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management systems, and monitoring and self-management of decentralised 
systems. The report further presents and discusses software prototypes and 
demos that were developed in the context of WP6 during the second year of 
the project. We also discuss how the different components of the TaRDIS 
toolbox developed in the context of this work package can be leveraged by 
different types of Swarm systems and applications, and further provide 
indications of how these tools (and other currently under development) will be 
integrated across different TaRDIS use cases and demos.  
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EXECUTIVE SUMMARY 

This report presents the main results and developments of Work Package 6 (WP6) of the 
TaRDIS project until the end of the second year of the project. WP6 is responsible for 
researching, designing, and implementing the fundamental building blocks and runtime 
infrastructure that support the execution and management of swarm applications, and as 
such, contributes substantially to the ongoing development of the TaRDIS toolbox. The 
current deliverable documents the continuation of this work by presenting both conceptual 
advancements and software artefacts developed over the reporting period. 

Activities in WP6 are organized into three interrelated tasks. Task 6.1 focuses on providing 
decentralised membership and communication primitives. Building on the efforts and 
abstractions reported in Deliverable D6.1, the team developed and evaluated additional 
protocols and services, including variants of the HyParView protocol, a probabilistic global 
membership service, gossip-based and flood-based broadcast protocols, and an anti-
entropy mechanism for state reconciliation. Furthermore, multiple implementations of 
these protocols were added to the Babel ecosystem and extended with support for mobile 
platforms and autonomic behaviors through Babel-Android and Babel-Swarm, 
respectively. These developments improve the composability and adaptability of 
communication services in the context of dynamic and heterogeneous swarm 
environments. 

In Task 6.2, which targets decentralised data management and replication, efforts 
continued in enhancing and integrating solutions that address the challenges of data 
consistency and availability across the cloud-edge continuum. The Arboreal system was 
further validated and enriched as a hierarchical replication scheme offering causal+ 
consistency [40,41]. PotionDB was consolidated as a performant, partially replicated, geo-
distributed storage layer. Moreover, adapters were developed to integrate third-party 
systems such as Cassandra, C3, Engage, and Hyperledger Fabric into the Babel 
ecosystem, allowing developers to leverage existing storage infrastructures within TaRDIS 
applications. Work has also been carried out to expose these systems through a unified 
abstraction layer. 

Task 6.3 made significant progress in supporting the monitoring and reconfiguration of 
swarm systems. The telemetry acquisition framework was improved with more fine-grained 
instrumentation across system layers, and new modules were introduced to support metric 
aggregation and telemetry-driven control. A centralised reconfiguration engine based on 
hierarchical namespaces was developed to manage components across diverse devices 
using containerisation. Complementary to this, extensions were made to Babel to allow 
applications and protocols to expose their own metrics, and control endpoints were 
developed to facilitate integration with machine learning-based reconfiguration strategies. 

These developments also included the integration of IoT devices into the TaRDIS 
ecosystem, in particular in the context of Babel, demonstrating the applicability of the 
developed components and innovations of TaRDIS in real-world scenarios involving 
physical-world interaction, IoT domains, and Domotics, all of which are relevant application 
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scenarios nowadays. These efforts were developed to increase the reach and impact of 
the project. 

Throughout this iteration, the tools and artefacts produced were validated through 
demonstrations and experimental evaluations. These include the TaRDIS Messaging App 
and Voting App, which run on heterogeneous devices and showcase swarm-native 
communication and coordination. These demos were executed in local lab environments 
and served both as validation platforms and as illustrative examples of the TaRDIS 
runtime. 

The source code of the core tools, protocol implementations, and supporting infrastructure 
is openly available through the TaRDIS project repositories. This code base includes 
reference implementations for the proposed abstractions and can be reused or extended 
in future iterations and other work packages. In the next phase, WP6 will extend its 
activities to further improve the support for secure communication and data sharing, 
expand the use of decentralised intelligence for autonomous control, and continue 
coalescing components into production-ready building blocks for the TaRDIS toolbox. 

 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 6 of 90                    © 2023-2025 TaRDIS Consortium 

TABLE OF CONTENTS 

1. INTRODUCTION 9 
2. PROGRESS REPORT And PLAN 10 

a. Overview 10 
b. Programming Abstractions for Swarm Systems 10 

i. The Babel Framework (background) 11 
Requirements for Enhancing Babel for Swarm Systems 11 

ii. Babel Ecosystem: Babel-Swarm 12 
Motivation 12 
Design and Implementation 13 

Self-Configuration 13 
Enhanced Security 13 
Adaptive Management 13 

Evaluation 14 
Experimental Setup 14 
Resource Consumption 15 

iii. Babel Ecosystem: Babel for Android 16 
Network Management in Android 17 
Java Runtime and Common Libraries 17 
Android Application Life-Cycle and Persistent Connections 17 

iv. Babel API for Web Services 19 
v. Babel 2: Evolving Babel Ecosystem for Further Swarm Domains 20 
vi. Generalizing the Babel Approach 21 

c. Decentralised Membership and Communication Primitives (T6.1) 23 
i. Evolving Membership Abstractions for Self-Configuration, Self-Management, 
and Security 24 

HyParVIew with Self-Discovery 24 
HyParView with Autonomic Management 25 
HyParView with Security 27 

ii. Membership Abstractions to model Satellite Swarms 28 
iii. Membership Abstractions for (hierarchical) Decentralized Communities 29 

d. Decentralised Data Management and Replication (T6.2) 30 
i. PotionDB: Eventual Consistent Materialized Views and Distributed Query 
Processing 31 

Overview 32 
Data model 32 
Interface 33 
Consistency 34 
Architecture 34 

Transaction and replication protocols 35 
Objects 35 
Transaction processing 36 
Replication 37 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 7 of 90                    © 2023-2025 TaRDIS Consortium 

Views 37 
Generated objects and triggers 37 
Developer-defined views 38 

Status 39 
ii. Extensible CRDT Library for the Babel Ecosystem 39 
iii. Nimbus Decentralized Storage 40 
iv. Exploring Decentralised Solutions by Byzantine Settings 46 

e. Decentralised Monitoring and Reconfiguration (T6.3) 47 
i. Docker Monitorization and Telemetry Acquisition 48 
ii. Metric Aggregation 49 
iii. Metric and Telemetry APIs for Centralized Machine Learning 50 
iv. Epidemic Dissemination of Telemetry 50 
v. Building Swarm Models through Machine Learning 51 
vi. Enabling Decentralized Machine Learning with TaRDIS Toolbox 52 

f. Other Integrations and Activities 54 
i. IoT Device Integration 54 

3. A GUIDE TO THE TARDIS TOOLBOX WP6 COMPONENTS 57 
a. Membership Abstractions 57 
b. Communication Primitives 60 
c. Data Management Solutions 63 
d. Monitoring Solutions 65 
Applications 66 

Tardis Simple Usecase 66 
Decentralized Voting Application 67 

Others 67 
4. USE CASE PROGRESS REPORT 69 

a. Telefónica 69 
b. GMV 69 
c. EDP 70 
d. Actyx 70 

5. SOFTWARE 71 
a. Overview 71 
b. Babel Ecosystem 71 
c. Reconfiguration and Monitorization tool based on Namespaces 72 

6. DEMOS 74 
A. TaRDIS Messaging APP 74 
B. TaRDIS Voting APP 76 

7. STATE OF THE ART REVISION 80 
a. Frameworks for Developing Decentralized and Swarm Systems 80 
b. Decentralised Membership and Communication Primitives 80 
c. Distributed Data Management System 81 
d. Decentralised Monitoring 82 
e. Self-Management of Distributed Systems 83 
f. Decentralized Machine Learning 83 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 8 of 90                    © 2023-2025 TaRDIS Consortium 

8. PUBLICATION AND DISSEMINATION ACTIVITIES 85 
a. Publications 85 
b. Dissemination Activities 85 

9. RELATIONSHIP WITH OTHER TECHNICAL WORK PACKAGES 86 
a. WP3 86 
b. WP4 86 
c. WP5 86 
d. WP7 86 
e. WP8 87 

10. CONCLUSIONS 88 
 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 9 of 90                    © 2023-2025 TaRDIS Consortium 

1. INTRODUCTION 

This document reports on the progress and results achieved in Work Package 6 (WP6) of 
the TaRDIS project during the second year of the project. WP6 is responsible for the 
research and development of the runtime systems and low-level abstractions that support 
the deployment and execution of decentralised applications in dynamic and 
heterogeneous environments. These building blocks constitute the foundation of the 
TaRDIS toolbox and provide core capabilities such as decentralised communication, data 
sharing, reconfiguration, and monitoring. 
 
The activities carried out during this period build upon the design principles, architectures, 
and components introduced in the first project year and documented in Deliverable D6.1. 
In particular, the work has focused on extending the runtime with additional protocols, 
consolidating core abstractions, and evolving the Babel framework and its ecosystem into 
a more expressive, modular, and portable foundation for swarm-based application 
development. This includes the development of autonomic runtime capabilities (Babel-
Swarm), support for mobile and Android-based platforms (Babel-Android), and the 
integration of tools for self-observation, adaptive control, and telemetry-driven 
reconfiguration. 
 
The deliverable also documents on the relevant progress in the development of 
decentralised data management and storage solutions, including the maturation of 
PotionDB and Arboreal, the integration of third-party systems through uniform interfaces, 
and the continued refinement of abstractions for partially replicated and eventually 
consistent data access. In parallel, new mechanisms were designed to improve the 
monitoring and management of distributed deployments, including fine-grained telemetry 
acquisition, metric aggregation, and the centralised reconfiguration of application 
components via hierarchical namespaces. 
 
This document is structured as follows. Section 2 provides an extensive report on past 
activities and future plans in the context of the different tasks and also covering activities 
that are cross-cutting these tasks. This section starts with an in-depth description of the 
Babel framework and its two major extensions that were developed in the context of 
TaRDIS (Babel-Swarm and Babel-Android). Section 3 provides short descriptions for the 
several tools of the TaRDIS toolbox that were developed in the context of WP6 . Section 
4 discusses the ongoing activities of WP6 for the use cases of TaRDIS. Section 5 describes 
the main software artefacts and tools developed and made available through the project 
repositories. Section 6 details the demonstrators implemented during the reporting period. 
Section 7 presents a revision of the relevant state of the art, identifying the key gaps 
addressed by the work conducted, while Section 8 reports on the publications and 
dissemination activities of this period. Section 9 summarizes the main activities being 
carried out in collaboration with other work packages. Finally, Section 10 finishes this 
document. 
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2. PROGRESS REPORT AND PLAN 

a. OVERVIEW 

 
During the second year of the TaRDIS project, WP6 has made substantial progress in 
advancing the runtime and systems support for decentralized and adaptive swarm 
applications. A major focus of this period was the consolidation and evolution of the Babel 
framework, including the development of Babel-Swarm, which introduces autonomic 
capabilities such as runtime adaptation, monitoring, and protocol composition; and Babel-
Android, which extends the runtime to Android platforms, enabling mobile and 
heterogeneous devices to participate in swarm applications. 
 
Building on the protocol abstractions introduced in the first year, WP6 has developed and 
validated a wide range of membership and communication protocols—including new 
variants of HyParView, the X-BOT optimization overlay, epidemic global membership, 
gossip-based and flood-based broadcast, anti-entropy reconciliation, and random tour-
based size estimation—now available as modular and composable components in the 
Babel ecosystem. 
 
In the area of decentralized data management (Task 6.2), significant strides were made in 
the maturation of PotionDB and Arboreal, offering partial replication and causal 
consistency across the edge-cloud continuum. The main achievement of this task was 
however a fully decentralized data management solution leveraging Conflict-free 
Replicated Data Types (CRDTs), and built on top of Babel-Swarm, named Nimbus. 
 
In Task 6.3, WP6 has delivered an extensible telemetry acquisition and aggregation 
framework, extended the Babel runtime with metric-exposing capabilities, and 
implemented a centralised reconfiguration engine based on namespaces. These tools 
enable the runtime monitoring, control, and adaptive deployment of swarm applications 
across distributed infrastructures. 
 
Throughout this period, the developed artefacts were validated and demonstrated through 
multi-device experiments and two fully operational swarm applications: the TaRDIS Voting 
App and the TaRDIS Messaging App. These served as both technical validation and 
illustrative use cases for the integration of protocols, storage, reconfiguration, and UI-less 
execution across diverse platforms. 
 
Main Planned Activities 
In the final phase of the project, WP6 will focus on strengthening the integration and 
robustness of the components developed so far, and on evolving the runtime to better 
support autonomic and intelligent behavior. Specific attention will be given to: 

 
● Finalizing and validating the design of Babel 2, the unified and modular successor 

to the current Babel variants, aligned with the GFDS abstraction. 
 

● Extending support for secure communication and configuration in swarm 
applications, using simplified and composable cryptographic abstractions. 
 

● Advancing the integration of decentralized machine learning protocols, including 
dynamic delegation, coordination for split/federated learning, and runtime 
monitoring. 
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● Expanding the monitoring and reconfiguration toolset, including tighter integration 

with machine learning systems for decision-making. 
 

● Increasing the coverage and maturity of demonstration applications, with additional 
deployments in realistic, distributed environments, including Android-based and 
mobile swarms. 

b. PROGRAMMING ABSTRACTIONS FOR SWARM SYSTEMS 

Developing and deploying swarm systems, characterized by their decentralized and 
dynamic nature, can easily become a daunting task for software developers. These 
systems often require intricate coordination among multiple distributed protocols, each 
addressing specific functionalities and providing different guarantees and abstractions for 
the swarm application, including but not limited to, communication, data consistency, and 
fault tolerance. This inherent complexity arises from managing interactions across 
different distributed-protocols, handling concurrency, ensuring system robustness, and 
optimizing performance under varying operational conditions, which involves many times 
addressing low-level aspects in the development that are both error-prone and distracts 
the developer from the core functionalities and correctness of those abstractions. 

 
A dedicated framework tailored for swarm systems development is crucial to address 

these challenges effectively. Such a framework should abstract low-level implementation 
complexities while providing modular and reusable components that allow developers to 
focus on higher-level logic. This is particularly important for ensuring that protocols in 
swarm systems can adapt dynamically to changes in topology, recover from partial 
failures, and maintain operational efficiency in resource-constrained environments. 

 
Moreover, the rise of user-interactive applications in distributed systems emphasizes 

the need to extend support to mobile platforms, such as  Android. This is mostly motivated 
because mobile devices increasingly serve as interfaces for users to interact with these 
systems, providing a unified development framework that encompasses such devices can 
significantly enhance usability and adoption. By reducing the entry barrier for developers 
and facilitating the creation of performant and dependable swarm applications, a 
specialized framework can accelerate innovation in this domain. 

 
Motivated by some of these aspects, and also by the time-consuming frequent 

development of distributed systems and protocols prototypes in the context of both 
research, but also in educational settings - particularly in master’s courses - at NOVA, 
and prior to the start of the TaRDIS project, we developed the Babel framework. Babel 
has been quite successful at supporting both research and pedagogical activities at 
NOVA, and hence it became a natural basis for the development of powerful and reusable 
abstractions to support the operation of swarm systems in the context of TaRDIS. Hence 
on TaRDIS we have been evolving Babel, to better address frequent challenges found on 
highly heterogeneous and dynamic swarm systems. 
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In the following, we start by - for both clarification and self-containment - discussing the 
design of the original Babel Framework [2] prior to the start of TaRDIS (Section B.B.i), 
then we discuss in more detail the evolutions of Babel that have been conducted in the 
context of TaRDIS, that have generated different variants of Babel to which we call Babel 
Ecosystem (Section B.B.ii, Section B.B.iii, and Section B.B.iv), and finally we discuss 
plans for evolving and unifying this ecosystem to be carried in the final year of TaRDIS 
(Section B.B.v). 

