocol instantiation, protocols define the channels they will be using, 
instructing the Babel core to prepare and start the necessary network channels. Network 
channels have their own execution threads allocated to them, since they are responsible for 
serialise and deserialise events that are sent to (respectively, received from) the network, 
among other tasks. 

3.2.4 API and Babel Events 

Babel is provided as a Java library. Protocols in Babel are developed by extending an abstract 
class - GenericProtocol. This class contains all the required methods to generate events and 
register the callbacks to process received events. Each protocol is identified by a unique 
identifier, used to allow other protocols to interact with it. There is also a special Init event that 
protocols must implement, which is usually employed to define a starting point for the operation 
of the protocol (e.g., communicate with some contact node already in the system or set up a 
timer event).  
 
The API can be divided in three categories: timers, inter-protocol communication (within the 
same process), and networking, which we discuss briefly below. These define the types of 
events that a protocol can handle. 
 
Timers 
 
Timers are essential to capture common behaviours of distributed protocols. They allow the 
execution of periodic actions (e.g., periodically exchange information with a peer), or to 
conduct some action a single time in the future (e.g., define a timeout). 
 
In Babel, using timers can be achieved as follows. First, the developer needs to create a Java 
class that represents a timer, with a unique type identifier and extending the generic 
ProtoTimer class. Additionally, a timer might have any number of fields or logic as the 
developer needs (i.e., Timers in babel are Java classes that can have state and methods to 
manipulate that state). To use a timer in a protocol, a callback method must be defined to be 
executed once the timer expires (a process that is controlled by the Babel core). This method 
must receive as parameters the timer object and its instance id, which is generated when a 
time is set up by a protocol. This callback is registered by calling the method 
registerTimerHandler, which takes as arguments the unique type identifier of the timer, and 
the callback function itself.  
 
After registering the handler, any number of single-time or periodic timers can be set up by a 
protocol using the methods setupTimer or setupPeriodicTimer, respectively. These methods 
take as parameters an instance of the timer class, and the delay to trigger the timer (in 
milliseconds). The periodic timer also requires a third parameter: the periodicity after the first 
triggering of the time, in which copies of that Timer will be triggered again. Cancelling timers 
is also possible – for this, we simply call the method cancelTimer with the identifier of a 
previously setup timer as parameter.  
 
Inter-Protocol Communication 
 
The Babel framework supports multiple protocols executing concurrently in the same process. 
As such, we offer mechanisms for these protocols to interact with each other, allowing them 
to cooperate or delegate responsibilities among them. 
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To support this, Babel provides two types of communication primitives: one-to-one 
requests/replies and one-to-many notifications. Similarly to timers, requests, replies, and 
notifications need to extend a generic class (ProtoReply, ProtoRequest, and ProtoNotification 
respectively) and have unique type identifiers. Any of these events can have arbitrary state 
and/or logic. Again, similarly to timers, we need to register a callback for each type of event 
processed by a protocol. These callback functions all take the same parameters: the object 
that was sent and the identifier of the protocol who sent it. To send requests and replies, the 
methods sendRequest and sendReply are used. These methods take as parameters the 
Request or Reply to be sent and (numerical identifier of) the destination protocol.  
 
Notifications, however, are different since they are triggered by a protocol without being aware 
of which other protocols (if any) have registered the interest in processing these. Due to this, 
the method triggerNotification does not take a destination protocol, instead, every protocol that 
subscribed to that type of notification receives a copy of this event. This is handled internally 
by the Babel core. 
 
Networking 
 
Naturally, as a framework for distributed protocols, Babel also provides abstractions to deal 
with networking (including management of connections). For this, we provide different network 
channels with different capabilities. The interaction of protocols with channels is (mostly) 
similar across different channels.  
 
To use a channel, we start by setting up the properties for that channel. Considering the 
example of the TCPChannel, the required properties are the binding address and port for the 
listen socket; other channels can consider different properties (e.g., a server channel that takes 
as property the maximum number of simultaneous client connections).  
 
A channel is effectively created by calling the method createChannel, passing the name of the 
channel and the properties object. This method returns an identifier representing the created 
channel. This identifier is useful if a protocol uses multiple channels simultaneously, to be able 
to select which channel to use to send a specific message, and to register different callbacks 
for different channels. Similarly to timers and requests/replies, we also need to create a class 
for each network message to be sent through a channel. Besides extending a generic class, 
and having a unique type identifier, the developer must also define a serializer for each 
message to enable the message to be encoded and decoded into network buffers.  
 
A message can be sent using the sendMessage method, which takes as arguments the 
message to be sent, the destination address/port, the channel identifier (if more than one 
channel is being used) and optionally, the destination protocol. An additional parameter 
representing the connection to use can be passed. The interpretation of this parameter is, 
however, channel dependent. Finally, each channel is responsible for generating notifications 
for relevant events that occur in it, for which the protocol can register callbacks. 

3.3 A GENERIC API FOR DECENTRALISED OVERLAY AND COMMUNICATION 

PROTOCOLS 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/overlayapi 
 
The code containing our proposed implementation of a Generic API for Decentralised Overlay 
and Communication protocols is available at  
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https://codelab.fct.unl.pt/di/research/tardis/wp6/overlayapi.  
 