 

i. The Babel Framework (background) 

The Babel framework [2], as originally conceived, addressed critical pressure points 
for users during the development of distributed protocols. Babel's design emphasized 
simplicity and performance, enabling developers to focus on the core logic of protocols 
without being encumbered by the intricacies of low-level operations. Key features of the 
framework included: 

 
Event-Driven Model: Babel promoted an event-driven programming paradigm, 

wherein protocols were modeled as state machines reacting to events such as timers, 
network messages, or intra-process notifications. This approach streamlined the 
implementation of distributed algorithms by abstracting away concurrency and execution 
management complexities. 

 
Networking Abstractions: Babel introduced extensible networking channels, 

providing developers with the flexibility to implement a wide range of communication 
patterns, from peer-to-peer interactions to client-server models. The framework supported 
seamless integration of custom channels, ensuring adaptability to diverse application 
requirements. 

 
Protocol Modularity: Developers could design protocols independently, leveraging 

Babel’s core to manage inter-protocol interactions and ensure consistent message 
delivery across processes. This modularity facilitated the reuse of existing 
implementations and reduced development overhead. 

 
Java-Based Implementation: By leveraging Java, Babel combined strong typing with 

a robust object-oriented approach, providing developers with a familiar and efficient 
environment for building distributed systems. 

Requirements for Enhancing Babel for Swarm Systems 

To address the unique demands of swarm systems, Babel must evolve beyond its initial 
design. Key requirements for the next iteration of the framework include: 

 
Security: Comprehensive support for security mechanisms, including protocol 

authentication, encrypted communications, and access control, to safeguard interactions 
in potentially adversarial environments. 
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Self-Configuration: Automated mechanisms for the dynamic configuration of 
protocols and applications, enabling seamless adaptation to changes in topology, 
resource availability, or environmental conditions. 

 
Self-Management: Capabilities for autonomously managing protocol lifecycles, 

monitoring performance, and optimizing resource allocation to ensure system robustness 
and efficiency. 

 
Android Support: Extension of Babel’s functionality to Android devices, recognizing 

the critical role of mobile platforms as user interfaces in swarm applications. This 
enhancement will enable the development of interactive, user-centric distributed systems 
that leverage the ubiquity of smartphones and tablets. 

 

ii. Babel Ecosystem: Babel-Swarm 

 
The increasing complexity of decentralized systems demands robust frameworks to 

assist developers in implementing protocols that are not only performant but also 
adaptable, secure, and capable of autonomous management. To address these 
challenges, we present Babel-Swarm, an evolution of the original Babel framework. 
Babel-Swarm extends Babel's capabilities to cater to modern swarm systems, integrating 
mechanisms for self-configuration, enhanced security, and adaptive protocol 
management, all seamlessly incorporated into the Babel-Core. 

Motivation 

The development of decentralized applications has become increasingly challenging 
due to the dynamic nature of such systems, coupled with their need for high performance, 
robust security, and autonomous operation. Key motivations for the development of 
Babel-Swarm include: 

 
Dynamic Membership Management: Decentralized systems often require nodes to 

dynamically join and leave the network. The lack of predefined configurations or 
mechanisms for automatic discovery creates significant barriers. 

 
Security Requirements: Ensuring secure communication and trust among nodes in 

the absence of centralized authorities is a critical challenge. 
 
Adaptive Behavior: Applications must adapt their operational parameters dynamically 

to accommodate changes in environmental conditions, such as fluctuations in node count, 
workload, or available resources. 

 
Babel-Swarm addresses these challenges, empowering developers to build more 

robust and feature-rich decentralized applications while reducing development 
complexity. 
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Design and Implementation 

Babel-Swarm introduces significant enhancements to the Babel-Core, integrating new 
abstractions and functionalities to support self-configuration, security, and adaptive 
management. These features are implemented as modular extensions, ensuring 
compatibility with existing Babel applications while enabling advanced capabilities. 

 

Self-Configuration 
 
Babel-Swarm simplifies the onboarding of nodes into decentralized systems through 

two key mechanisms: 
 
Node Discovery: The Babel-Core includes a new DiscoveryProtocol abstraction that 

supports broadcast and multicast techniques for locating peers. Developers can extend 
this abstraction to implement custom discovery protocols, which are dynamically loaded 
during runtime using reflection. 

 
Dynamic Parameter Management: Protocol parameters can now be annotated with 

@AutoConfigureParameter. The Babel-Core introspects these annotations during 
initialization, automatically fetching values from existing nodes or external sources like 
DNS records. Two primary implementations—parameter replication from active nodes 
and DNS-based parameterization—are provided as built-in options. 

 

Enhanced Security 
 
Recognizing the critical need for security in decentralized systems, Babel-Swarm 

incorporates: 
 
Identity Management: Babel-Swarm supports self-signed certificates for node 

authentication. While this does not fully authenticate the node, it allows to entwine 
different interactions with a node over time, which is beneficial in some contexts. The 
framework’s identity manager provides APIs for handling cryptographic material, enabling 
developers to implement customized trust models. 

 
Secure Communication Channels: A new SecureChannel abstraction ensures that 

all communications are encrypted and authenticated. Each connection undergoes an 
initial handshake where certificates are exchanged and validated against customizable 
trust policies. 

 
Runtime Cryptographic Operations: The Babel-Core leverages Java’s Cryptography 

Architecture, with extensions for runtime cryptographic operations using libraries like 
Bouncy Castle. This includes key generation, digital signatures, and 
encryption/decryption primitives. 
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Adaptive Management 
 
To enable autonomous operation, Babel-Swarm integrates: 
 
Adaptive Parameters: Developers can annotate protocol parameters with @Adaptive, 

allowing these values to be adjusted at runtime based on environmental metrics. 
 
Autonomic Controller: The Babel-Core now includes an autonomic controller that 

monitors system metrics (e.g., network size, latency) and triggers parameter 
reconfiguration as needed. For example, a gossip protocol’s fanout can be dynamically 
adjusted to optimize message dissemination. 

 
Metrics Collection and Estimation: A lightweight RandomTourProtocol is provided 

to estimate network size, with results feeding into the autonomic controller for informed 
decision-making. 

 
These features were integrated into the Babel-Core with minimal overhead, leveraging 

Java’s reflection mechanisms to dynamically manage parameter annotations and 
configuration changes. 

 

Evaluation 

 
To validate Babel-Swarm’s capabilities, we conducted an extensive evaluation using a 

test application that integrates three protocols: a membership protocol (HyParView), a 
gossip-based dissemination protocol, and an anti-entropy protocol for reliable message 
delivery. 

 

Experimental Setup 
 
The evaluation was conducted using a cluster of servers with high-performance 

specifications to ensure reliable and scalable testing. The cluster consisted of two 
configurations: one featuring AMD EPYC 9124 processors with 256 GiB of RAM and dual 
10Gbps network interfaces, and another using Intel Xeon Gold processors with 128 GiB 
of RAM and similar dual 10Gbps network interfaces (operating in bound mode). These 
machines provided a robust environment for simulating a variety of distributed scenarios. 

 
Docker containers were deployed to simulate a network with varying node counts (25, 

50, 100). Each node executed the test application, transmitting messages at regular 
intervals. The protocols were instrumented to measure key metrics, including: 

 
Latency: Time between message transmission and delivery. 
 
Reliability: Fraction of messages successfully delivered. 
 
Resource Usage: CPU and memory consumption. 
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Below we discuss the results for resource consumption, since in terms of latency and 

reliability the introduction of these new features have not exhibited noticeable differences. 
 

Resource Consumption 
 
Plots below illustrate the Memory and CPU consumption of the test application under 

different configurations: 
 

 
 
 
 

 
Fig: CPU consumption of Messaging Application using different features of Babel-

Swarm 
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Fig: Memory consumption of Messaging Application using different features of Babel-
Swarm 

 
 
Baseline vs. Secure: The secure variant exhibited slightly higher CPU consumption 

due to cryptographic overhead but did not exhibit a noticeable overhead in terms of 
memory across all network sizes (being better for 25 nodes). 

 
Self-Config and Adaptive: Both variants achieved comparable CPU and memory 

consumption to the baseline, demonstrating that Babel-Swarm’s advanced features do 
not compromise pero. 

 

iii. Babel Ecosystem: Babel for Android 

Mobile phones are inherently relevant to swarm applications, since they can provide an 
accessible and simple interface for users to interact with the swarm as a whole (both for 
monitoring and management) [16]. Due to this we have decided to port the Babel-Swarm 
framework (and some of the distributed protocols developed for it) to the Android 
ecosystem. 
 
Such an effort is reasonable since the Android ecosystem also leverages Java (and Kotlin, 
an idiom of Java) to develop applications. There were however three main challenges that 
had to be addressed in porting Babel-Swarm to the Android environment: 
 

1) Interacting with the network in the Android OS requires interacting with the Network 
Manager service of Android.  

2) Java runtime and common libraries had to be addressed, in particular the Android 
ecosystem only supports Java up to version 17, whereas Babel-Swarm was 
developed using Java version 22 to be able to take advantage of the new features 
(and performance) of the language. 

3) The application life-cycle in Android is controlled by the operating system, and 
applications that are not in the foreground can be put in a paused state. This is a 
challenge because some of the protocols operating in Babel require keeping 
communication channels (e.g., TCP connections) open to other devices, and such 
connections can be dropped when the application is put into pause. 

 
We have taken a pragmatic approach to deal with these challenges that allowed us to have 
swarm applications developed using Babel-Swarm running on Android devices (we have 
performed preliminary evaluations on several types of devices including different models 
of mobile phones and tablets). In the following we briefly discussed how we addressed the 
aforementioned challenges. 
 

Network Management in Android 

In the current prototype of Babel for Android, and to explicitly deal with the operation of the 
Network Manager, we had to modify the logic of the (internal) Discovery protocols used by 
Babel to identify other processes in the local network that are running the same application, 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 18 of 90                    © 2023-2025 TaRDIS Consortium 

which internally is then fed to decentralized membership protocols as a contact node (i.e., 
an entry point for a new node to join). The modification was required to associate 
multicast/local area broadcast mechanisms to a particular network interface of the device 
that is both active, supports these protocols, and has a valid IP address at the time when 
the babel application starts. 
 
In the future we plan to support network changes, namely changes of IP address or even 
the interface (i.e., WiFi vs 4G/5G) that provides connectivity to the device over the lifetime 
of the application. 

Java Runtime and Common Libraries 

Due to the fact that Android only supports Java 17, we had to create a fork for both the 
core of Babel-Swarm and all decentralized protocols that we wanted to experiment within 
the Android ecosystem and port them from Java 21 to Java 17. This required removing 
some Java 21 functionalities that were not present in Java 17. Moreover, the Log4J2 
logging library that we were using on Babel-Swarm is not effective in the Android 
ecosystem, therefore we did remove calls to Log4J2 from the code (it should be noted that 
these Log entries were mostly used for debugging purposes). 
 

Android Application Life-Cycle and Persistent Connections 

Since Babel maintains active connections with other members of the swarm, it is not 
enough for an Android application that takes advantage of Babel to use it as a library. This 
is because the Android operating system manages the lifecycle of the application, and as 
such, when the application is not in foreground, or when the screen is locked, the operating 
system might put the application in pause, which leads to the termination of TCP 
connections due to inactivity. Additionally, protocols that require periodic management 
operations, for instance membership management protocols, become unable to perform 
those actions, leading those devices to become disconnected from the entire swarm. 
 
To deal with this aspect of the application life-cycle management we have encapsulated 
the Babel runtime and support protocols (specific for an application) in a bundle that runs 
as a foreground service. This allows the Babel runtime to keep operating even when the 
application is not in foreground or when the phone is locked. To achieve this, we have the 
Babel-Android core and Communication layer as a Java library that can be imported within 
the scope of a template for a Foreground service that loads all decentralized protocols 
required for a specific application. This foreground service provides APIs for the Android 
application to both interact with it (i.e., make requests to specific protocols) and for those 
protocols to provide asynchronous notifications to the application. Given this development 
model, the Android application itself is only responsible for managing the interface with the 
user, exposing information and collecting inputs.  
 
To simplify this interaction, the programmer should extend the Application class of the 
Android runtime to initialize the foreground service when the application starts and disable 
it when the application terminates. Furthermore, this extension of the Application class can 
materialize the APIs to allow the application (interface) logic to interact with the Babel 
runtime and its associated distributed protocols. We have conducted preliminary 
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assessment of the overhead (in terms of energy consumption) of this approach, by running 
seven different Android devices running the TaRDIS Messaging application together with 
four Raspberry Pi 4, running the linux version of this application, where each application 
instance on a Raspberry generates 64Kb random messages every 30 seconds with a 
probability of 10%. All nodes (Android devices and Raspberries) were inter-connected by 
an instance of the HyParView protocol [17]1 using a single gossip-based broadcast2 
strategy to disseminate messages collaboratively, and a simple anti-entropy protocol3 to 
recover missed messages, while also running a distributed protocol to allow each individual 
node to compute a local estimate of the size of the network4 named Random-Tour [18]. 
This simple evaluation showed that all Android devices could operate in this ecosystem, 
receiving all messages, for at least 48h before their battery was exhausted, which seems 
acceptable in this context. 

 

iv. Babel API for Web Services 

 
When working with multiple programming languages, developers often encounter 
significant challenges in making them interact seamlessly. Each programming language is 
designed with its own syntax, rules, and paradigms, reflecting a unique approach to solving 
problems. Moreover, different languages often operate in distinct execution environments. 
Some languages are interpreted, like Python or JavaScript, while others are compiled, like 
C or Go. These differences affect performance, memory usage, and how data is 
processed. When combining these languages in a single application, developers must 
consider how to synchronize execution models, which can lead to inefficiencies or 
complications in scaling the application. 
 
Nowadays, most of the applications built for the web are developed using some kind of 
script language (e.g., Java Script, Python, etc.) and utilize external APIs (e.g., REST) to 
communicate with other services, such as a back end providing a database. 
 
With this in mind, the  Babel API for Web Services offers a generic framework to enable 
web applications and services (i.e., written in other programming languages) to interact 
with the Babel environment being executed in the Java Virtual Machine. 
This is possible by interfacing Babel protocols with REST APIs and Web Sockets, such in 
a way that when a client wishes to interact with the Babel environment, it executes a HTTP 
request (or sends a message through a previously setup Web Socket) to issue an 
operation. When this operation is finished in Babel, a response is sent back to the client. 

 
1https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-android/protocols/membership/hyparview-
with-discovery 
2https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/communication/eagergossipbroadcast 
3 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/communication/antientropy 
4 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-android/protocols/network-
estimations/random-tour 
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Additionally, clients can also be notified reactively through the use of Web Sockets when 
new data arrives through Babel. This way applications can update their UI accordingly as 
new information flows through each node in the system. 
 
To use the framework, developers should extend their application protocols with the 
GenericWebServiceProtocol class, in order to access the features available to protocols 
that receive operations through HTTP requests and Web Socket messages. This way, 
protocols will be notified when new requests arrive, and can then process them internally 
and respond with the use of callbacks. Moreover, the developer can create their REST 
resources and Web Socket intances by merely extending the GenericREST and 
GenericWebSocket classes respectively, and passing the GenericWebServiceProtocol 
in charge of handling the requests. An interaction of this flow can be seen in the figure 
depicted below: 
 

 
Fig: Babel Web API Architecture 

 
Repository 
 
More details of the framework, functionalities and the proper documentation can be found 
in Babel API for Web Services - Core5, and a few examples are available under Babel 
API for Web Services - Examples6. 
 

 
 

5https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-webservices/babel-
webservices-core 
6https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-webservices/web-services-
examples 
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v. Babel 2: Evolving Babel Ecosystem for Further Swarm Domains 

Babel 2 represents our current plans and ongoing efforts to build a de-facto implementation 
of the Generic Framework for Dynamic Decentralized Systems (GFDS) (see Generalizing 
the Babel Approach), translating the framework’s concepts into a cohesive, concrete 
platform for building resilient and adaptive swarm applications. While GFDS is conceived 
as a language-agnostic architectural blueprint, Babel 2 will remain a Java-only 
implementation for the foreseeable future. This decision is guided by the need to 
consolidate the existing Babel variants—Babel-Core, Babel-Swarm, Babel-Android—into 
a unified codebase built on Java 17, which ensures broader compatibility across desktop, 
server, and mobile environments. 
 
The primary goal of Babel 2 is not only to evolve the current codebase but to systematically 
address the recurring challenges observed across the development and deployment of 
decentralized systems using Babel. Among these, the integration of security mechanisms 
has traditionally posed a significant barrier. While Babel-Swarm introduced support for 
encrypted channels and certificate-based authentication, these features required intricate 
configurations and exposed a fragmented API surface. Babel 2 will streamline these 
capabilities through more intuitive abstractions, providing developers with secure-by-
default communication primitives that are both flexible and simple to use. 
 
Another critical direction in Babel 2 is the unification and simplification of communication 
abstractions. Existing Babel-based protocols often had to explicitly bind to a particular 
transport technology—such as TCP, UDP, or WebSockets—making them cumbersome to 
reuse across different execution contexts. Babel 2 introduces a redesigned communication 
layer where transport protocols are treated as fully interchangeable modules. Protocol 
developers can now write logic that is entirely agnostic to the underlying transport, enabling 
seamless deployment across heterogeneous networks, from ad-hoc local networks to 
wide-area cloud deployments. 
 
Additionally, Babel 2 integrates more robust self-configuration and runtime adaptability 
features by default, building upon the reflective configuration capabilities of Babel-Swarm. 
Support for Android remains a key concern, and adopting Java 17 as the base version 
ensures compatibility with the mobile ecosystem, while retaining access to modern 
language features that support clean, maintainable code. 
 
In practical terms, Babel 2 is more than just a next version of the framework—it is a 
convergence point. By subsuming the existing Babel variants into a unified runtime and 
harmonizing the various protocol implementations, Babel 2 enables reuse, extensibility, 
and maintainability at a new scale. It becomes the backbone not only for continued TaRDIS 
developments but also for any future work based on GFDS, serving as a stable, extensible 
reference that other implementations—potentially in other languages—can eventually 
follow. 
 
As the project enters its final year, the consolidation and validation of Babel 2 will be a key 
focus. The goal is to deliver a mature, tested, and integrated platform that embodies the 
principles of GFDS while remaining grounded in the practical requirements of real-world 
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swarm applications. This effort will not only benefit TaRDIS use cases but also establish 
Babel 2 as a robust foundation for future innovation in the design and deployment of 
dynamic decentralized systems. 
 

vi. Generalizing the Babel Approach  

 
As mentioned previously, Babel, and more precisely its new version Babel-Swarm and the 
upcoming release Babel 2, aim to assist developers in implementing decentralized 
dynamic systems by offering a plethora of features to build and manage distributed 
applications at a large scale. While Babel is designed to be flexible and modular, and 
continuous to evolve in order to  meet up with the ever increasing demand of swarm 
systems, at the moment, its reference implementation is solely in Java. Thus, in order to 
allow other developers to benefit from the functionalities offered in Babel and its simple but 
powerful design, we propose a Generic Framework For Building Dynamic Decentralized 
Systems (GFDS). GFDS generalizes the Babel approach by leveraging the already 
existing abstractions presented in Babel and expanding on them: 
 

 
 
GFDS  aims to offer a set of tools, abstractions, and best practices to allow developers to 
design, deploy, and manage distributed applications that are dynamic, resilient, scalable, 
and fault-tolerant. The framework is composed of an execution model, architecture and 
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extended examples, which details all of the relevant aspects to write and build a reference 
implementation. 
 
Due to its nature, GFDS is completely language agnostic and encompasses the 
fundamental concepts and components to build a framework for building decentralized 
systems. This design choice encourages interoperability and enables developers 
interested in this framework to implement their own version. 
 
The document is being written as a recently submitted internet-draft 7 (i.e., a working 
document submitted to the Internet Engineering Task Force (IETF) for discussion and 
potential standardization) . The working version of the draft is available in the TaRDIS 
repository 8. 

c. DECENTRALISED MEMBERSHIP AND COMMUNICATION PRIMITIVES (T6.1) 

 
The mission of Task 6.1 is to provide fundamental abstractions for decentralised 
membership and communication that are essential to the operation and coordination of 
swarm systems. These systems, which typically operate in open and heterogeneous 
environments without centralized control, demand mechanisms that enable nodes to 
discover each other, maintain knowledge of the system's composition, and exchange 
information efficiently and reliably. 
 
In this context, Task 6.1 addresses two core technical challenges: first, how to model and 
implement membership services that allow each node in a swarm to be aware—completely 
or partially—of the other participating nodes; and second, how to build communication 
primitives that enable rich interaction models such as point-to-point messaging, gossip-
based dissemination, publish/subscribe, and broadcast, while remaining agnostic to 
underlying transport mechanisms. 
 
This task builds upon extensive experience and state of the art in peer-to-peer and overlay 
network protocols, leveraging their strengths while addressing key limitations such as 
rigidity in API design, poor interoperability, and a lack of composability. The approach 
taken in TaRDIS focuses on creating generic, reusable APIs for membership and 
communication services, enabling application components to be decoupled from specific 
protocol implementations. This abstraction layer empowers developers to swap out 
underlying protocols to adapt to different environments or operational requirements without 
changing application logic. 
 
The ongoing work in this task continues to push forward in refining these abstractions, 
incorporating additional protocols, and improving their usability and efficiency. In the next 
phase, particular emphasis is being placed on simplifying developer experience, 
integrating intuitive security mechanisms, and abstracting away transport-level concerns 
to support more dynamic, robust, and interoperable swarm applications. 

 
7 https://datatracker.ietf.org/doc/draft-jesus-gfds/ 
8 https://codelab.fct.unl.pt/di/research/tardis/wp6/drafts/gfds-internet-draft 
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In summary, this task develops and validates: 
 

● Underlying abstractions for supporting the development and efficient operation of 
higher-level data management (T6.2) and reconfiguration services (T6.3). 
 

● Decentralised membership services that are responsible to maintain information 
about the active elements (e.g., devices/processes) in a swarm system. Such 
services can optionally authenticate participants in a system. 
 

● Decentralised communication primitives that operate on top of the membership 
services to provide point-to-point and point-to-multipoint communication primitives 
with different guarantees (e.g., reliability, feedback to programmer) supporting 
different programming models (including support for publish/subscribe models, 
application-level multicast/broadcast). 
 

● Provide a comprehensible suit of different abstractions that can be used as much 
as possible in an interchangeable fashion to develop swarm applications. 

 
In the following we report on the results produced by Task 6.1 in the first two years of the 
TaRDIS project:  
 

i. Evolving Membership Abstractions for Self-Configuration, Self-
Management, and Security 

The Babel-Swarm variant of Babel (Described above in Babel Ecosystem: Babel-Swarm) 
created the opportunity to evolve different membership protocols to take advantage of the 
new features introduced by this variant. To showcase and evaluate these features, as well 
as motivated by the fact that HyParView [16] is the membership abstraction that was more 
flexible in terms of scalability and providing resilience to swarms infrastructures, we have 
created different variants of this protocol exploiting these features.  
 

HyParVIew with Self-Discovery 

This version of HyParView was redesigned to take advantage of the ability provided by 
Babel-Swarm to allow a Swarm membership protocol, when a new node tries to join the 
swarm, to automatically discover another member of that swarm that can serve as an 
introduction node (sometimes called a contact node in the literature) to facilitate the new 
node to join the membership abstraction (ensuring that both the new node becomes aware 
of some other nodes in the system, and that some other nodes in the system become 
aware of the existence of the new node).  
 
The current abstraction operates by taking advantage of pluggable Discovery mechanisms 
on Babel-Swarm. In particular, we have developed two such mechanisms, one based on 
IP-Multicast, another on local network Broadcast (hence these mechanisms are only useful 
in the context of local networks, we do plan to generalize this by also considering 
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alternatives such as DNS name resolution or the creation of the registry service that can 
be leveraged to support this mechanism). 
 
The implementation was straightforward and easy to achieve using the mechanisms 
provided by Babel-Swarm. The new variant of the protocol extends the Discoverable 
Protocol (instead of the GenericProto of the original babel) that notifies the runtime that 
this protocol supports self-discovery. If no contact node is provided in the configuration, 
the Babel-Swarm runtime is notified, and the plugable discovery protocol uses its 
mechanisms to find another node in the network belonging to the same swarm, and upon 
finding it notifies this version of the protocol. At this point the protocol can initialize and join 
the overlay network of HyParView, and the node becomes itself able to serve as contact 
node to other nodes that can join the system. Due to the minimal overhead introduced by 
this mechanism, and the fact that this mechanism allows for simpler configurations on 
applications that do not depend on knowing a-priori the address of a member of the swarm, 
we currently use this as the de-facto implementation of this membership abstraction. This 
version was also, due to these reasons, ported to the Babel-Android variant. 
 
The implementations of this variants (for each version of Babel can be found in: 

● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/membership/hyparview-with-discovery 

● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/membership/hyparview-with-discovery 
 

HyParView with Autonomic Management 

This new version of HyParView actually combines two new features introduced by Babel-
Swarm. First it allows a node to be started without being aware of the configuration 
parameters in this protocol (in particular, HyParView features a total of nine parameters 
that control its behaviour as discussed on [16]). We call this Self-Configuration. The second 
feature is that this variant of the protocol allows for (some of) these parameters to be 
modified at runtime to improve the operation of the protocol when the operational 
conditions change. We achieve this in practice in the current prototype by taking advantage 
of a distributed protocol that allows each node to produce a local estimate of the network 
size, and an Autonomic Controller component that exists (independently) at each node 
that takes into account the current estimate of the membership size to manipulate the size 
of the partial views maintained by HyParView9. We call this Self-Management. 
 
The mechanism that allows for the self-configuration takes advantage of a plugable special 
protocol on the Babel-Swarm core. In particular, we have developed a solution based on 
TXT records on DNS addresses. This allows to ship nodes where the configuration only 
reports what is the DNS name that should be looked-up to extract the (current) ideal 

 
9 We note that the theory of epidemics points towards an ideal size of the active view of HyParView 
to be ln(N) + 1, where N is the total number of nodes in the system. There are however some 
restrictions, for instance, it is very unlikely that a random K-graph will be connected for values of K 
below four. Moreover, the fact that active views in HyParView are sysmetric, allows - considering 
the restriction identified above - to use log(N) + 1 instead of ln(N) +1 when computing the the ideal 
number of neighbors (i.e., the active view size) of each node. 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 26 of 90                    © 2023-2025 TaRDIS Consortium 

starting configuration for a node. Again the implementation of this feature is straightforward 
using the mechanisms provided by Babel-Swarm. It was sufficient to have the protocol 
implementation extending the AdaptiveMembershipProtocol class instead of the 
GenericProto class of the original Babel, define a new parameter to have the DNS name 
where the configuration should be looked up on bootstrap, and avoid the initialization of 
parameters with default values. This is enough for the runtime of Babel-Swarm to identify 
this protocol as supporting self-configuration, looking up the configuration on the DNS 
service, and setup the appropriate parameters on the protocol before the protocol starts 
its operations (we should note that this feature is compatible with the self-discovery 
mechanism reported above, also the contact node can be provided - in a somewhat less 
dynamic way - as an DNS TXT entry as well). 
 
The second feature, self-management, as previously mentioned requires additional 
complexity. In terms of protocol adaptation this is also straightforward, as the previously 
mentioned AdaptiveMembershipProtocol abstract class already features support for this 
aspect of the protocol. However, this feature does require the programmer to specify 
special setter and getter methods for all protocol parameters that can be changed at 
runtime. The setters in particular require the programmer to verify if the configuration 
change is valid, as this aspect is intimately entwined with the protocol logic. 
 
In addition to these changes to the protocol, we require two other components, one that 
extracts information at runtime that can inform or guide the runtime reconfiguration of a 
protocol, and one local component that takes this information, analysis it, takes decisions 
regarding changes to the current configuration, and issues commands to the protocol using 
a standard management API (that is materialized by the previously mentioned 
AdaptiveMembershipProtocol abstract class). To study the viability of our design and 
validate it we have explored several fully decentralized approaches to infer, at runtime, the 
size of the swarm. After evaluating a few different alternatives, we decided to use an 
implementation of the Random-Tour protocol, which operates by having each node 
periodically sampling the network using random-walks. To avoid incorrect individual 
estimates to create unnecessary perturbations on the system, our Autonomic Controller 
operates using a window of a configurable number of samples to make decisions. The 
simple controller that we implemented averages the 10 different and consecutive samples 
and, when the system size grows or decreases too much it issues reconfiguration 
commands to respectively increase or decrease the number of (active and passive) 
neighbors maintained by HyParView. Preliminary evaluation has shown that this approach 
yields adequate results, allowing nodes to modify their configuration while avoiding 
oscillatory behaviours that could easily have a negative impact on the overall operation of 
the Swarm. 
 
We have also started to apply these core concepts to gossip-based communication 
abstractions, as to adjust the fanout employed by the protocols based on the network size 
estimate. An initial version of this protocol is already implemented and is currently being 
evaluated. 
 
The components discussed in this section have their code available at the following 
locations: 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 27 of 90                    © 2023-2025 TaRDIS Consortium 

 
● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-

swarm/protocols/membership/hyparview-autonomic 
● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols/network-

estimations/random-tour 
● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols/autonomic-

controllers/simple-autonomic-controller 
● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-

swarm/protocols/communication/adaptive-eager-gossip-broadcast 
 

HyParView with Security 

 
Finally, we have implemented a variant of HyParView that provides some fundamental 
security mechanisms for a distributed environment. In particular, this version of HyParView 
allows each element of the swarm to be identified by a certificate, which allows nodes, 
when establishing communication channels with other members of the swarm, to validate 
that their peer is a valid participant, by automatically receiving its certificate and validating 
it (using a policy defined by the developer, as to easily allow for enforcing different 
restrictions, such as the certificate being signed by a specific set of entities, or by other 
(trusted) swarm nodes). In addition to this, messages exchanged by the protocol are also 
signed, which allows for messages to be used to prove that some node has exhibited some 
misbehaviour (i.e., signatures provide the property of non-repudiation over messages sent 
by a node). Finally, communication channels are encrypted to provide both integrity and 
privacy of information exchanged among nodes. 
 
These functionalities, at the Babel-Swarm level, are provided by a combination of a 
Security manager in Babel-Swarm, that handled identify (cryptographic material) 
management and verification, as well as message signing and verification, combined with 
transparent mechanisms provided by a new Secure Communication Channel developed 
specifically for enriching Babel-Swarm, that for instance can verify the validity of peer 
identities transparently. Encrypted communication is also provided by the Secure 
Communication Channel abstraction. 
 
In terms of protocol changes, this is the feature of Babel-Swarm that requires more effort 
from the programmer, although this is mostly related with correctly setting up the Secure 
Communication Channel, which includes interactions with the Identity abstraction provided 
by the security manager. 
 
We have also created a variant of the Gossip-based broadcast protocol and our simple 
anti-entropy protocol that incorporates the available security mechanisms. This was mostly 
motivated because the secure communication abstractions (in terms of providing the 
properties of non-repudiation, integrity, and privacy) are more plausible at the level of 
communication abstractions, since these are the distributed protocols that effectively 
transfer application data, that can with a higher probability, benefit from having the 
aforementioned properties. 
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We have however noted during the development of these variants of the protocols that the 
API developed to expose security mechanisms in Babel-Swarm was too complex, in the 
sense that there are multiple mechanisms to achieve its functionality, mostly motivated to 
provide flexibility to a wide range of application scenarios. Due to this, we are currently 
revising these security abstractions in the context of the development of Babel version 2, 
to expose them to the programmer in a simpler and more intuitive way. 
 