All components described in Section 2.b.i.3 are available in our implementation, this includes 
the Protocol Manager, a set of generic interfaces to interact with each service devised, multiple 
decentralised protocols, and a set of applications developed in order to demonstrate, test and 
evaluate the proposed solution. The four services discussed in detail in Section 2.b.i.2 
(Membership Management, Dissemination, Routing, and Resource Storage) were also 
implemented. The table below presents an overview of the protocols available in our 

implementation together with the services provided by each one. 
Multiple examples of applications that take advantage of the software developed are available 
at the project repository and are located in the src/main/java/applications directory. 
These applications are the ones described when presenting the experimental validation in 
Section 2.b.i.4. Applicational examples are divided between automated and interactive ones 
with some, such as the dissemination and routing applications, having both implementations 
while others are only provided with one type of implementation, this is the case of the peer-
sampling application (only automated) and resource storage application (only interactive). 
The applications provided serve not only as a means of demonstrating, testing, and validating 
the solution implemented but also as a reference to understand how the provided components 
should be leveraged when implementing new applications based on the solution proposed for 
interacting with decentralised protocols. This includes how the interaction with the Protocol 
Manager should be performed, namely regarding its instantiation and the request of new 
decentralised protocols, and the interaction with the generic interfaces of each service 
provided, taking advantage of each one of the generic, synchronous and asynchronous, 
mechanisms made available by our solution. 
To configure the operation of the software some configuration files should be considered. First, 
the config.properties file at the root of the repository should be used as the main 
configuration file, containing protocol-specific configurations as well as system-specific ones. 
Additionally, each application also contains a dedicated configuration file in the directory where 
it is located where all application-related configurations are placed. 
To run the software a Java 8 installation is required as well as the installation of the Maven 
tool, required for performing the build and packaging operations. Therefore, before running the 
software a mvn compile package command should be executed, from the root of the 
project, to build the required jar file. Then, to launch the applications, a testing script is 
available in scripts/test-script-local.sh which, by default, launches 10 instances of 
the routing application that perform routing requests taking into consideration the 
configurations defined in each configuration file. After the execution of the routing applications, 
10 instances of the dissemination application are also launched by the script. The versions of 
the applications considered by the script are the automated ones that perform the 
routing/dissemination operations without any intervention during a predefined amount of time. 
Each application can also be tested individually by executing the respective code and providing 
the necessary configurations. As an example, the following commands, executed from the root 
directory of the project, launch two instances of the automated routing application, one in port 
10000 and other in port 10001 (with the first one as contact node). The configurations related 
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with the execution of the underlying API mechanisms and protocols should be configured in 
the properties file located at the root of the project. These configurations include the address 
and port where each protocol instance (represented by its identifier) should run, the 
configuration of a set of parameters for each available protocol, as well as other system-
specific configurations. Moreover, the configurations can also be overwritten through 
command line arguments, as shown in the example below when considering the port 
configuration.  
The configurations related with the execution of the application, e.g., the execution time, 
should be defined in the properties file located in the routing application directory. 
 
java -cp target/DecentralizedAbstractions.jar 

applications.auto.routing.RoutingApp protocol.10000.port=10000 
 

java -cp target/DecentralizedAbstractions.jar 
applications.auto.routing.RoutingApp protocol.10000.port=10001 

contacts=127.0.0.1:10000 
 
Additionally, the remaining project directories contain the implementation of the components 
required by our solution namely the protocols, available at src/main/java/protocols, 
and the API-related components, i.e., code related with the implementation of generic 
interfaces and Protocol Manager, available at src/main/java/api. 

3.4 MEMBERSHIP ABSTRACTIONS IMPLEMENTATIONS IN BABEL 

Repositories: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-protocolcommons 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols 
 
The current membership abstractions are implemented in the TaRDIS gitlab 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols 
 
The code in the first repository implements the simplified API for these protocols , that was 
derived from the work presented previously. This API is provided as a library for the Babel 
framework (that is compatible with the main distribution of Babel-Core and its variant with 
support for telemetry acquisition), and can be summarised as: 

3.4.1 Requests and Replies 

● pt.unl.fct.di.novasys.babel.protocols.membership.requests.GetNeighborsSampleReq
uest: Request to get a sample of neighbours (Host format) from the Active view up to a 
number (provided in the message). 
● pt.unl.fct.di.novasys.babel.protocols.membership.requests.GetNeighborsSampleRepl
y: Generated in response to the previous request. 

3.4.2 Notifications 

● pt.unl.fct.di.novasys.babel.protocols.membership.notifications.NeighborUp: indicated 
the Host of a local neighbour that became available; 
● pt.unl.fct.di.novasys.babel.protocols.membership.notifications.NeighborDown: 
indicates the Host of a local neighbour that is no longer available. 
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3.4.3 Abstractions 

● HyParview: An implementation of the HyParView protocol [22], an unstructured overlay 
network  that is known for being extremely resilient to the concurrent failure of nodes. 
HyParView operates using two independent partial views managed using different 
strategies, that ensures that the protocol can - in a fully decentralised fashion - adapt 
itself to changes in the membership or event to churn scenarios. 

● X-BOT: An Implementation of the X-BOT protocol [43] an evolution of the HyParView 
protocol that allows the overlay network maintained by the protocol to self-adapt to 
promote links given an application specific criterion captured by a local oracle. This 
implementation only considers as optimization criteria the latency between nodes 
(meaning that low latency links are preferred). 

3.4.4 Usage 

To use the aforementioned classes, a user must first create (or use a previously created) Java 
project with the Babel-core and the Babel-ProtocolCommons dependencies. 
With this, to make use of the provided abstractions, while developing its membership protocol 
(or use a previously developed one) a user must incorporate them with the inter-protocol 
communication functionality offered by Babel, namely, by providing the request handlers in 
conformation with the API, and by sending information through sendReply and 
triggerNotification methods of Babel. 
 
A few examples of these implementations can be found in babel-protocols. 

3.5 COMMUNICATION ABSTRACTIONS IMPLEMENTATIONS IN BABEL 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-protocolcommons 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols 
 
The current membership abstractions are implemented in the source code made available at 
repository babel-protocolcommons under the package dissemination. 
 
At the moment of writing this report the following abstractions are provided: 

3.5.1 Requests and Replies 

● BrodcastRequest: Request to propagate a broadcast message (in the name of an 
Host) with the provided payload and a specificTTL. 

3.5.2 Notifications 

● BrodcastDelivery: Indicates that a broadcast message with a payload has been 
received. 

3.5.3 Abstractions 

● Flood Broadcast protocol; 
● Eager Gossip Broadcast protocol. 