The interested reader can find the code for the protocol variants discussed here in: 

● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/membership/secure-hyparview 

● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/eagergossipbroadcast-secure 

● https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/anti-entropy-secure 

 
 

ii. Membership Abstractions to model Satellite Swarms 

Motivated by the challenges related with managing swarms of satellites, or more generally, 
swarms of mobile devices whose communication patterns evolve over time depending on 
the relative positions of these devices to each other and potentially other factors (e.g, this 
phenomena can also happen on swarms of drones or even in vehicular networks), and to 
support the demonstrator of TaRDIS for the use case of partner GMV, we have identified 
the need of a different type of decentralized membership management abstraction, that 
can capture and deal with this dynamic nature of opportunity for two swarm elements to 
communicate and exchange information. This is fundamentally different from other 
membership abstractions that have been explored in the context of WP6, that usually 
assume the existence of a communication subtract (e.g., IP network) that offers, while 
devices are active, a mechanisms for them to communicate, that despite being best effort 
is most of the times functional. 
 
We have started to work on this new type of membership abstraction that fundamentally 
takes an opportunistic approach to identify opportunities for swarm devices to interact with 
each other, either based on probing the communication medium (for instance a wireless 
medium), or by taking advantage of a known a-priori, but potentially imprecise, information 
about the relative positions of nodes and a scheduling of possible interactions between 
them. 
 
We will have a prototype of this solution, also integrated into Babel-Swarm (or most likely 
Babel version 2) that will be used to develop the demonstration of the GMV use case, 
where we will model the communication scheduling between nodes, based on a virtual 
model of a swarm of satellites, empowering the protocol to be able to autonomously 
readjusts when the predicted position of nodes is not met due to external factors. 
 
It should be noted that this future contribution of WP6, will allow to run realistic simulations 
of the GMV use case using real code, that can be at a later date be ported to other 
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platforms to support its integration in a real use case scenario. We plan to fully report on 
the results of this activity in Deliverable D6.3. 

 

iii. Membership Abstractions for (hierarchical) Decentralized Communities 

Also motivated by the challenges related with the construction of a decentralized and 
reliable renewable energy market from partner EDP, WP6 is currently working on the 
development of membership abstractions with special characteristics to allow for the 
implementation of the demonstrator of this use case. The implementations, will be carried 
out also using Babel-Swarm (and later ported to Babel version 2 when this is finished) and 
will be therefore able to execute in a myriad of devices (as long as they can execute the 
Java virtual machine (JVM) paving the way for a the development of a real product to be 
exploited by the partner in the future. 
 
The EDP use case is a paradigmatic example of a swarm that benefits from biasing the 
interaction among swarm elements to those that are in close physical proximity. This is 
related to the fact that transferring energy is faster and more efficient across small 
distances. Therefore, a decentralized renewable energy community will benefit the most 
from the interactions among close participants, although in some extreme cases it might 
be useful to be able to contact more distant participants, or even the core of the system, 
to avoid situations where excessive energy production can generate overloads. To support 
this we need a membership abstraction that automatically organizes nodes participants in 
a logical network (i.e., an overlay network) that on one hand promoted neighboring 
relationships between nodes in close proximity, while at the same time having some form 
of hierarchical topology that can be leveraged to iteratively look for participants that need 
to acquire or provide energy. Achieving this design in a robust and efficient way without 
resorting to a centralized control point is challenging. 
 
Due to the inherent challenges related with this activity we currently have two lines of 
ongoing work to build a membership abstraction for hierarchical decentralized swarms that 
depart from different base solutions to try to achieve and effective solution that can be 
employed to support the use case of EDP and other applications that have similar 
requirements. 
 
The first line of work exploits a technique named Biasing of overlay networks [19], that in 
a nutshell departs from a purely random overlay, and iteratively allows participants in that 
overlay to explore the system and coordinate to exchange existing links by better links, in 
this particular case, swapping overlay links between distant nodes by links among closer 
nodes. This work is therefore departing from the X-BOT protocol [20,21] that does this in 
a coordinated manner, having groups of 4 nodes iteratively swapping two links by two 
better overlay links, while keeping a configurable number of distant links unchanged as to 
ensure the global connectivity of the system, and adapting it to achieve two complementary 
goals: 1) ensure that nodes maintain a large number of neighbors that are in their physical 
vicinity, allowing the emergence of communities by the natural operation of the protocol; 
and 2) manipulate the distant (i.e., unbiased) links to allow the emergence of a hierarchy 
among nodes, that can be leveraged to effectively coordinate exchanges among nodes 
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through requests and offers, in the particular case of the EDP use case, of renewable 
energy. 
 
The second line of work tries to achieve an abstraction with similar properties departing 
from a different point, in particular, it is being developed departing from an existing overlay 
management solution named Overnesia [22], that is a fully decentralized membership 
protocols that builds an overlay network where nodes are organized in cliques at random. 
These cliques are then interconnected (also at random) to ensure global connectivity. In 
this line of work we are changing this approach, that already forms specific cliques of nodes 
that can be easily mapped to a (closed) community in our use case, to ensure that these 
cliques take into account the physical proximity of swarm elements, ensuring that nodes in 
close vicinity are within the same clique. Moreover, we plan to take advantage of explicit 
information about the geographical location of nodes in each clique to interconnect these 
cliques not at random, but using a logic that allows multiple independent and location-
aware hierarchies to emerge. Such a solution will allow us to explore a design for a 
decentralized renewable energy market that can explicitly define operations over the local 
community, neighboring communities, and the global system. 
 
Both of these activities are still ongoing and are planned to end within the next three 
months. It should be noted that the decision to pursue independent lines of research to 
tackle this challenge is related with the risk associated with this activity, as there is no 
previous work that provides similar properties as the ones required by this use case. Final 
findings related to this activity will be reported on Deliverable D6.3 and we expect to 
integrate one of these solutions into the prototype of the EDP Use case. 

d. DECENTRALISED DATA MANAGEMENT AND REPLICATION (T6.2) 

Task 6.2 focuses on providing the necessary abstractions and protocols for decentralized 
data management and replication to support the development and operation of dynamic 
and heterogeneous swarm applications in TaRDIS. In such applications, nodes are highly 
diverse in terms of resources and capabilities, and may include powerful cloud servers, 
lightweight edge devices, and mobile clients with intermittent connectivity. Supporting 
these systems requires flexible and efficient data management mechanisms that can adapt 
to the changing conditions of the swarm and ensure that relevant data is consistently 
available where it is needed. 
 
To address this, Task 6.2 is designing and developing solutions that go beyond 
conventional full replication or static consistency models. A key challenge is the need to 
support partial replication, where each node holds only a subset of the data and can 
dynamically update its interests over time. This requires algorithms capable of 
reconfiguring replication strategies as nodes move, join or leave, and as their data access 
patterns change. In parallel, the task must ensure that such replication maintains 
acceptable levels of consistency for applications, particularly through mechanisms that 
avoid excessive coordination while ensuring convergence. 
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Another significant aspect of Task 6.2 is supporting heterogeneous operating conditions. 
This includes enabling data access and update even when connectivity is disrupted, and 
providing strategies to merge concurrent updates in an eventually consistent manner using 
Conflict-free Replicated Data Types (CRDTs). Furthermore, to improve the efficiency of 
data processing and dissemination, the task is exploring the use of materialized views for 
common queries, allowing nodes to locally maintain and access precomputed results of 
interest without querying the entire swarm. 
 
While current work has focused primarily on these mechanisms, future developments will 
extend the system with support for Byzantine fault tolerance, ensuring the system remains 
correct even in the presence of misbehaving or compromised nodes — an increasingly 
relevant concern for decentralized applications operating in open environments. 
 
In summary, this task develops and validates: 
 

● Replication mechanisms that support heterogeneous settings, including nodes with 
limited computational and storage resources and intermittent connectivity. 

● Partial replication algorithms that adapt to changing access patterns and mobility, 
ensuring nodes store and retrieve only the relevant subset of data. 

● Efficient support for recurrent queries using materialized views maintained 
incrementally and in a consistent fashion. 

● A set of CRDT-based abstractions, including a novel extensible CRDT library for 
the Babel ecosystem. 

● A fully decentralized storage layer designed for dynamic and intelligent swarm 
applications. 

● Initial foundations for supporting Byzantine fault tolerance in decentralized data 
management systems. 

 
 
During the second year of the TaRDIS project, the work in this task has focused mostly on 
the first two challenges. The main results produced are the following: 
 
● Section 3.D.i presents the evolution of PotionDB, focusing on supporting recurrent 
queries over geo-distributed data. 
● Section 3.D.ii presents the CRDT library designed for the Babel framework. 
● Section 3.D.iii presents Nimbus, a fully decentralized storage system designed for 
supporting intelligent swarm applications. 
 

i. PotionDB: Eventual Consistent Materialized Views and Distributed Query 
Processing 

PotionDB is a geo-distributed database, in which each replica only holds a subset of the 
database. In this context, performing queries is challenging, as no single replica has all the 
necessary data to answer the query. In D6.1, we presented the protocols to perform 
transactions that access data present in different replicas. Executing such transactions 
incurs an important overhead, as remote replicas need to be accessed. For recurrent 
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queries, which are common in applications, an alternative approach would be to maintain 
materialized views with the result of such queries. 
 
In this deliverable, we focus on the mechanism to maintain materialized views for 
supporting recurrent queries. Implementing such features efficiently in a partially geo-
distributed database requires addressing two main challenges. First, it is necessary to 
maintain the materialized views consistent with the remaining data accessed by the 
application. To achieve this, we build on the replication protocols presented in D6.1, 
extending them to support view objects. Second, it is necessary to efficiently support 
materialized views. Our key insight is that most updates do not affect the state of views for 
common recurrent queries with aggregations or limits (e.g. TPC-H queries). We have 
designed an incremental view maintenance mechanism that only propagates the 
necessary updates, which builds and extends Non-uniform Conflict-free Replicated Data 
Types (NuCRDTs) [3]. 
 

Overview 

PotionDB is a geo-distributed database.PotionDB adopts partial geo-replication, with data 
items replicated only at some locations. This allows PotionDB to reduce replication cost 
when compared to full replication, saving on both storage, processing, and networking 
costs. While some application operations access data objects directly, other operations 
require data that results from an aggregation. For supporting the latter, PotionDB provides 
materialized views that are the result of an aggregation over geo-partitioned data and 
provides algorithms to efficiently maintain these views consistent. 
 

Data model 
 
PotionDB is a distributed key-value database. We identify two types of values: base 
objects, Objs, and derived objects, Views. The set of objects of a database is defined as 
DB = Objs  ∪ Views. Informally, an object, 𝑜, is any value that is either a base object, 𝑏, or 
view, 𝑣. We distinguish between base objects and views whenever necessary for clarity.  
The value of a view is a function over the values of other object(s), i.e., ∀𝑣 ∈Views : 𝑣 = 
fun𝑣(𝐷𝑣), with 𝐷𝑣 the set of base and derived objects used to compute 𝑣. We assume the 
computation is non-recursive, i.e., the value of a view is never based on its own value or, 
formally, ∀𝑣 ∈Views : 𝑣 ∉ 𝐷𝑣.  
Objects are uniquely identified by a tuple id= (key,bucket, type). Objects are stored in 
buckets, which are the unit of replication in PotionDB. Buckets are further logically grouped 
in containers. An object has a key inside the bucket. 
 
PotionDB supports objects of different data types, including registers, counters, averages, 
sets, maps and top-K objects. Both base object and views are implemented as CRDTs [4], 
guaranteeing that object replicas converge to a single state in the presence of concurrent 
updates. 

Interface 
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PotionDB offers a transactional key-value interface, as summarized in Table 3.D.1. An 
application issues interactive transactions, by executing begin(clk), where clk is used to 
enforce causality between consecutive transactions. A transaction proceeds with a 
sequence of operations: (i) get(txId, id), which returns the full state of the object; (ii) 
read(txId, id,op), which returns the result of read-only operation op executed in the object; 
and (iii) upsert(txId, id,op), which updates object id by executing operation op, or creates 
the object if it does not exist. Operations defined in each object are type-specific - e.g. a 
set has a contains(e) operation to check if value e belongs to the set, and an add(e) and 
remove(e) to add or remove e from the set. A transaction ends with a commit(txId) for 
committing the transaction or rollback(txId) to abort the transaction. 
 

begin(clk) →txId get(txId, id) →value 

commit(txId) →clk read(txId, id, op) →value 

rollback(txId) →ok upsert(txId, id, op) →ok 

oneShotTx(clk, (id, op)+) →clk, value+ 
 

Table 3.D.1. PotionDB’s data manipulation API. 
 
PotionDB also supports one-shot transactions, oneShotTx(clk, (id, op)+), that include a 
sequence of read or write operations. PotionDB’s data definition API includes operations 
to create and delete buckets, and to create views. Even if buckets have no associated data 
type, we expect that applications store objects of the same type in each bucket. A 
document/table row can be stored as a map CRDT, with each element of the 
map having its own type. 
 

CREATE VIEW (DailyTopDetects, views) WITH 
YEAR = ANY (SELECT DISTINCT SampleDate.Year FROM daydata), 
MONTH = ANY (SELECT DISTINCT SampleDate.Month FROM daydata)  
DAY = ANY (SELECT DISTINCT SampleDate.Da FROM daydata)  AS 
SELECT PollutantName, SampleDate.Day, SampleDate.Month, SampleDate.Year, 
MAX(Value) AS Total 
FROM daydata 
WHERE SampleDate.Day = [DAY] AND  SampleDate.Month = [MONTH] AND SampleDate.Year = [YEAR] 
GROUP BY PollutantName 
ORDER BY Total DESC 
LIMIT 10 

 
Figure 3.D.1. Specification of the view Daily TopDetection. 

 
The create view receives a view specification defined in a language based on SQL. Figure 
3.D.1 shows the specification of a view that maintains the top 10 detected pollutants in 
each day. CREATE VIEW specifies the key prefix and bucket of the materialized view 
objects. The FROM specifies which container(s) are used in the computation of the view, 
while SELECT specifies the attributes of the view, which can include simple attributes or 
aggregations. It is possible to define aggregations over groups with the GROUP BY clause, 
restrict the number of elements with a LIMIT clause, and order the results using an ORDER 
BY clause. 
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In recurrent queries, it is common that a generic query is instantiated with different values. 
To support this, our language allows the use of variables in the view definition. In the 
example, variables YEAR, MONTH and DAY lead the system to maintain for each date 
(year, month, day), the top 10 detections. 
 
Given a view definition, PotionDB automatically infers the objects to be used to store the 
view and the view updates required to incrementally maintain the materialized view 
whenever a relevant base object is updated. The data in a materialized view object is read 
as any other object, by issuing reads to the view object. 
 

Consistency 
 
PotionDB is a weakly consistent database that provides Transactional Causal Consistency 
(TCC) semantics [5]. Intuitively, in TCC replicas may execute transactions in different 
orders. A transaction accesses a causally-consistent database snapshot taken in the 
replica where the transaction executes at the time the transaction starts. As in snapshot 
isolation, the snapshot reflects only updates of committed transactions. Moreover, if a 
transaction 𝑡 is included in the snapshot, all transactions that happened-before 𝑡 are also 
included. Unlike snapshot isolation, and similarly to parallel snapshot isolation with p-sets 
[6], two concurrent transactions can modify the same object, with updates being merged 
using CRDT rules, thus avoiding write-write conflicts. The formal definition was presented 
in D6.1. 
 

Architecture 
 
We designed PotionDB with partial geo-replication in mind. Thus, we assume PotionDB 
instances to be spread at different locations. Each location only replicates a subset of the 
whole data. The system administrator has control over where each object, both base 
objects and views, is replicated. This allows us to take into account data locality to ensure 
fast access to data, while keeping replication and storage costs controlled. Objects without 
locality on their access pattern can be replicated everywhere if desired. 
 
Clients communicate with the nearest PotionDB location to ensure low latency. A client’s 
transactions are locally executed in the PotionDB’s location the client is connected to. 
Updates are propagated asynchronously to other locations. If a client’s transaction 
accesses objects not locally replicated, other locations with said objects are contacted and 
involved in the transaction. We note this should be an exceptional case, not the norm. 
PotionDB has three modules: the Transaction Manager, the Materializer and the 
Replicator.  
 
The Transaction Manager coordinates transaction execution, executing the TCC protocol 
detailed in D6.1. The Materializer manages the database objects, which encode the type-
specific aspects of PotionDB operation, including rules for conflict-resolution and 
consistent view maintenance for different object and view types. These rules are encoded 
in CRDT/NuCRDT objects. The Replicator implements the partial replication protocol 
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detailed in D6.1. This protocol is type-independent, but it uses information provided by the 
object in its operation - e.g., when a view is updated, the replicator propagates to other 
replicas the updates returned by the view object, which can be an empty set if no updates 
need to be propagated. 
 

Transaction and replication protocols 

Transaction and replication protocols were already introduced in D6.1. In this deliverable, 
we present the change introduced to support views. 
 

Objects 
 
PotionDB stores two types of CRDTs: common CRDTs [4] and non-uniform CRDTs 
(NuCRDTs) [3], which encode the type-specific aspects of PotionDB operation. 
 
CRDTs. CRDTs are replicated objects that are guaranteed to converge after applying the 
same set of operations. In particular, PotionDB uses operation-based CRDTs, in which the 
convergence of replicas is guaranteed if operations are causally applied. This is the case 
in PotionDB, as a valid transaction serialization must respect the happens-before relation, 
thus guaranteeing that PotionDB replicas converge. 
 
Our prototype supports the following CRDTs: last-writer-wins register, for storing opaque 
values; add-wins set, for sets where adding an elements wins over concurrent removals; 
add-wins map, for maps of values; counter, for numbers that accepts concurrent 
increments and decrements; average, for maintaining the average of values added to this 
object; and an integer register, that keeps the max/min value registered. 
 
NuCRDTs. Non-uniform CRDTs [3] are CRDTs that guarantee that in a quiescent state, 
the observable state of all replicas is the same. Two observable states are defined as 
equivalent iff, for each possible read operation, the result is equal when executed on either 
state. 
Unlike normal CRDTs, in NuCRDTs, during the replication process, it is only necessary to 
propagate updates that may affect the observable state. For example, consider a 
maximum object with the insert(n) and getMax() operations. An insert executed in a replica 
only needs to be propagated to other replicas if the inserted value can be the new 
maximum. 
 
NuCRDTs allow saving on both replication, processing and storage costs, as not all 
updates need to be replicated and applied everywhere. In PotionDB, we support the 
following NuCRDTs: (i) maximum and minimum objects, for storing the maximum or 
minimum of the objects added to the object; (ii) top-K, for storing the K entries with largest 
values; (iii) top-K counter, for storing the K (key, value) entries with largest values, where 
the value can be updated by issuing increment/decrement operations. NuCRDTs can be 
used directly by applications, but are more commonly used for supporting views. 
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As proposed by Cabrita et. al. [3], by not propagating all operations, in some cases, a 
NuCRDT may temporarily expose an incorrect state. Consider the maximum NuCRDT. 
Each replica keeps only the maximum element and the elements that were inserted locally. 
If the maximum NuCRDT has a remove(n) operation, when the maximum element is 
removed in some replica, the replica may not have the new maximum, as it may have been 
inserted in some other replica. All replicas of the maximum NuCRDT eventually converge 
to the new maximum value, as every replica will propagate the local maximum element 
after receiving the remove operation, guaranteeing that all replicas will receive the new 
maximum. 
 
To support views in PotionDB, we had to extend existing NuCRDTs specifications in three 
ways. First, top-K objects, instead of keeping only the value of the element, keeps multiple 
attributes for each element, as needed for storing a complete view entry. An application 
can update the value used for establishing the top elements using a set operation (in top-
K) or an increment/decrement (in a top-K counter). Other attributes can also be updated 
(as in a map CRDT). 
 
Second, we extended NuCRDTs to maintain a larger ob- servable state to reduce the 
cases in which a replica may be exposing incorrect results - e.g. the maximum NuCRDT 
maintains the two largest elements, guaranteeing that replicas have the new maximum if 
a single remove is issued. In most practical situations this guarantees that replicas have 
the correct values - e.g. a Top-10 object that keeps the largest 20 elements exposes no 
anomaly unless more than 10 concurrent removes of top elements occur, which is very 
unlikely in practice. 
 
Third, we extend NuCRDTs to include information to know if it might be exposing incorrect 
results. This information consists in the timestamps of transactions that could cause the 
anomaly - e.g. in the maximum NuCRDT, the transactions that remove the maximum. 
Knowing the updates that replicas have seen (which is maintained by PotionDB), a replica 
knows that no anomaly can occur if the problematic operation has been seen by all 
replicas, which would have triggered replicas to send operations relevant for the 
observable state, if any. PotionDB uses this to block reads. 
 

Transaction processing 
 
The transaction processing algorithm was presented in D6.1. The introduction of 
NuCRDTs introduces new challenges, as NuCRDTs may temporarily expose incorrect 
results when an operation 𝑜𝑝 changes the set of relevant operations. PotionDB is able to 
detect this situation using the summaries of operations - this situation is expected to be 
rare. Applications may select two behaviors when they start a transaction.First, to ignore 
potential anomalies and immediately execute the read in the local replica. This guarantees 
fast replies at the cost of potential anomalies. Second, to strictly enforce TCC. In this case, 
the read blocks until the replica gathers information that no relevant operation is missing. 
This requires receiving information from all replicas that 𝑜𝑝 was performed and all new 
relevant operations, if any, have been received. 
This information is propagated in the replication process. 
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Triggers. PotionDB has an after update trigger mechanism that can be associated with 
objects in a bucket or container. When a transaction executes at the initial replica, after an 
update, the trigger runs and it may issue reads and updates to the same or other objects. 
These updates are committed and propagated to other replicas as part of the transaction. 
Triggers can be used by applications for any purpose, but its primary goal is to support 
incremental view maintenance. 
 

Replication 
 
The replication process was presented in D6.1. In this section, we focus on the changes 
required for the introduction of NuCRDTs. NuCRDTs use a non-uniform replication 
approach [3], in which some updates might not need to be propagated, as explained in 
Section 3.1. Not immediately propagating some updates is straightforward, as, when 
executed locally, an update operation may produce a null effect update if there is no effect 
in the observable state. 
 
In NuCRDTs, the execution of an operation 𝑜𝑝 may make a previous local operation 𝑜𝑝𝑝 
relevant, requiring 𝑜𝑝𝑝 to be propagated to other replicas (e.g. remove(n) in the maximum 
NuCRDTs makes the insertion of the second maximum element relevant). There are two 
cases to be considered. First, when 𝑜𝑝 executes in the initial replica, the effect of 𝑜𝑝 will 
include also the effect of 𝑜𝑝𝑝. As the combined effects are propagated and applied in the 
context of the same transaction, no anomaly is generated. Second, when the now relevant 
𝑜𝑝𝑝 operation was executed in another replica. This is handled by replication process as 
follows. When a location receives the replication stream from other replicas, it executes 
the received effects in the objects’ local copy. For NuCRDTs, the execution of an effect 
operation may generate additional effects - in our example, the execution of the effects of 
𝑜𝑝would generate the effects of 𝑜𝑝𝑝. These extra effects are propagated to other replicas 
along with the information that 𝑜𝑝has been executed. 

Views 

We now discuss how PotionDB supports materialized views. 
 

Generated objects and triggers 
 
We now outline how PotionDB, given a view specification, generates the objects to hold 
the view’s data and its updates. 
 
Generated objects: The objects used for storing the view’s data depends on the type of 
query. If the query has no limit clause and includes either no aggregation or an aggregation 
of type sum (or similar, such as count or average), maximum or minimum, the full 
materialized view will be stored in a map CRDT. If the query has a limit clause and no 
aggregation, or an aggregation of type maximum (or minimum), the top-K is used. If the 
query has a limit clause and an aggregation of type sum (or similar), the top-K counter is 
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used. In any case, the elements of the view are maps with multiple columns, one for each 
attribute specified in the select of the view definition. 
 
For a view that includes variables, multiple objects are used, one for each possible value 
of the variables. In the top pollutant example of Figure 3.D.1, one top-K object is created 
(as needed) for each month of each year, and its PotionDB key includes the name of the 
view plus the month and year. The top-K will have a set of entries, each one with the 
identifier of a pollutant and the total value. The entry could have additional information, 
such as the description of the product if that was defined in the view. 
 
Generated triggers: PotionDB generates triggers to update the contents of view objects, 
as base objects are created, updated or deleted. The triggers will be set for the container 
(or buckets) specified in the from clause of the view definition. If a where clause is included, 
updates to objects that do not match the defined condition will be ignored. 
 
As a view may be composed of multiple objects, it is first necessary to determine which 
view object must be updated. This is achieved from the view definition and the values in 
the updated base object - in our example, from the date of the measurements, it is 
immediate to know which view object must be updated. The exact operation generated to 
update the view object depends on the type of view object, but it consists in applying the 
same update performed in the base object to the corresponding view entry map. For 
example, consider the creation of a new measurement for pollutant 𝑃, with the value 𝑣𝑃. 
In this case, the top-K of the date of the measurement is updated by incrementing the total 
value of sales for 𝑃 by 𝑣𝑃. The underlying functionality of top-K guarantees that the updated 
entries will be propagated to other replicas when necessary, and that replicas keep the 
correct top-K elements. 
 

Developer-defined views 
 
A developer can create views by defining the objects to maintain the view’s data and the 
triggers to update these view objects. The top-K and top-K counter NuCRDTs include the 
logic for replicating only the necessary updates to maintain in all replicas the top elements 
for data that is updated using set value or increment operations. When the view does not 
consist of the topmost elements, the Map CRDT can be used. 
 
Aggregations defined in the views - e.g. sum, maximum - are supported by using CRDT 
and NuCRDT objects, such as the counter CRDT and maximum NuCRDT. After defining 
the objects to be used, the application should define the triggers that (populate and) update 
the view objects. 

Status 

PotionDB is under development, and we expect to report the evaluation of the prototype in 
the next deliverable. 
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ii. Extensible CRDT Library for the Babel Ecosystem 

 
Synchronizing state in replicated systems is one of the most challenging aspects of 
distributed computing. In such systems, multiple copies of data are maintained across 
different nodes to ensure high availability and fault tolerance. However, ensuring that all 
replicas are consistent and reflect the same state at any given time is difficult due to 
network latency, failures, and the inherent asynchrony of distributed systems. Different 
replicas may update concurrently, leading to conflicting changes that must be resolved in 
a way that guarantees data consistency without compromising system performance. 
Synchronizing state requires sophisticated protocols, such as consensus algorithms or 
conflict resolution strategies, to ensure that the system operates correctly even when 
failures or delays occur, making it a non-trivial task for developers to manage. 
 
CRDTs, or Conflict-Free Replicated Data Types, are a class of data structures designed 
to resolve the challenges of synchronizing state in distributed, replicated systems without 
requiring centralized coordination or locking mechanisms. They enable multiple replicas of 
data to be updated independently and concurrently, ensuring that all replicas will eventually 
converge to the same state, even in the presence of network partitions or failures. The key 
feature of CRDTs is that they allow for automatic conflict resolution, ensuring that updates 
made to different replicas can be safely merged without human intervention or complex 
algorithms. With this, CRDTs guarantee that no matter in what order or how many times 
updates are applied across different replicas, after the system stabilizes (i.e., no updates 
are issued for an amount of time and all replicas receive the same updates) the final state 
will always be the same). CRDTs are highly relevant for swarm systems, since these 
systems consist of highly decentralized and independent nodes, designed to operate in 
environments with intermittent connectivity and limited communication meaning the 
system must continue functioning even when certain agents or nodes are offline or 
disconnected from the network. In this context, CRDTs provide a robust way to manage 
state synchronization across the distributed agents without relying on centralized 
coordination. 
 
In light of this, TaRDIS developed an extensible and serializable CRDT library for the Babel 
Ecosystem. This library offers a set of common CRDTs (i.e., Counters, Registers, Sets, 
Maps, etc.) in the three most common CRDT flavors, operation-based, state-based and 
delta-based, with the last one containing an highly optimized implementation of CRDTs 
that support causal-consistency guarantees per object. This library is extensible by 
allowing developers to implement their own solutions on top of the interfaces provided (and 
used) among the library, such as depicted in the image below: 
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Fig: Babel CRDTs Diagram 

 
 
If a developer wishes to implement its own solution of a CRDT, he can do it by using one 
of the interfaces portrayed above and by filling in the common methods that the CRDT of 
that flavor should possess and by using the common structures (i.e., Version Vectors) 
offered by the library.  
 
Moreover, this library is used with other tools created for TaDIS, namely Nimbus 
Decentralized Storage Solution, explained in detail in the next section. 
 
Repository 
 
More details of the library, examples, tests and documentation can be found in Babel 
CRDT Library10. Additionally, we also provide a set of common of APIs for managing the 
interaction between protocols and CRDTs under Babel CRDTs - Replication Core 
Commons11, and a few examples of replication core implementations12 (e.g., the layer in 
charge for propagating the different CRDTs among replicas). 
 

iii. Nimbus Decentralized Storage 

 
In highly volatile and dynamic distributed systems, using storage solutions presents 
significant challenges due to the inherent instability and unpredictability of the environment. 
Swarm systems, typically consisting of autonomous agents such as drones, robots, or 
nodes in a distributed network, operate in a decentralized manner, often in environments 
where connectivity is intermittent, nodes may join or leave unexpectedly, and data needs 
to be shared across a large number of nodes in real time. These characteristics make 

 
10 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-crdt/babel-crdts 
11https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-crdt/babel-crdt-replication-
core/babel-crdt-rc-commons 
12https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-crdt/babel-crdt-replication-
core/rc-implementations 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 41 of 90                    © 2023-2025 TaRDIS Consortium 

traditional storage models, which rely on stable and centralized systems, ill-suited for 
swarm applications. 
 
In traditional systems, data is often stored in a central location or in synchronized nodes, 
ensuring consistency through locks, transactions, or replication. However, in a swarm 
system, agents may be dispersed over wide geographical areas or may face 
communication delays, making it challenging to keep all nodes updated in real time. When 
agents disconnect or encounter communication issues, they may need to store data locally 
to be able to work offline, but when they reconnect, synchronizing these local updates with 
other agents becomes a complex task, especially if conflicts arise between concurrent 
changes. Moreover, the scalability of storage solutions is another crucial issue. Swarm 
systems are often designed to scale up or down depending on the task or environmental 
conditions. As the number of nodes increases, the demands on storage also grow, 
potentially overwhelming the storage network.  
 
While some solutions [1] aim to extend services with peer-to-peer interactions, they still 
rely on  centralized infrastructures to maintain metadata information and connections with 
the nodes in the network, in our solution we propose a fully decentralized storage solution 
that doesn’t rely on any kind of dedicated infrastructure and can scale up to a large number 
of nodes. 
 