3.5.4 Usage 

To use the aforementioned classes, a user must first create (or use a previously created) Java 
project with the Babel-core and the Babel-ProtocolCommons dependencies. 
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With this, to make use of the provided abstractions, while developing its communication 
protocol (or use a previously developed one) a user must incorporate them with the inter-
protocol communication functionality offered by Babel, namely, by providing the request 
handlers conforming with the API. 
 
A few examples of these implementations can be found in babel-protocols. 

3.6 DATA MANAGEMENT ABSTRACTIONS IMPLEMENTATIONS IN BABEL 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-protocolcommons 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters 
 
The current data management abstractions are implemented in the code made available in 
the public repository babel-protocolcommons under the package datamanagement. 
 
At the moment the following abstractions are provided: 

3.6.1 Requests 

● CreateDataspaceRequest: Request to create a dataSpace in a data management 
protocol, with a given set of properties. 
● CreateKeySpaceRequest: Request to create a keySpace(akin to a table) in a 
specific dataSpace in a data management protocol, with a given set of properties. 
● ExecuteRequest: Request to execute an operation on a specific dataSpace and 
keySpace. 
The operation in question is specified through the abstract class CommonOperation which 
can be instantiated with a specific operation type (i.e., BlockchainOperation, 
PayloadOperation, etc.). 
● DeleteDataspaceRequest: Request to delete a dataSpace. 
● DeleteKeySpace: Request to delete a keySpace in a dataSpace. 

3.6.2 Replies 

● CreateReply: Generated in response to a CreateDataspaceRequest or 
CreateDataspaceRequest, with the status of the operation. 
● ExecuteReply: Generated in response to a ExecuteRequest, with the status of the 
operation and the response data (e.g., a payload). 
● DeleteReply: Generated in response to a ExecuteRequest,DeleteKeySpace or 
DeleteDataSpace, with the status of the operation. 
● NotSupportedReply: Generated in response to a request for an operation that is not 
implemented in the underneath data management protocol. 

3.6.3 Abstractions 

● Arboreal adapter 
● Cassandra adapter 
● C3 adapter 
● Engage adapter 
● Blockchain-based adapter 
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3.6.4 Usage 

To use the aforementioned classes, a user must first create (or use a previously created) Java 
project with the Babel-core and the Babel-ProtocolCommons dependencies. 
With this, to make use of the provided abstractions, while developing its data management 
protocol (or creating an adapter as detailed in Section 2.c.iii) a user must incorporate them 
with the inter-protocol communication functionality offered by Babel, namely, by providing the 
request handlers in conformation with the API, and by sending information through sendReply 
and triggerNotification methods of Babel. 
 
A few examples of these implementations can be found in babel-datareplication-adapters. 

3.7 EPIDEMIC GLOBAL VIEW IN BABEL 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols/epidemicglobalview 
 
A prototype of the epidemic global view membership protocol described in Section 2.2.2 is 
provided at the public repository identified above as a babel protocol, that implements the 
generic (and simplified) interface for membership protocols that we also described above on 
Section 3.4 (and that is, itself, a simplification of the one discussed in Section 2.2.1. 
 
The prototype follows the pseudo-code presented before with some small adjustments, for 
instance, and since our implementation relies on another membership service that is based 
on partial-view of the system, the protocol only starts its periodic action to broadcast a ALIVE 
notification after the underlying membership service issues a notification that at least one other 
neighbour exists. This has the advantage that in a system with a single node active, the 
protocol does not consume any CPU or bandwidth. 
 
We expect that most of the applications that will use this protocol will rely on the notifications 
of NeighborUp and NeighborDown instead of using the GetNeighborsSample request to 
collect random samples of elements in the system. 
 
The protocol can be integrated into a babel application easily, by importing its maven 
dependency as detailed in the public repository. 

3.8 ARBOREAL: EXTENDING DATA MANAGEMENT FROM CLOUD TO EDGE 

LEVERAGING DYNAMIC REPLICATION 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/arboreal 
 
A fully working prototype implementation of Arboreal is available at 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/arboreal . The code is divided into 5 
protocols, each with its own responsibilities, which interact with each other via message-
passing. The protocols are: 

● hyparflood.HyParFlood.kt: The HyParFlood protocol is a gossip-based protocol that 
uses HyParView to maintain a fully connected network overlay across all nodes. It uses 
a flooding mechanism that allows nodes to disseminate arbitrary information to all other 
nodes in the network. In our implementation, this information consists in the 
geographical location of the node. 
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● manager.Manager.kt: The Manager protocol controls the dynamic creation of the 
control tree. It uses a configurable heuristic, leveraging on the information collected by 
the HyParFlood protocol, to decide which node to use as parent, forming the initial 
control tree in a decentralised manner. 

● tree.Tree.kt: The Tree protocol is responsible for the core features of Arboreal, it 
propagates and applies operations while enforcing causal consistency, handles the 
dynamic partial replication and is responsible for healing the tree after node failures. 

● storage.Storage.kt: The storage protocol stores the data objects themselves (the 
storage engine can be changed; we use a simple in-memory key-value store). It also 
serves as the interface between the Tree protocol and the ClientProxy, resorting to the 
Tree to request data objects from other nodes when needed. 

● proxy.ClientProxy.kt: The client proxy is simply the interface for the client to interact 
with the system. It maintains a list of clients, and forwards requests to the Storage 
protocol. 

 
The Config.kt file contains all the configurable parameters of the application, including their 
default values. To launch a node, only a few of those are mandatory: 

● "interface" or "address": the network interface or ip address used to listen for 
connection from other nodes (only one is required). 

● "hostname": a domain name (name of the container when using docker networks) or 
ip address by which this node is reachable by other nodes. 

● "region": an arbitrary string that represents a geographical region (each region forms 
its own control tree) 

● "datacenter": the "hostname" of the node that serves as datacenter (i.e., root of the 
tree) for this node's region. Used as a contact point for joining the regional HyParFlood 
overlay. If a node's "datacenter" is the same as its "hostname", the node acts as the 
tree root. 