We note that while TaRDIS has already presented other storage solutions in previous 
deliverables, namely Arboreal which extends the replication of data towards edge locations 
dynamically, thus forming a hierarchical structure on the different nodes; and PotionDB 
which operates across data centres by supporting transactions and enforcing causal 
consistency, none of which fit into the highly dynamic swarm scenarios presented 
previously, and thus requiring a more flexible solution. 
 
Overview 
 
Nimbus is designed as a fully decentralized storage system. Nimbus provides scalable and 
efficient data storage without relying on a central authority. To achieve this, Nimbus doesn’t 
require any kind of dedicated infrastructure (i.e., cloud or edge nodes) such that each node 
in the system acts as an independent replica and acts as part of the replicated storage 
system. This aims to target decentralized applications (such as swarms) where replicas 
may leave or enter the network at any moment and execute operations in any order, 
without disrupting the correct functioning of the system as a whole. This way, different 
applications, such as satellite swarms, telemetry swarm systems in harsh environments, 
to name a few, can interact directly with each other without relying on an external 
infrastructure to store and synchronize their data. 
 
Nimbus structures its data into keyspaces and collections, which we will call from here 
onwards information units (explained in detail further ahead). Moreover, since that swarm 
nodes may be heavily resource restricted, having every node in the system fully replicating 
every object becomes too expensive, so Nimbus offers a partial-replication mechanism 
among its different information units. This way, each node can specify or request each 
information it will replicate, without leading to an overflow state in each peer in the system. 
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Moreover, in order to tolerate faults, Nimbus supports data persistence by employing 
mechanisms to persist data on disk on demand or periodically. This way, if a node fails or 
the system is shut down, a node can load up its state and continue from the point of failure 
without losing any information. 
 
While swarm nodes act in a highly dynamic way, it is still very important to control the flow 
of information. Thus, Nimbus supports access control, by allowing the creators of 
information units to set up access policies, and add and remove access in real time. 
Additionally, it is possible to reconfigure information units on demand to better satisfy the 
swarm needs.  
 
While objects are partial-replicated throughout the different nodes, a metadata control unit 
is shared and propagated to all nodes, so that every node has the information about which 
information units were already created, as well as the access policies for each one and 
other relevant control information. 
 
 
Data Model 
 
Nimbus offers a key-value store interface, by having a data model constituted as 
keySpaces and dividing each keySpace into separate collections, in other words the 
information units. A collection is represented as a dictionary of key-value pairs, where a 
key acts as an identifier of an object, and the value is represented as a CRDT (e.g., a 
counter, set). This offers a rich interface to the developer, by allowing him to choose the 
data type in which he wishes to encode its data, as well as offering composite types, such 
as maps, to allow recursive and composite data structures by each application's needs 
(i.e., a tree-like structure of attributes) as depicted below: 
 

 
Nimbus Data Model 

 
 
Interface 
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Nimbus uses the APIs described in previous TaRDIS deliverables.  When a client wishes 
to interact with Nimbus, he needs only to create a request with the operation he wishes 
to execute (as detailed in the next table), and when the operation is complete, he will get 
a proper reply with the information he requested, plus any additional information if 
something went wrong during the execution (e.g., lack of permissions).  
Moreover, Nimbus also supports a notifier reactive mechanism, meaning that when new 
information arrives from new nodes (i.e., when an update arrives from a neighbor), 
Nimbus will notify the client so that he can update his application accordingly in real time. 
 
Namely, Nimbus client API follows Babel Protocol Commons,13 a set of common APIs 
developed in TaRDIS for interacting with distributed systems and their protocols: 
 

Request: CreateKeySpaceRequest 
Reply: CreateKeySpaceReply 

A create keySpace request is emitted to a 
node with the given keySpace identifier as 
well a set of properties for that keySpace. 
(i.e., permissions). The corresponding 
reply is sent back with the status of the 
operation and an optional message. 

Request: CreateCollectionRequest 
Reply: CreateCollectionReply 

A create collection request is emitted to a 
node with the given collection identifier as 
well a set of properties for that collection. 
(i.e., permissions). The corresponding 
reply is sent back with the status of the 
operation and an optional message. 

Request: DeleteKeySpaceRequest 
Reply: DeleteKeySpaceReply 

This operation is issued by a node when it 
wishes to delete a keySpace from the 
system. The reply returns the status of the 
operation and an optional message. 

Request: DeleteCollectionRequest 
Reply: DeleteCollectionReply 

This operation is issued by a node when it 
wishes to delete a collection from the 
system. The reply returns the status of the 
operation and an optional message. 

Request: ExecuteRequest 
Reply: ExecuteReply 

An execute request is issued by a node 
when it pretends to interact with one of the 
objects of the data store. This request 
encompasses the type of operation (e.g., 
READ, WRITE, DELETE etc.), the 
identifier of the object and the 
corresponding keySpace and collection, 
as well as the value in the case of being a 
write operation. The reply contains the 

 
13 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 44 of 90                    © 2023-2025 TaRDIS Consortium 

status of the operation, as well as an 
optional value in case of being a read 
operation.  

Request: ModifyKeySpaceRequest 
Reply: ModifyKeySpaceReply 

A modify key space request issued by a 
node when it pretends to reconfigure a 
given key space. This request allows the 
change the access control of a keyspace, 
as well as other relevant metadata 
information. 

Request: ModifyCollectionRequest 
Reply: ModifCollectionReply 

A modify collection request issued by a 
node when it pretends to reconfigure a 
given key space. This request allows the 
change the access control of a collection , 
as well as other relevant metadata 
information. 

Request: KeySpaceConfigRequest 
Reply: KeySpaceConfigReply 

A request to obtain the configuration 
parameters of a keyspace. This request is 
issued when a node wishes to obtain the 
metadata information of a keyspace (i.e., 
the access control list). 

Request: CollectionConfigRequest 
Reply: CollectionConfigRequest 

A request to obtain the configuration 
parameters of a collection. This request is 
issued when a node wishes to obtain the 
metadata information of a keyspace (i.e., 
the access control list). 

Notification: DataNotification In order to notify the client of new updates 
brought up to the node by the background 
synchronization mechanism of Nimbus, 
the system issues a notification of the new 
updates on the objects that the node 
replicates. This information can be 
encoded as a JSON object, a plain Java 
object or a byte array. 

 
 
Consistency 
 
Nimbus provides strong eventual consistency, a consistency model that guarantees that 
all nodes reach the same state after receiving all updates, regardless of the order in which 
updates were applied. This is accomplished by using CRDTs, Conflict-Free Replicated 
Data Types, to synchronize the node’s state with the use of epidemic dissemination. 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 45 of 90                    © 2023-2025 TaRDIS Consortium 

Conflict-free Replicated Data Types (CRDTs) offer several advantages that make them 
ideal for distributed systems, particularly in environments where consistency and 
availability are critical, but network partitions are common (such as the case of swarms). 
This means that even if network partitions occur or some nodes become temporarily 
unreachable, the system can continue to function normally, and once connectivity is 
restored, the system will automatically reconcile any differences between replicas. 
 
With this in mind, Nimbus offers a way for nodes to work offline (i.e., due to a network 
partition of failure) without hindering the user experience. Then it will automatically relay 
local information to other nodes when the connection is duly established without any 
intervention by the application. 
 
Replication 
 
As discussed earlier, a key challenge of this work is overcoming limitations and challenges 
in providing a scalable and reliable storage solution for highly dynamic systems. With this 
in mind, Nimbus supports partial-replication through its keyspaces and collections, the 
information units.  
 
Since relying on an autonomic partial replication mechanism can prove to be very 
expensive and complex due to the highly dynamic nature of this types of systems (e.g., it 
is very hard to predict when a enter may enter or leave the system), we opted for a 
mechanism where  
creators of information units can explicitly alter the replication nodes of each unit. 
Moreover, if a node has access to a certain information unit (e.g., because he requested it 
previously or was given to by the creator), he can request to be a replica of a given 
information unit from there onwards.  
 
Even if nodes are not replicas of a certain information unit, if they have access to it they 
can explicitly request to access them by contacting another node in the system that 
replicates such a unit. A depiction of the replication architecture can be seen in the figure 
below where different nodes, of different natures, replicate different information units. It is 
important to note that the replication is node through two distincts units, the keyspaces and 
collections. This way a node may choose to only replicate a certain collection of a keyspace 
it is only interested in, or the whole keyspace. 
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Fig: Nimbus Architecture Overview  

 
 
 
This results in a highly scalable solution, where no third party infrastructure is needed to 
maintain the system data, and where nodes may enter or leave the system without 
compromising the correctness of the system as a whole. 
 
 
Status 
 
Nimbus is still under heavy development at the moment of writing this document and going 
through testing. We expect to have the evaluation of the prototype by the next deliverable, 
as well as its architecture in full detail. 
 
Repository 
 
More details of the API offered by Nimbus can be found in Babel Protocol Commons14, 
under the storage package, as well as on the TaRDIS wiki.15  
An under-development implementation can be found on the Nimbus Git repository.16 
 

iv. Exploring Decentralised Solutions by Byzantine Settings 

In the context of WP6 we have an ongoing line of work where we are exploring techniques 
to support partial replication among swarm elements in settings where some of these 
elements can misbehave. This work is still in its initial steps and is taking advantage of 
previous work of researchers involved in this project [1]. 
 

 
14 https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-protocolcommons 
15 https://codelab.fct.unl.pt/di/research/tardis/toolkit/Documentation/-/wikis/TaRDIS-APIs/Data-
Management-and-Distribution-
Primitives/Decentralised%20Data%20Management%20and%20Replication%20APIs 
16 https://codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus 
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In a nutshell our solution is combining a set of byzantine-fault tolerant decentralized 
membership abstractions (in particular we are exploring the viability of adapting the 
Fireflies work [23]) with byzantine-fault tolerant epidemic dissemination mechanisms. We 
are exploring a data model based on the one provided by Nimbus, where nodes propagate 
operations among them that are integrated and consolidated using CRDTs. 
 
We plan to report on the findings of this line of work in Deliverable D6.3. We note that none 
of the Use cases of TaRDIS exhibit strict requirements for Byzantine-fault tolerant 
decentralized data management solutions, however, this efforts will allow the TaRDIS 
toolbox to be capable of supporting swarm applications with additional needs. 

e. DECENTRALISED MONITORING AND RECONFIGURATION (T6.3) 

Task 6.3 focuses on enabling decentralized monitoring and reconfiguration capabilities 
across the swarm applications and solutions developed within TaRDIS. In highly dynamic 
and distributed systems, the ability to observe, interpret, and react to runtime conditions is 
essential to achieving robustness, adaptability, and self-management. Traditional 
approaches to monitoring and control often rely on centralized components, which 
introduce bottlenecks, single points of failure, and scalability limitations. In contrast, swarm 
systems require decentralized strategies where monitoring is distributed and 
reconfiguration decisions are made locally or collaboratively among nodes. 
 
The goal of this task is to design and implement scalable and composable abstractions for 
metrics collection, dissemination, aggregation, and interpretation in fully decentralized 
environments. These abstractions must operate effectively across heterogeneous devices 
and communication topologies, while preserving the flexibility to integrate with both swarm-
native decision-making processes and centralized analytical tools (such as cloud-based 
machine learning systems). 
 
A critical aspect of the work in this task is enabling runtime reconfiguration of applications 
and protocols. This involves empowering the system to autonomously tune its behavior—
such as adjusting protocol parameters, swapping components, or changing 
communication strategies—based on observed metrics like latency, resource usage, 
topology changes, or application-specific KPIs. These reconfiguration actions may be local 
(e.g., tuning a node's protocol parameters) or global (e.g., triggering collective 
reorganization). To support this, the monitoring infrastructure must provide not only raw 
metrics, but also flexible support for defining aggregation functions, thresholds, and 
triggers that feed into the system's control logic. 
 
The task is also concerned with ensuring that monitoring and reconfiguration mechanisms 
are lightweight and non-intrusive, minimizing their impact on the performance and energy 
efficiency of the system—especially on constrained devices. Additionally, they must be 
resilient to faults and inconsistencies, allowing the system to continue to function and adapt 
even in the presence of churn, failures, or partial partitions. 
 
In summary, this task develops and validates: 
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● Decentralized metrics collection mechanisms to monitor the behavior and 

performance of protocols, applications, and nodes. 
● Epidemic and aggregation-based dissemination strategies for metrics sharing and 

summarization in large-scale settings. 
● Interfaces and APIs to enable both local and global reconfiguration based on 

runtime metrics. 
● Lightweight telemetry tools for use in resource-constrained environments such as 

mobile and edge devices. 
● Integration pathways to leverage monitoring data in centralized or offline machine 

learning systems. 
● Support for dynamic adaptation of system behavior based on network size, 

topology changes, or performance goals. 
 
 

i. Docker Monitorization and Telemetry Acquisition 

Task WP6 provides services that are able to collect, aggregate, transform and store 
diverse monitoring-related data from heterogeneous sources and with respect to resource 
availability. The metrics are collected from a few places: (i) node metrics, (ii) applications 
(running in containers) metrics, and (iii) other places in the toolbox that provide metrics 
such as distributed protocols and probing mechanisms. 
 
This part of the toolbox leverages the cloud-edge continuum, but it relies on open-source 
solutions such as Prometheus, Grafana, Docker, NodeExporter as part of its core. Metrics 
are collected on various nodes and/or applications, and then they are moved to a 
centralized location and aggregated there. This centralization allows us to open metrics to 
other interested sides by providing various APIs. 
 
As a second level, we have a collection of application related metrics. For this purpose, we 
have used Docker, an open-source as an industry standard tool for  OS-level virtualization 
of applications. By using Docker, we can then rely on its mechanisms to collect and expose 
various kinds of application-related metrics. Metrics from all containerized applications 
running inside nodes are then collected, and then transferred to a centralized location for 
future aggregation and processing. These metrics when combined with node-related 
metrics gives us more details of what is going on on a single node, and when combined 
gives us a better picture of what is happening inside running swarms. 
 
To collect node-related metrics, here we consider both hardware and kernel related 
metrics, and for this task we have used Node Exporter. Node Exporter exposes a wide 
variety of hardware and kernel-related metrics. After collecting the node-related metrics,  
metrics are moved to centralized storage. For this purpose, we used Prometheus, an open-
source database system with a dimensional data model, flexible query language, efficient 
time series database and modern alerting approach. Prometheus will pull node-related 
metrics periodically. 
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To give a new dimension to the collected metrics, and get even more insight into what is 
happening in the swarm and/or node(s), we also collect custom metrics, the metrics that 
are not part of previously mentioned metric types. For example, users may decide to store 
custom metrics such as protocol related metrics, or tracing information collected by the 
related tools watching over running applications. These metrics will be stored in the 
toolbox, and it will be available for utilization by others using exposed APIs. An interface 
that accepts custom metrics expects inbound metrics data to bi sent in the OpenMetrics 
format. 
 
The system is designed to allow users to define retention periods. These periods are often 
used to tell the system after how much time, metrics (some of them, or all) can be safely 
deleted from the storage. 
 
All collected metrics are stored in a centralized place inside a specialized time series 
database. From this centralized place we can further do two things: (i) visualize metrics 
changes over time, and (ii) expose stored metrics to others e.g. machine learning systems 
in the toolbox. 
 
Since we are talking about possibly huge amounts of data, changing over time, it would be 
good for the people using the service to see changes, and monitor the system from a 
remote location. For this purpose, the service offers two options: (i) command line interface 
(CLI), and (ii) visualisation tool. A CLI tool offers basic insight into swarms and nodes. 
Based on the identifier it shows what are the statues of swarms and nodes at the last 
aggregation point - when nodes send data to the control plane. 
 
Since the first option does not allow detailed insight inside changes over time, we attached 
modern visualisation tools capable of handling such complex scenarios regarding data. 
For this purpose, we used industry standard tools. Grafana is a multi-platform open source 
analytics and interactive visualization interface. It can produce charts, graphs, and alerts 
for the web when connected to supported data sources. 
 

ii. Metric Aggregation 

 
As we rely on the OpenMetrics format to both transfer and store metrics-related data, we 
operate within constraints provided by its data model. Depending on the specific 
measurement, we have counters, gauges and histograms as metric types. We use labels 
for recording the relevant metadata. Node and swarm identifiers are always set, no matter 
if the metric is related to the node, container or an application. For container metrics, a 
unique container identifier label is also set, as well as an application name label for custom 
application metrics. We filter the desired metrics by these labels. Labels represent arbitrary 
key value pairs. Both key and value are of text type. This simple technique allows us to 
swap storage engines if needed, since most modern time series engines allow labels in 
their data model. Even if users do not want to use time series engines, labels are easily 
added to any storage engine. 
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Swarm-level metrics are generated on demand by aggregating available node-level 
metrics. For the most part, calculations are done by summing or averaging values of 
measurements from individual nodes in that swarm, e.g the total disk usage or the 
percentage of used memory. However, more advanced processing is required for some 
metrics, like the swarm CPU utilization. Based on the number of cores per node and CPU 
time spent in each mode, we obtain the final value by subtracting the total rate of all cores 
spent in idle mode from the total number of cores in the cluster. 
 
After aggregation and when metrics are stored, the control plane can offer these metrics 
to other interested sides using publicly available APIs. Other sides e.g. other parts of the 
toolbox or other users of the system can use these metrics for their distinct needs. 
 

iii. Metric and Telemetry APIs for Centralized Machine Learning 

 
The TaRDIS toolbox will provide primitives to export fine-grained stored metrics to other 
parts of the toolbox, such as machine learning components that require time series of the 
stored metrics over some period of time. Provided primitives export fine-grained stored 
metrics using the standard OpenMetrics format. A unified interface of the system and 
application state progression over time is accessible to users. This will allow for informed 
decision making. 
 
The toolbox offers APIs for machine learning models to be both trained on and put in the 
role of decision makers, which provides the automation of the decision process. The 
telemetry data is being stored by the toolbox in time series manner (i.e. data points with 
time). The telemetry data means, for instance, CPU load, disk usage, network properties… 
and their changes and usage over time. 
 
This data is accessible to ML models through a specifically designed APIs directed towards 
their needs. An agent that requires data from the platform for training, simply needs to 
send a point in time when the last contact occurred. As a result, the agent will receive a 
collection of metrics that will be returned in OpenMetrics format. If the agent for whatever 
reason misses to get data in e.g., regular intervals, there is an interface to get metrics in a 
specific period between two points in time. This ensures that machine learning models can 
be trained at their own pace. Even if an agent crashes, or goes offline for some extended 
period of time, newly added data points cannot be missed or skipped. 
 

iv. Epidemic Dissemination of Telemetry 

Current implementation of metrics collection and aggregation relies on centralised 
strategies. This strategy emphasises cloud-edge continuum, and it relies on open-source 
solutions but has its limitations. Nodes inside swarms might not always have sufficient 
resources to transfer big amounts of data to some centralised solution. To tackle this issue, 
as part of the future work we are planning to extend the system with epidemic 
dissemination of the telemetry information. 
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Nodes inside the swarm already rely on various communication protocols that allow them 
to know who their neighbours are (membership protocols e.g. HyParView), or get missing 
information (e.g. Anti-entropy). This is done via gossip protocols. We can use the existing 
communication protocols and already opened channels to disseminate telemetry 
information from the swarm. To further reduce data that needs to be sent to centralized 
storage, we can do metrics aggregation inside the swarm. 
 
Using gossip-style communication between nodes in the swarm we can collect metrics 
from all nodes, and do the aggregation of the metrics on the spot, and only broadcast the 
aggregated information to the control plane (Epidemic broadcast trees e.g. Plumtree). 
Here, we will explore different kinds of data compression techniques to further reduce the 
amount of data sent. Since we are collecting time series data, we can apply many 
techniques that are standard in this field (e.g. delta, delta-delta, run length encoding 
compression etc. ). 
 
Using this peer to peer metrics aggregation and transfer to control plane, we must be 
cautious about losing valuable data. This is important to the machine learning models, 
which requires variety for their training. To preserve valuable information for these models, 
we will explore dynamic techniques in which metrics need to be preserved and/or 
aggregated in specific ways so that we do not lose important points in time. 
 
Information collected in this way also has one benefit. In the centralized setup, nodes are 
sending metrics related data to the control plane, and control planes use that data to 
determine are nodes running or not (alive or dead). This aggregated approach removes 
the burden from both nodes and control planes from potentially treating these messages 
as denial of service attacks. If we send combined information to the control plane, from 
that message we can distinguish which nodes are down, and which are alive and well. 
 
 

v. Building Swarm Models through Machine Learning 

 
In highly decentralized systems with numerous heterogeneous nodes, such as in the 
swarm model, managing the system is a complex task, which can be daunting for humans 
and be error prone. The difficulty emerges due to the large number of components that 
potentially form the swarm system as well as the number of external factors that can affect 
both its correctness and performance. 
 
Systems which are capable of self-healing and self-optimizing, are called autonomic 
systems. Most autonomic systems operate based on static rules and heuristics (usually 
produced by a domain expert that has a high level view of the consequences of different 
parameters over the operation of the system), which can become inadequate as the 
system evolves and environmental conditions change. Furthermore, creating models that 
capture these types of systems is unfeasible, due to their high complexity. 
  
To autonomically manage swarms, in the context of WP6 and in collaboration with 
researchers from Telefónica in WP5, we are exploring the alternative of leveraging on 
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machine learning models for both learning how to manage and perform management 
actions over the system. As far as we know, there are no available datasets for these types 
of systems, and as such we have created an emulated environment that replicates the 
complexity of a real-world deployment of a swarm system. Furthermore, this environment 
allows for introducing realistic changes over the system at runtime, such as new nodes 
joining the system, increasing the message transmission rates, and nodes crashing or 
departing the system during the execution. These changes are reflected in the health 
metrics of the system, such as its average latency, reliability, and redundant message rate. 
Using this tool, we have started to train machine learning models that can learn how to 
automatically manage the system, based on the real-time observation of aforementioned 
metrics. After this step we will be able to design autonomic managers that based on these 
models can ensure their correct, and real-time adaptation, to evolving conditions.  
 
This work is focusing currently on the simple TaRDIS Message Application, as this is a 
simple use case, that combines multiple components developed to support general 
swarms (such as decentralized membership and communication primitives developed in 
the context of WP6), and as such provides an adequate case study for these efforts. We 
plan to report on the final results of these efforts on D6.3 and will study the viability of 
applying this solution to one of the use cases in the TaRDIS project.  
 

vi. Enabling Decentralized Machine Learning with TaRDIS Toolbox 

 
One of the main goals of TaRDIS is to bring the power of decentralized machine learning 
mechanisms to swarm systems. These efforts have been conducted in the context of WP5 
with different frameworks being proposed to support machine learning model training in 
different distributed settings and environments. One of these tools has been integrated 
with the Babel Framework, taking advantage of its membership and communication 
abstractions to support the interaction between multiple nodes. However, supporting fully 
decentralised machine learning processes in a highly heterogeneous and dynamic 
environment might require additional specialized support that falls on the scope of the 
activities of WP6.  
 
To overcome this limitation in the state of the art, WP6 has therefore started a research 
activity focused on addressing decentralized machine learning within the TaRDIS project, 
that is focused on the design and development of a fully decentralized, self-managed 
collaborative learning platform that seamlessly integrates Federated Learning (FL) and 
Split Learning (SL) paradigms. These efforts aim at addressing limitations of traditional FL 
systems, particularly their reliance on central aggregation servers, which introduces 
inherent risks in terms of privacy, scalability, and fault tolerance. By leveraging the TaRDIS 
toolbox, and in particular the Babel framework, this initiative aims to deliver a solution that 
distributes both computational load and control logic, enabling dynamic role assignment, 
robustness to churn, and intrinsic support for data privacy. 
 
We are building a system where participating devices are capable of configuring and 
reconfiguring themselves in real time, depending on the changing availability of resources 
and network conditions. This adaptability is essential to achieve meaningful 
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decentralization, not only in terms of data locality but also in terms of execution autonomy. 
A critical aspect of this involves the definition of novel delegation protocols, which allow 
devices experiencing computational overload to identify and delegate parts of the training 
task to peers that are idle or underutilized. These protocols must operate efficiently, without 
introducing excessive overhead, and must preserve the (currently limited) privacy 
guarantees inherent to SL and FL. 
 
At the time of writing we already built a working prototype that runs on heterogeneous 
devices, including Raspberry Pi units, utilizing WLAN and LAN connectivity to facilitate 
communication. Babel-Swarm has been leveraged to manage the underlying peer 
discovery and perform message exchange, while serving as the backbone for the 
orchestration of training sessions. In its current form, the system supports centralized FL, 
using an integration with standard AI tools written in python, using local standard I/O 
channels between Python-based training modules and the Babel coordination layer. This 
architecture already enables self-configuration of participants and automatic neighborhood 
formation, providing a solid foundation for the shift toward full decentralization. 
 
We are currently evolving this solution to support a hybrid FL/SL training model, in which 
devices may simultaneously assume multiple roles—including client, helper, or 
aggregator—based on runtime conditions. The delegation mechanism, currently under 
design, will be taken advantage of to encapsulate telemetry-driven decision-making, 
allowing nodes to assess peer suitability for task sharing based on factors such as 
computational capacity, bandwidth availability, and current workload. This dynamic role 
allocation will be made possible through new Babel-based abstractions specifically 
designed to manage SL training cycles, including cut-layer coordination and activation 
exchange. 
 
To support broader platform diversity, particularly the inclusion of Android devices 
(motivated by the Telefonica Use Case), the ongoing development will transition the 
system to Babel 2 as soon as it becomes available, which will allow it to explore the 
possibility for integrating FLaaS and PyTorch in this solution. 
 
We will report on the final achievements of this line of work in Deliverable D6.3, and we 
plan to explore the viability of its application to the Telefónica Use Case within the scope 
of activities of TaRDIS. 
 

f. OTHER INTEGRATIONS AND ACTIVITIES 

This section reports on the complementary goals of WP6, which is related to integration 
with other tools and ecosystems. During the reported period, and to strategically 
demonstrate the benefits of the technology and solutions being developed by TaRDIS to 
the domain of IoT (and more generally domotics) we have decided to explore the 
integration of control and data acquisition over IoT devices in the context of the Babel 
ecosystem. These efforts were materialized in the form of a significant extension of an 
existing open-source library called GrovePi and a set of Babel protocols that take 
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advantage of this library to expose an event-driven API to other Babel protocols and 
applications, that we now discuss. 
 

i. IoT Device Integration 

Overview 

The integration consists of a collection of Babel protocols that aim to provide a uniform and 
standardized interface for controlling and monitoring physical devices such as sensors and 
actuators. 

These protocols are built on top of an extension — in practice, a complete overhaul — of 
an existing Java library that is essentially a portion of the larger project that is GrovePi. 
This overhaul consists of the integration of new I2C and digital devices into the library, 
making use of the underlying Pi4j library to allow for interoperability between Raspberry Pi 
models. 

Use Case 

This allows users of the Babel ecosystem to dynamically coordinate the utilization of 
different sensors and actuators through a familiar (and unified) API, thus allowing them to 
easily integrate these devices into IoT and smart-home applications and other scenarios 
where distributed protocol execution and real-world interaction are required or otherwise 
useful, i.e. real-time monitoring. 
These protocols and the underlying library make it possible to develop responsive yet 
highly complex and interactive distributed applications for a host of different scenarios and 
use cases. 

Usage 

Users can register events and notifications associated with specific sensor readings or 
actuator states. These events can then be propagated throughout the swarm of devices in 
active use, and from there define specific behaviors to be triggered upon their reception, 
enabling distribution coordination. This approach allows for real-time interaction and 
modular composition of behaviors, facilitating scalability and automation. 
 
Additionally, collected information can be processed locally within the application by 
resorting to user-defined protocols. Processed results can then be propagated using the 
myriad available communication protocols already provided by the existing Babel 
framework. 

Protocol API 

The API provided for these interactions involves several different Babel-compatible 
protocols — two to control I2C input and output devices, and two others to control Digital 
input and output, all of which rely on the Grove physical interface: 
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● I2C: Due to the nature of I2C devices, the protocols to control them follow a driver 
model, where unique implementations for each supported device and their 
behaviors are encapsulated within their interfaces. At the time of writing, the 
following devices are supported: 

○ 3-Axis Accelerometer 
○ Gesture Detector 
○ 16x2 LCD 
○ 8x8 RGB LED Matrix 

● Digital: These protocols provide both a generic way to send and receive digital 
HIGH/LOW signals, as well as specific implementations for interacting with more 
complex devices such as Buzzers, Ultrasonic Rangers and Chainable RGB LEDs. 
The generic digital devices that have already been tested are as follows: 

○ Line Finder 
○ Tilt Switch 
○ PIR Motion Sensor 
○ Button 

 
Designed with extensibility in mind, these protocols allow support for new devices to be 
added and developed without breaking changes or compatibility with existing 
implementations. 
Moreover, the separation of input and output in the control protocols has a few distinct 
advantages: 
 

● Asymmetric resource allocation: Users can independently assign behavior to 
each node without unnecessary overhead, based on a given node’s primary 
function. 

● Scalable composition: Complex behaviors can be designed by combining simple 
input-output relationships between nodes, allowing for more sophisticated system 
responses to emerge from relatively straightforward configurations. 

● Enhanced fault tolerance: Partial sensor and actuator functions can remain 
operational even if components or entire nodes fail, by allowing redistribution of 
responsibility to alternative nodes. 

TaRDIS Messaging Application — Preliminary Version Integration 

A preliminary version of these protocols has already been integrated into the TaRDIS 
Messaging Application, where events can be triggered via the app to show text and display 
certain patterns in the aforementioned LCD and LED Matrix, as well as receive notifications 
triggered by the connected sensors. 
A more comprehensive integration is planned but the current implementation serves as a 
proof of concept and helps validate the interoperability of these heterogeneous systems. 
Future iterations will expand support for additional device types and enrich the possibilities 
for interaction with existing ones. 
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3. A GUIDE TO THE TARDIS TOOLBOX WP6 COMPONENTS 

 
Throughout the execution of the project, WP6 has produced several components to be 
integrated into the TaRDIS Toolbox, in addition to the Babel runtime variants (Babel-
Swarm and Babel-Android) which provides the fundamental support for the execution of 
multiple of these components, taking advantage of the Java support across multiple 
devices (Servers, Laptops, Smaller devices such as Raspberry Pi and Intel Nuc, and even 
Mobile Android Devices). We should note that Babel was identified as a key innovation in 
the EU Innovation radar. 
 
However, understanding how to take advantage of these different tools to build swarm 
applications can be a complex task. While WP3 is working on providing tools that can 
assist developers in picking some of these tools (an effort that is still ongoing), in this 
section we provide a brief guide for the main different available (at the time of writing) tools 
developed in WP6 identifying key aspects where they can be relevant. We plan to provide 
a more complete guide at the end of the project.  
 
This presentation groups the tools around their base functionalities and aligns with the 
goals of the different tasks of WP6. 

a. MEMBERSHIP ABSTRACTIONS 

HyParView 

HyParView is a decentralized, unstructured partial-view membership protocol designed to 
provide resilient and low-cost overlay maintenance. It operates using active and passive 
views to manage neighbor connections, enabling nodes to join, leave, or fail without 
compromising global connectivity. This reference implementation represents the base, 
unmodified version of the protocol, excluding any enhancements from Babel-Swarm such 
as discovery or autonomic control. 