● "location_x" and "location_y": coordinates of this node, affect the layout of the control 
tree. 

● "tree_builder_nnodes": the number of nodes required to be part of the overlay before 
the control tree starts being formed. 

 
To run the software a Java 8 installation is required as well as the installation of the Maven 
tool, required for performing the build and packaging operations. Therefore, before running the 
software a mvn compile package command should be executed, from the root of the project, 
to build the required jar file. Then, to launch a node, from the "deploy" folder, execute the 
following command: 
 
java -DlogFilename=${log_file} -jar tree.jar param1=foo param2=bar 
 
Where "log_file" is a path to the location of the application logs, and any number of parameters 
can be passed in the format <param>=<value>. Configuration parameters can be set both in 
the properties.conf file, or in the launch command, with the later overriding the former. 

3.9 POTIONDB: STRONG EVENTUAL CONSISTENCY UNDER PARTIAL 

REPLICATION 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/potionDB 
 
PotionDB’s  current prototype can be found at the publicly accessible TaRDIS repository 
located in https://codelab.fct.unl.pt/di/research/tardis/wp6/public/potionDB. The code is split 
into 6 main components. Components interact with each other through message-passing by 
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using Go’s channels. All components of PotionDB scale with the number of CPU cores by 
relying on Go’s goroutines and avoiding locking. PotionDB’s components are as follows: 

● main.Protoserver.go: This component provides the interface for clients to interact with 
PotionDB. The current implementation offers a Protobuf interface that extends 
AntidoteDB’s Protobuf interface with extra features such as partial reading. PotionDB’s 
working is agnostic to the Protobuf interface and thus could be replaced with another 
interface (e.g., REST, JSON, etc). 

● antidote.TransactionManager.go: Implements PotionDB’s transactional protocol, 
ensuring clients see a consistent view of the database and that updates evolve the 
state correctly. It is responsible for coordinating the partitions of Materializer and 
ensuring the correct generation of new, causally consistent, snapshots. 

● antidote.Materializer.go: Implements the data storage portion of PotionDB. It is 
responsible for storing the objects, managing the available versions of each object and 
ensuring reads are applied on the correct version and updates generate new object 
versions consistently. The Materializer is partitioned in order to allow concurrent 
access to unrelated objects and scale with the cores of the CPU. 

● antidote.Replicator.go: Handles the replication logic of PotionDB. It implements partial 
replication, ensuring that, for each transaction, each server only receives the 
operations of the transaction that are relevant for said server, while still ensuring each 
server can advance its state correctly. 

● antidote.RemoteConnection.go: Handles the communication between PotionDB and 
RabbitMQ. We leverage RabbitMQ to propagate each transaction’s updates to the 
relevant servers. 

● CRDT: The crdt package implements the data types supported by PotionDB, in the 
form of CRDTs (Conflict-Free Replicated Data Types). Note that our protocols are not 
dependent on CRDTs and thus other data types could be used, as long as they ensure 
state convergence under weak consistency. 

 
A Docker image is provided for ease of running PotionDB. To obtain a pre-built version of 
PotionDB, execute the following command from the root of the repository: 
 
docker pull andrerj/potiondb 
 
Alternatively, to build directly from the source: 
 
docker build . -t mypotiondb 
 
To run potionDB: 
 
docker run -p 8087:8087 -p 5672:5672 --name potiondb andrerj/potiondb 
 
If using a build directly from the source, replace “andrerj/potiondb” with “mypotiondb”. 
A new instance of PotionDB will be started on ports 5672 and 8087. Clients connect to port 
8087, while other servers connect to 5672 for replication purposes. The server is ready to 
serve requests as soon as the following message appears: 
 
PotionDB started at port 8087 with ReplicaID 23781 
 
Note that ReplicaID will vary between executions as it is randomly generated. To stop 
PotionDB, execute the following command: 
 
docker stop -t 1 potiondb 
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To run PotionDB without docker, both Go and a RabbitMQ installation are required. Further 
instructions can be found at https://codelab.fct.unl.pt/di/research/tardis/wp6/public/potionDB . 
 
PotionDB can be parameterized by supplying a configuration file. The file 
configs/singlePC/docker/SingleServer/sampleConfig.cfg contains an example configuration 
file. The most relevant configurations are: 

● protoPort: the network port to which clients connect to; 
● buckets: a list of buckets (topics) that this server replicates, separated by a space. The 

wildcard ‘*’ can be used to replicate all buckets. 
● localRabbitMQAddress: ip:port where this server’s RabbitMQ instance is running on. 

This should only need to be changed if running PotionDB outside of docker. 
● localPotionDBAddress: ip:port where PotionDB is running and reachable. If running 

locally on Docker, the ip can be replaced by the name of the docker container. 
● remoteRabbitMQAddresses: list of ip:port of the RabbitMQ instances of other PotionDB 

servers to connect to for replication purposes. 
● nPartitions: number of partitions of the Materializer. This may affect PotionDB’s 

performance. It should not be higher than the number of CPU cores available for 
PotionDB to use. 

 
To use a new configuration file with PotionDB in Docker, build PotionDB from the source and 
then run PotionDB as follows: 
 
docker run -p 8087:8087 -p 5672:5672 --name potiondb andrerj/potiondb 
-e CONFIG=/go/bin/configs/path_to_your_config_folder 
 
If running PotionDB without Docker, the config folder can be supplied with –

config=path_to_your_config_folder. 

3.10 INTEGRATION OF STORAGE SOLUTIONS INTO THE TARDIS ECOSYSTEM 

(BLOCKCHAIN, C3, ENGAGE) 

 
Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters 
  
To face the complexity of integrating generic storage solutions into external ecosystems, we 
designed a set of adapters that aim to provide client-side implementations so that applications 
can interact with their desired storage solution. To enable this, we leveraged Babel inter-
communication protocol functionalities and used the previously discussed abstractions in 
Babel, to offer a common interface for interacting with the data management layer (more 
details in Section 2.7). 
 
The adapters prototype can be found at babel-datareplication-adapters. 
At the moment we offer adapters for Arboreal, C3, Cassandra, HyperLedger Fabric 
(Blockchain), and Engage. 

3.10.1 Usage 

Choose one of the implemented adapters by integrating its respective class (located at 
pt.unl.fct.di.novasys.babel.adapters.solutionName) into the protocol stack. 
This is done by using the Babel initializer and passing the corresponding properties needed to 
initialise the protocol (depending on the storage solution being used). 
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The communication with the adapter is made through Babel sendRequest and 
receiveReply abstractions. The formats for interacting with these abstractions are common 
for all adapters, and their semantics are further detailed in babel-protocolcommons under 
the datamanagement package. 

It is important to notice that the corresponding storage solution must be deployed in an 
infrastructure of the choice of the developer to enable the interaction with the client-side 
adapter being used by the application (further details can be found in the repositories of the 
available solutions in TaRDIS toolbox, under external-tools). 

3.11 DISTRIBUTED MANAGEMENT OF CONFIGURATION BASED ON NAMESPACES 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/configuration-management 
 
The repository with the software is available on the link provided above. The prerequisites for 
running software are installed containerized tools Docker and Docker Compose. For Microsoft 
Windows users, the one more prerequisite must be met, a Unix-like environment and 
command-line interface (e.g. git bash for windows, Cygwin). All mentioned tools are open 
source. 
 
Upon pulling the source code from the repository, and successful installation of the open 
source tools, users need to navigate in the tools folder. Inside this folder, we provided two 
scripts with the intention to simplify starting and stopping of all developed services, and all 
connected components. 
 
Script start.sh, will build and run all necessary components, tie them into the network and it 
will allow users to test the entire tool. Navigate the terminal into the project repository, and 
using command cd tools, navigate inside the tools folder. By typing start.sh and pressing Enter, 
the entire system will start the build and running process. During this process, all required 
Docker images will be pulled on the testing machine, while Docker Compose will provide 
network between started services and all other connected components. Please, be aware that 
this process might take some time. For Microsoft Windows users, who are using Unix-like 
environments and command-line interfaces (e.g. git bash for windows, Cygwin), please be 
aware that the process to run the software is almost the same, except that after navigation to 
the tools folder, they start the script with ./start-windows.sh command. 
 
To stop the software from running, please open a new terminal or Unix-like environment and 
command-line interface (e.g. git bash for windows, Cygwin) for Microsoft Windows users, if 
the previous terminal window is not accessible due to the running software and log output from 
the system. Again, navigate to the software folder and then to folder tools, type ./stop.sh and 
pressing Enter should stop the entire service and all its components. Microsoft Windows users 
need to run the ./stop.sh command. Again, please be aware that the script will stop the entire 
software and all its connected components, but it will take some time to do that. 
 
In the repository, users can find the detailed documentation of what services, endpoints and 
functionalities are available at the moment, and how to use them. The repository also contains 
detailed explanation on how to format data, what data format the services expect, but also 
examples of data response from every service. 
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3.12 TELEMETRY ACQUISITION FOR DECENTRALISED SYSTEMS 

Repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/babel-core-metrics/ 
 
Babel, an integral part of several components comprising the TaRDIS toolbox, is a framework 
designed to simplify the process of developing distributed applications and protocols, 
achieving this purpose by handling low-level aspects of distributed systems programming, 
such as concurrency, message passing and timer management. However, it does not allow 
developers to easily collect telemetry about their developed applications. 
 
To correct this shortcoming, we are developing a metrics collection system using the 
aforementioned architecture that is to be integrated into the Babel framework, this integration 
is done by generating a new release of the Babel framework that includes the metrics collection 
and exporting system. 
 
The code for the solution is present in the TaRDIS public repository, which can be accessed 
here: https://codelab.fct.unl.pt/di/research/tardis/wp6/public/babel-core-metrics/.  
The relevant code pertaining to the solution is present inside the metrics package. 
 
To use the Babel framework to develop a distributed application or protocol you must add it as 
a Maven dependency to your project as instructed in the README presented in the repository 
pointed by the above link. 
 
Examples on how to instrument a protocol to collect metrics and initialise and configure an 
exporter to export the collected metrics are also presented in the same README, along with 
how to configure the exporters. 
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4 STATE OF THE ART REVISION 

4.1 DECENTRALISED MEMBERSHIP AND COMMUNICATION PRIMITIVES 

There are many decentralised membership and communication primitives proposed in the 
literature, as discussed throughout this report. In the peer-to-peer literature there are two main 
classes of membership abstractions: peer sampling services [100] and overlay networks 
[25,22,26]. Peer sampling services are commonly considered as the substrate to support 
scalable gossip-based protocols, where nodes only need to interact with random samples of 
other nodes in the system. In many cases subsequent interactions benefit from targeting 
different nodes, as it is the case with anti-entropy protocols [38]. Overlay networks, as the 
name implies, define a logical network on top of other networks - many times an IP network - 
that nodes in a system can use to coordinate their interactions. In this report we unify these 
concepts by making the implicit observation that the implementation of both abstractions relies 
on each element of the system maintaining local information about a fraction of other elements 
in the system, the so-called partial views [22]. We go a step further and unify this concept with 
that of distributed hash tables (DHTs) [39,40,41,35] that are commonly referred to as a 
decentralised solution for storage or application-level routing. While we agree with the 
observation that these are suitable for these operations, we note that the routing tables 
maintained by each node are themselves partial views, which can be used to obtain samples 
of nodes in the system, for instance to govern anti-entropy protocols, or to define a logical 
network across nodes in a system. These observations have been previously done by Leitão 
in his PhD thesis [19]. 
 
Contrary to works in the literature, in this report we proposed a decentralised membership 
service that provided to each node in the system a global view of the system membership that 
is eventually correct. This breaks with the common approach to rely on partial membership 
information, which avoids a significant upkeep overhead (both in terms of communication and 
CPU). While we recognise that the overhead of this membership abstraction is higher than 
those based on partial views, we argue that such an abstraction can be used to collect 
information or provide user feedback about the evolution of the system in medium-scale swarm 
systems, such as the factory setting put forward by Actxy. 
 
There is an engineering contribution enclosed in this report in relation to the extensive state of 
the art in decentralised membership and communication primitives and protocols, which is the 
definition of a common API for these classes of solutions, and implementations (in the Babel 
framework) that can be used interchangeably across swarm applications. While the literature 
in these domains is vast, typically each proposal is presented in an independent way from 
others, and existing prototypes are not provided (when they are provided) in a way that 
simplifies their usage across different applications. Even considering p2p frameworks such as 
the libp2p framework, decentralised protocols implementations there, such as Kademlia [35] 
are very hard to extract and be reused in some other decentralised application. We note 
however, that this engineering contribution is only feasible because we identify what should 
be the generic interface of these protocols (that aggregate a wide family of decentralised 
protocols from the literature), which is itself a contribution achieved by TaRDIS. 

4.2 DISTRIBUTED DATA MANAGEMENT SYSTEMS 

Distributed data management systems are one of the key services supporting large scale 
systems, as applications need to store their data reliably. A very large number of systems have 
been designed, which can be broadly classified as being either strongly or weakly consistent. 
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Strong consistency systems [60, 95, 61, 62] provide a total order for transactions and are 
easier to work with. However, coordination between replicas is required, leading to high latency 
in geo-distributed and edge scenarios and compromised availability under network partitions. 
By relaxing consistency guarantees, weak consistency systems [63, 64, 66, 68] can provide 
low latency, high throughput and better fault tolerance. However, concurrency conflicts make 
those solutions harder to work with. Causal consistency alleviates this problem; however 
anomalies can still be observed even with cross-object causality [67]. Causal+ consistency 
extends causal consistency by enforcing eventual convergence. We now overview the state 
of the art that is closer to the works we are developing in the context of this project. 
 
Data Replication with Causal+ Consistency: Multiple solutions for data replication with 
causal+ consistency have been proposed in the past. However, a great majority of them 
assume data centre deployments, with a limited number of replicas, and without supporting 
partial replication. Such solutions include COPS [64] and Eiger [82], which track causality using 
explicit dependencies. Other solutions employ vector clocks, resulting in their metadata 
growing proportionally to the number of replicas. These include, Orbe [85] and Cure [68], 
among others. ChainReaction [66] uses vector clocks with a size associated to the number of 
data centres and not individual replicas, but still, this results in excessive metadata overhead 
in large scale edge scenarios. As we showed in our evaluation, the metadata overhead of 
these solutions is prohibitive in edge scenarios. Some Causal+ replication solutions have been 
proposed that aim to limit metadata overhead, by using fixed-sized metadata. Examples 
include Saturn [76] and GentleRain [86]. However, regardless of the metadata size, these 
solutions do not consider edge deployments, and lack crucial features such fault-tolerance 
handling mechanisms and partial replication, making them unusable in edge scenarios. 
 
Data Replication in the Edge: With the rise of edge computing, multiple solutions for data 
management on the edge have been proposed. Solutions like PathStore [88], DataFog [87], 
and CloudPath [89] do not provide any consistency guarantees. On the other hand, some 
solutions attempt to provide strong consistency. However, due to the highly geo-distributed 
nature of the edge, providing global strong consistency is impractical. As such, these solutions 
limit those guarantees to individual smaller, well-connected groups of nodes, relaxing 
consistency across groups. Examples include EdgeKV [90], FogStore [91], Colony [77], and 
DAST [92]. Despite being mitigated by the smaller size of groups and high connectivity 
assumptions, these solutions suffer from lack of availability and fault-tolerance, as most strong 
consistency solutions. 
 
As for causal+ consistency on the edge, few solutions have been proposed. However, all of 
them have limitations that reduce their applicability in edge environments. Gesto [93] relies on 
a single centralised component in each region to enforce causal consistency, while Colony 
[77] (which also supports global transactional causal consistency along with strong 
consistency within groups) relies on the data centre to validate all transactions. In these 
solutions, edge nodes (or groups in the case of Colony) cannot cooperate, requiring the cloud 
to mediate all interactions and disallowing nodes from progressing independently of the cloud. 
As we showed in our evaluation, this negatively impacts not only performance but also edge-
specific aspects such as dynamic replication and client mobility. Engage [94] provides 
decentralised global causality in the edge but relies on vector clocks which greatly limits its 
scalability. 

4.3 DECENTRALISED MONITORING 

Monitoring tools play an essential role in getting a grasp on system behaviour. Their task is 
becoming ever so challenging in ephemeral and heterogeneous environments involving both 
the cloud and edge. Dynamic placement and resource allocation of distributed workloads, as 
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well as different packaging and isolation strategies, all contribute to poor observability. 
Combined with resource-constrained and heterogenous edge infrastructure, they call for a 
comprehensive monitoring solution. To provide valuable insight and enable timely reactions, 
these should bundle a variety of capabilities, including data collection, storage, aggregation, 
querying, visualisation and alerting mechanisms. 
 
A couple of vendor-agnostic standards have emerged to facilitate integration of diverse data 
sources and types. OpenMetrics [8] provides a format for representing metrics data, while 
OpenTelemetry [9], aside from defining standard formats for logs, metrics and traces, offers a 
rich ecosystem of APIs and SDKs to instrument applications. These should stand as building 
blocks of observability platforms for the future. No such open-source platform has gained as 
much traction as Prometheus [10] has. It is a time series database with a rich query language, 
designed primarily for metrics. Its features extend beyond that as it has a tight integration with 
Grafana for visualisation and Alertmanager [11] for alerting. As such, it's found its place in 
numerous deployments and is natively supported by Kubernetes for cluster monitoring. 
However, as it doesn't focus on logs, traces and other observability data, it doesn't provide a 
full overview of the system's state. It can be incorporated in a tool stack that in the end 
produces sufficient insight, but this puts a significant operational burden on users. Also, 
general-purpose stacks like those have no built-in primitives for working in a cloud-edge 
setting. 
 
Our objective is to develop an observability platform that can collect, aggregate, transform and 
store diverse monitoring-related data from heterogeneous sources and with respect to 
resource availability. Users will be provided with a unified interface of system and application 
state progression over time, which will allow for informed decision making. If the decision 
process is to be automated, our platform offers an API for machine learning models to be both 
trained on and put in the role of decision makers. As volume of telemetry generated at the 
edge can easily exceed available storage and computing capacity there, we'll define strategies 
for its migration to more resource-abundant environments, where heavier processing can 
occur. However, naively transferring all data would introduce high latency and potentially raise 
data privacy concerns. For those reasons, data is to be filtered or transformed before 
relocation. This way, the weighted cost of processing data locally versus remotely can be taken 
into account. Data that is not to leave its origin can still be analysed by authorised individuals 
and utilised for federated learning purposes. 

4.4 DECENTRALISED SYSTEM MANAGEMENT 

System management operations can be divided into application and underlying infrastructure 
management. Both can be executed manually, but such approach is not fit for any slightly 
more complex system, let alone those relying on heterogeneous and dynamic cloud and edge 
models. With no configuration workflow established, human-induced configuration drifts are a 
likely consequence. System state easily starts deviating from the desired state if there is no 
straightforward and automated way of enforcing and tracking configuration changes. 
 
For those reasons, substantial efforts have gone into automating infrastructure management. 
Many tools have been introduced under the umbrella term Infrastructure as Software (IaS), all 
with the aim of ensuring consistent and repeatable configuration. Using them, the risk of 
misconfiguration gets minimised, as many well-established software practices can be 
employed, including reusability, versioning, and testing. The method of specifying intent to 
these tools can be imperative or declarative. Terraform [12], Polumni [13] and CFEngine [14], 
being representatives of the declarative approach, expect the user only to state the desired 
outcome, while they internally deal with the intricacies of the target infrastructure. This 
additional layer of abstraction turned out immensely useful in complex multi-cloud and hybrid 
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deployments. However, when more control over the underlying mechanism is needed, 
imperative-oriented tools like Chef [15], Ansible [16] and Puppet [17], are a favourable option. 
With them, users explicitly code the steps to be taken, in some domain-specific or a general-
purpose language. While both declarative and imperative tools complimentary contribute to 
the automated infrastructure management, they all lack native support for cloud-extending 
paradigms utilising geo-distributed resources at the edge. 
 
Building on top of [3, 4], our work aims to support distributed cloud configuration on both the 
infrastructure and application level by adapting existing approaches to this and other novel 
cloud-edge environments. As the IaS concept has already yielded numerous benefits, we plan 
to develop a comprehensive Configuration-as-Software solution in a similar fashion. A 
declarative API will hide the complexities irrelevant to the end user, while exposing primitives 
for optimally exploiting the resource variability and geographical distribution of the 
infrastructure. To enhance robustness and efficiency of the entire system, we will define 
strategies for decentralised management and propagation of configuration. 
 
As human-centred applications of the future are driving the need for deployment models more 
complex than ever, it is crucial to provide developers and platform engineers with reliable tools 
and familiar APIs for interacting with such environments. Only then can these applications 
reach their full potential. Our solution presents one of many steps leading to that goal. 
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5 PUBLICATIONS AND DISSEMINATION ACTIVITIES 

5.1 PUBLICATIONS 

Some of the results shown here have been published in scientific conferences. Publications 
produced during the reported period related with the activities reported here include: 
 

● Data Management for Mobile Applications Dependent on Geo-Located Data. N. M. 
Santos, L. M. Silva, J. Leitão, and N. Preguiça. Proceedings of the 10th Workshop on 
Principles and Practice of Consistency for Distributed Data (PaPoC'23) colocated with 
EuroSys, May 8, Rome, Italy, 2023. 
 

● Studying the Workload of a Fully Decentralized Web3 System: IPFS. Pedro Á. Costa, 
João Leitão, and Yiannis Psaras. Proceedings of the 23rd International Conference on 
Distributed Applications and Interoperable Systems (DAIS'23) part of the DisCoTec 
(International Federated Conference on Distributed Computing Techniques), June 19-
23, Lisboa, Portugal, 2023. 

 
● Kovacevic, I., Stojkov, M., Simic, M. (2024). Authentication and Identity Management 

Based on Zero Trust Security Model in Micro-cloud Environment. In: Trajanovic, M., 
Filipovic, N., Zdravkovic, M. (eds) Disruptive Information Technologies for a Smart 
Society. ICIST 2023. Lecture Notes in Networks and Systems, vol 872. Springer, 
Cham. https://doi.org/10.1007/978-3-031-50755-7_45 

 
● Maksimović, V., Simić, M., Stojkov, M., Zarić, M. (2024). Task Queue Implementation 

for Edge Computing Platform. In: Trajanovic, M., Filipovic, N., Zdravkovic, M. (eds) 
Disruptive Information Technologies for a Smart Society. ICIST 2023. Lecture Notes in 
Networks and Systems, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-031-
50755-7_44 

5.2 DISSEMINATION ACTIVITIES 

In the reported period, WP6 has contributed to a few dissemination activities of TaRDIS. In 
particular, WP6 has led the efforts to promote the Babel framework, that we decided to use as 
a tool to build reference implementations of the technology developed in WP6 at the 
International Federated Conference on Distributed Computing Techniques (DisCoTec), that 
took place in Lisbon in June 2023. 
 
The tutorial, entitled “Implementing and Evaluating Distributed Protocols with Babel”, 
showcased how Babel could be used to build distributed applications, and decentralised 
applications, and referred to the TaRDIS project. 
 
The materials for this tutorial, done by João Leitão, Pedro Ákos Costa, and Pedro Fouto (all 
from NOVA) can be found here: https://github.com/pfouto/babel-tutorial 
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6 RELATIONSHIP WITH OTHER TECHNICAL WORK PACKAGES  

We now detail some of the interactions and relationships between the activities of WP6 and 
the other technical work packages (WP3, WP4, WP5, and WP7). 

6.1 WP3 

WP6 has been responsible for proposing the initial generic APIs for abstractions such as 
Membership management, communication primitives, distributed data management, and 
monitoring and configuration management. 
 
This initial specification that was reported in Deliverable 3.1 [58], has been revised through the 
process of devising adaptors for existing storage systems, and through the implementation of 
distributed protocols reported here. This continuous revision of APIs will continue throughout 
the project as we consider different implementations of these abstractions, but also as detailed 
in the previous sections, as we consider complementary aspects such as security. 
 
Additionally, some of the tools and artefacts being produced by WP6 will be integrated into the 
IDE being developed in the context of WP3. Although not reported in this deliverable, the 
TaRDIS consortium already has produced a pilot integration of the Babel framework into the 
IDE being developed as part of the activities of WP3. The fundamental ideal of this integration 
is to simplify and guide the developer when using Babel to develop a swarm protocol or 
application, by providing templates, and in the future, wizards to assist in the integration of 
artefacts (such as concrete distributed protocols). 

6.2 WP4 

While WP6 is building components that can be used - in the context of the TaRDIS toolbox - 
to build swarm applications, WP4 will provide tools that validate the correctness of these 
applications. To this end, WP6 will have to provide (formal) properties for the components 
developed by WP6, such that these properties can be taken into consideration when trying to 
show the correctness (or not) of a particular application that uses them. 
 
While in the work conducted by WP6 we have not yet produced these formal specifications, 
this will have to be addressed in the next cycle of development of the TaRDIS project. 

6.3 WP5 

Collection of telemetric information is one of the crucial things in complex systems, because it 
gives the users insight into what is going on with the entire system and/or its applications. 
Designing a platform to collect, aggregate, transform and store diverse monitoring-related data 
from heterogeneous sources and with respect to resource availability, will allow for informed 
decision making. The collected data could be further used for automated decision making 
processes. To allow this, the platform will offer an API for machine learning (ML) models to be 
both trained on and put in the role of decision makers. 
 
The collected data will be stored in the platform in the time-series manner (i.e. data points with 
time). Through the specifically designed API, the platform will offer its collected data to the 
agents who will be trained on these data points. The only thing that API requires from the agent 
is a point in time, when the agent contacted the platform last time. With this, machine learning 
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models can be trained at their own pace, and agents cannot miss or skip newly added data 
points, even if the agent crashes, or goes offline for some period of time. 
 
To this end, a significant coordination and collaboration between WP5 and WP6 is needed, 
since: (i) Task 6.1 that aims to provide the decentralised membership and communication 
primitives for the Tardis platform will be directly exploited by the Federated Learning (FL) 
framework and algorithms developed in WP5. In specific, both the centralised (including a 
server/aggregator and several clients) and decentralised (including only clients as swarm 
members) FL frameworks of Task 5.1 necessitate reliable peer-to-peer communication, 
enabling high availability of the swarm agents and low-latency and energy-efficient 
communications (Task 5.3); (ii) Similarly, Task 6.2 covers the design aspects of decentralised 
data management and replication schemes that the ML algorithms will leverage, since 
historical datasets that are stored locally are often required to enable ML model re-training 
capabilities and improved collaborative intelligence of the swarm; (iii) Finally, Task 6.3 targets 
on the one hand to develop the decentralised monitoring scheme and on the other hand to 
design the reconfiguration management framework. Concerning the former aim, the 
monitoring of decentralised telemetry data will include the performance of local ML models 
and the data analysis can be also assisted by ML algorithms. Regarding the latter objective, 
the reconfiguration of application components and computational needs of resources in 
runtime can be orchestrated with the assistance of AI/ML methods, using for instance the 
suggestions of Reinforcement Learning agents (Task 5.2). 

6.4 WP7 

WP7 is responsible for coordinating the use case implementations and conducting their 
experimental validation. Related with this activity, WP6 has produced prototypes (and 
reference implementations) for components that can be used in the development of use cases. 
WP6 has also conducted initial experimental validations of some of these components. 
 
Finally, and while not explicitly reported here, WP6 has also conducted some work in gathering 
relevant information to conduct experimental assessment of swarm systems, for instance by 
measuring the workload characteristics of popular decentralised systems such as IPFS [103], 
which can inform some of the experimental validation work to be conducted in the future as 
part of the efforts of WP7. 
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7 CONCLUSIONS 

This report provides information about the main activities conducted in the three tasks of the 
WP6 of the TaRDIS project in the first 14 months of the project. The report also includes 
pointers and brief descriptions for the main artefacts produced by WP6 in the reported period, 
that serve as prototypes of some of the solutions being developed by the project and reference 
implementations. This period of the project has been dedicated significantly to analysing and 
identifying the requirements of the industrial use cases, which allowed WP6 to conduct some 
exploratory work and development for the most fundamental building blocks towards 
supporting swarm applications. In the future, we will start to address challenges such as 
security, and coalescing the results of the project into concrete tools that will integrate the 
TaRDIS toolbox. 

As an additional note, WP6 has contributed to define requirements to the TaRDIS toolbox that 
have been reported on Deliverable 2.2 [96] that were (mostly) derived from requirements of 
the use cases. Out of these, the artefacts or results produced by WP6 and mentioned here 
address requirements: RF-WP6-MA-05, RF-WP6-MA-12, RNF-WP6-MA-14, RNF-WP6-MA-
15, RF-WP6-CP-19, RF-WP6-CP-20, RNF-WP6-CP-23, RF-WP6-SA-29, RNF-WP6-SA-32, 
and RF-WP6-TA-34. 
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