It is well-suited for dynamic environments or deployments using nodes with limited 
capabilities, and where a set of stable nodes can be configured statically as entry points 
(i.e., contact) for the swarm. 

A reference implementation is provided as a Babel component.  

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols/membership/hyparview 

HyParView with Discovery and Autonomic Management 

This advanced variant of HyParView builds upon the base protocol with support for 
dynamic peer discovery and self-configuration. Nodes can discover peers automatically 
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using multicast or broadcast mechanisms and autonomously adjust internal parameters 
based on runtime metrics. 

This makes it ideal for mobile or ad-hoc swarm systems where topology evolves rapidly 
and user intervention is infeasible. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/membership/hyparview-with-discovery 

HyParView with Security 

This additional variant of HyParView builds upon the variant with discovery and autonomic 
management (described above) with support for fundamental security mechanisms, 
namely the use of encrypted communication channels and verifiable (through certificates) 
peer identity. 

This makes it ideal for setting where notes have enough computational resources to handle 
the overhead of cryptography but where the probability of malicious nodes being 
introduced by an attacker is greater.. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/membership/secure-hyparview 

X-BOT 

X-BOT is an adaptive overlay protocol that reshapes the topology of an unstructured 
overlay to optimize specific performance metrics such as latency or bandwidth. It performs 
neighbor rewiring while maintaining randomization and fault tolerance. 

X-BOT is particularly suited for scenarios where performance needs to be optimized 
dynamically, like interactive applications or geographically distributed swarms requiring 
efficient routing paths. 

A reference implementation is provided as a Babel component.  

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols/membership/x-bot 

X-BOT with Discovery and Autonomic Management 

This advanced variant of X-BOT builds upon the base protocol with support for dynamic 
peer discovery and self-configuration. Nodes can discover peers automatically using 
multicast or broadcast mechanisms and autonomously adjust internal parameters based 
on runtime metrics. 
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This makes it ideal for mobile or ad-hoc swarm systems where topology evolves rapidly 
and user intervention is infeasible. 

A reference implementation is provided as a Babel component.  

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols/membership/x-bot-with-
discovery 

 

Epidemic Global Membership Protocol 

This protocol builds a probabilistic approximation of global membership using epidemic 
dissemination on top of partial-view overlays. It aims to provide eventual convergence to 
a consistent global view under stable conditions. 

It is particularly relevant for scenarios requiring system-wide visibility without strict 
consistency, such as swarm monitoring dashboards or adaptive control systems. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/membership/epidemicglobalview 

Random Tour Protocol 

This protocol, while not strictly a membership protocol, enables decentralized estimation 
of network size using token-based random walks. Each token gathers statistics as it 
traverses the overlay, allowing individual nodes to infer global properties. 

It is useful for parameter self-tuning in large-scale or elastic swarms, supporting protocols 
that need to adjust based on system size, such as adaptive gossip or routing schemes. 

A reference implementation is provided as a Babel component.  

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols/network-
estimations/random-tour 

b. COMMUNICATION PRIMITIVES 

Eager Gossip Broadcast 

This gossip-based protocol supports probabilistic point-to-multipoint message 
dissemination. Upon receiving a message, each node forwards it to a subset of neighbors 
according to a configurable fanout, balancing redundancy with scalability. 
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It is well suited for scenarios with high churn or unstructured topologies, such as ad-hoc 
collaboration platforms, peer-to-peer gaming, or opportunistic mobile communication. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/communication/eagergossipbroadcast 

Self-Adaptive Eager Gossip Broadcast 

This variant of the gossip-based protocol builds on the previously described version to add 
mechanisms that allow for the runtime-adaptation of the fanout employed by the protocol. 
This in turn allows the integration of this variant in settings where telemetry is collected, 
enabling the swarm to ensure that the fanout employed by nodes is adequate to the system 
size, and eventually the risk of disruptions in communication. 

It is well suited for scenarios with high variability in the operational conditions of the 
application, or where communication mediums are less reliable. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/adaptive-eager-gossip-broadcast 

Secure Eager Gossip Broadcast 

This variant of the gossip-based protocol builds on the base protocol to add fundamental 
mechanisms for security, ensuring that communication channels are encrypted and 
messages are signed by their originators, enforcing authentication, non-repudiation, 
integrity, and privacy of communications.. 

It is well suited for scenarios where devices can handle the overhead of cryptographic 
primitives and where the data being conveyed by the application has some sensibility. 

A reference implementation is provided as a Babel component.  

Repository 

codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/eagergossipbroadcast-secure 

:  

Anti-Entropy Protocol 

The anti-entropy protocol improves reliability by periodically synchronizing state among 
nodes to recover lost or missed messages. It is particularly valuable as a companion to 
probabilistic dissemination strategies like gossip. 
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This protocol is useful in environments with unreliable links, high message loss, or 
intermittent connectivity—such as mobile swarms or networks with constrained edge 
devices. 

A reference implementation is provided as a Babel component.  

Repository: codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/communication/antientropy 

Flood Broadcast Protocol 

The Flood Broadcast protocol is a simple, robust point-to-multipoint communication 
primitive that ensures reliable message dissemination across a swarm. It works by 
forwarding each broadcast message to all neighbors in the local view of each node, 
effectively flooding the overlay network. This approach guarantees that all connected 
nodes will eventually receive the message, assuming the underlying overlay remains 
connected and there are no persistent message losses. 

Due to its simplicity and reliability, this protocol is well-suited for controlled environments 
with moderate node counts or low message volume, where reliability is more important 
than efficiency. It is particularly useful for bootstrapping operations, coordination in small 
swarms, or environments where message loss must be minimized, such as in mission-
critical alerts or group coordination. 

A reference implementation is provided as a Babel component.  

Repository: 
codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols/communication/floodbroadcast 

One Hop Broadcast Protocol 

A one-hop broadcast protocol is a communication protocol where a message is transmitted 
from a single sender to all of its directly connected neighbors (i.e., nodes that are one hop 
away) in a network. 

For instance, a swarm sensor network, a node might use a one-hop broadcast to announce 
its presence or status to nearby nodes. These nodes receive the message directly, but 
they don’t forward it further. 

A reference implementation is provided as a Babel component.  

Repository: 

codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/onehopbroadcast 

Anti-Entropy Protocol 

The Anti-Entropy protocol is a reliable, periodic synchronization mechanism that allows 
nodes in a decentralized system to reconcile the messages that they have exchanged 
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through an epidemic gossip protocol. It operates by maintaining a local message history 
and periodically exchanging summaries or digests with neighbors to identify and request 
missing information. This ensures that, over time, all nodes in the network converge toward 
a consistent state, even if some messages were lost during initial dissemination. 

This protocol is particularly useful in dynamic or unreliable environments where node 
failures, message drops, or temporary disconnections are common—such as mobile 
swarms, opportunistic networks, or systems operating over unstable wireless links. When 
combined with probabilistic dissemination protocols like gossip or broadcast, anti-entropy 
enhances reliability by guaranteeing eventual completeness of message delivery. 

A reference implementation is provided as a Babel component.  

Repository: 

codelab.fct.unl.pt/di/research/tardis/wp6/babel/protocols/communication/antientropy 

codelab.fct.unl.pt/di/research/tardis/wp6/babel-
swarm/protocols/communication/antientropy 

codelab.fct.unl.pt/di/research/tardis/wp6/babel-
android/protocols/communication/antientropy 

Anti-Entropy Protocol with Security 

The Anti-Entropy with Security protocol is built upon the previously described Anti-entrophy 
protocol and adds base authentication mechanisms for nodes (based on certificates) as 
well as encrypted communication channels, offering non-repudiation, integrity and privacy. 

This protocol is particularly useful in setting where information exchanged at the application 
level has needs for the integrity and where malicious attacks can happen. Nodes should 
have enough computational power to handle the additional cryptographic overhead. 

A reference implementation is provided as a Babel component.  

Repository: 

codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/protocols/communication/anti-
entropy-secure 

Actyx Middleware Integration: Reliable and Durable Event Broadcast 

This component integrates the Actyx middleware into the TaRDIS ecosystem to provide 
reliable and durable event broadcast capabilities. Originally a proprietary solution, Actyx 
was adapted and modularized to be usable as a reusable, open-source building block 
within swarm applications. The integration exposes a high-level event-stream abstraction 
that supports ordered, persistent, and fault-tolerant broadcast of application-level events, 
enabling developers to build swarm applications with stronger durability guarantees. 
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This solution is particularly relevant for scenarios requiring reliable audit trails, coordinated 
actions based on persisted events, or bridging disconnected segments of a swarm. It is 
suitable for use cases like industrial workflows, smart environments, or multi-agent 
systems where events must be retained and processed even after failures or network 
partitions. 

c. DATA MANAGEMENT SOLUTIONS 

Arboreal 

Arboreal is a hierarchical cloud-edge data management system that supports dynamic, 
fine-grained replication and causal+ consistency. It allows for seamless data migration and 
access optimization based on usage locality. 

This solution is particularly relevant for smart infrastructure or industrial deployments that 
span across tiers, combining cloud analytics with low-latency edge processing. 

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/public/arboreal 

PotionDB 

PotionDB is a geo-distributed, partially replicated storage system designed for eventual 
consistency. It supports materialized views and distributed querying, allowing applications 
to access local subsets of data with low latency. 

This makes it ideal for mobile, edge, or hybrid swarm applications where bandwidth, 
storage, and energy efficiency are essential, such as smart city data aggregation or 
contextual services. 

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/public/potionDB 

Extensible CRDT Library for Babel 

This library provides a collection of Conflict-free Replicated Data Types (CRDTs) tightly 
integrated into Babel. It supports a variety of data types and includes facilities for extending 
the library with custom CRDTs. 

It is suited for collaborative applications that require concurrent updates without 
coordination, like decentralized logs, task managers, or shared data in offline-capable 
apps. 

A reference implementation is provided as a Babel component.  

Repository:  
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codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/babel-crdt/babel-crdts 

Nimbus 

Nimbus is a decentralized storage solution designed to support autonomous data sharing 
and ephemeral data retention in swarm environments. It enables nodes to locally manage 
the lifecycle of their data and selectively share information with peers based on 
configurable policies. The system avoids centralized control or full replication by relying on 
opportunistic and context-aware data dissemination mechanisms, making use of Babel’s 
communication and membership abstractions for coordination. Nimbus was identified as a 
key innovation in the EU Innovation Radar. 

Nimbus is particularly well suited for dynamic and resource-constrained environments 
where storage efficiency, privacy, and locality-awareness are critical—such as 
decentralized learning, collaborative sensing, and ephemeral swarms. It supports local-
first semantics and is designed to operate in disconnected or intermittently connected 
networks, enabling resilient and adaptive data sharing strategies. 

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus 

Integration of Storage Solutions into the TaRDIS Ecosystem (Blockchain, C3, 
Engage) 

This component provides a set of adapters that expose the TaRDIS-defined storage API 
for integration with existing third-party or legacy distributed storage systems. It includes 
support for Cassandra, the blockchain-based IBM Hyperledger Fabric, C3 (a CRDT-based 
engine), and Engage (a previously developed system by consortium members). These 
adapters enable Babel-based applications to interact with these storage systems using a 
uniform interface, simplifying integration and testing. 

This solution enables developers to combine new decentralized features with established 
data infrastructures, facilitating migration, hybrid deployments, or federated data 
management setups. It is useful in industrial, enterprise, or research environments that 
need to bridge swarm-native and existing storage backends. 

A reference implementation is provided as a Babel component.  

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/babel/babel-datareplication-adapters 

Actyx Middleware Integration: Data Management for Event Streams  

This component extends the Actyx middleware integration by enabling its use as a 
decentralized data management layer focused on event streams. It introduces support for 
event retention policies and stream-based querying, allowing swarm applications to 
process and analyze event histories efficiently. The integration transforms Actyx from a 
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standalone middleware into a modular, embeddable data service compatible with the 
TaRDIS vision of composable and distributed systems. 

This tool is especially relevant for applications that rely on event sourcing or stream 
processing, such as reactive workflows, sensor networks, or multi-agent systems with 
asynchronous coordination. By supporting local event replay and on-demand query over 
persisted streams, it allows applications to make informed decisions even in the face of 
disconnections or limited infrastructure. 

d. MONITORING SOLUTIONS 

Namespace-Based Reconfiguration System 

This system supports the decentralized and selective reconfiguration of application 
components using container-based isolation and hierarchical namespaces. It allows 
operators to apply reconfigurations based on logical structure and metadata labels. 

It is applicable to complex, distributed deployments with legacy or black-box components 
where targeted updates, scaling, or parameter tuning must be automated. 

Repository:  

codelab.fct.unl.pt/di/research/tardis/wp6/public/configuration-management 

Docker Monitorization and Telemetry Acquisition 

This tool extends the telemetry infrastructure by enabling fine-grained monitoring of swarm 
components running inside Docker containers. It leverages container introspection to 
collect runtime metrics such as CPU, memory, and network usage, and exposes telemetry 
for both system-level and container-scoped processes. Labels and metadata attached to 
containers are used to organize telemetry streams, allowing flexible and contextualized 
monitoring. 

This solution is particularly valuable in containerized deployments where components may 
be ephemeral, heterogeneous, or orchestrated across dynamic environments. It supports 
automated resource management, anomaly detection, and deployment debugging in 
swarms composed of legacy and modernized components. 

Telemetry Acquisition for Decentralised Systems 

This component enables the decentralized collection of telemetry data across all layers of 
a swarm application—ranging from low-level protocol metrics and system resource usage 
to application-specific performance indicators. It is built as an extension of the Babel 
runtime and provides a unified interface for protocol and application developers to report 
telemetry data. Metrics are collected locally at each node, enabling both local analysis and 
export in standard formats for external processing. 
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This tool is particularly relevant for scenarios requiring runtime observability, performance 
tuning, or autonomic behavior. It supports debugging, real-time monitoring, and machine 
learning-driven adaptation, making it suitable for complex, long-lived, or mission-critical 
swarm systems. Its decentralized nature ensures that monitoring remains robust even 
under partial failures or in disconnected environments. 

A reference implementation is provided as a Babel component.  

Repository: 

https://codelab.fct.unl.pt/di/research/tardis/wp6/public/babel-core-metrics/ 
 

APPLICATIONS 

 
In this section, we will present various applications that demonstrate how the tools 
introduced earlier can be effectively utilized. These examples will highlight the practical 
use and versatility of the methods discussed previously and their versatility to handle 
different use-cases. Although the functionalities of these applications are detailed in 
Demos, in this segment we focus on the tools that compose each. 
 

Tardis Simple Usecase  

The TaRDIS simple use case showcases a demonstrator of some of the core ideas 
governing the execution of the TaRDIS project. The application consists of a message 
exchanging application, where nodes communicate with each other in a completely 
decentralized way by dynamically discovering their neighbors. 
 
The application uses HyParView with Discovery and Autonomic Management to handle 
membership and EagerPushGossip Broadcast, AntiEntropy and Random Tour to ensure 
reliable communication under the presence of failures. 
 
Moreover, the application possesses two variants of the base implementation, namely a 
variant with a GUI for desktop environments, and a second one for mobile devices running 
Android. 
 
 
Repository: 
codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/applications/tardis-simple-usecase 
codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm/applications/tardis-simple-
usecase-gui 
codelab.fct.unl.pt/di/research/tardis/wp6/babel-android/applications/tardis-messaging-app 
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Decentralized Voting Application 

 
The decentralized voting application allows users to evaluate presentations and 
workshops. Each user is able to rate different aspects of the lecture, as well as add new 
comments or questions to the lecture which can be later on rated by the other users that 
attend such presentations.  
 
The application works in a completely decentralized fashion by using Nimbus as the 
underlying data storage solution. To achieve this, the implementation uses HyParView with 
Discovery and Autonomic Management to handle membership and node discovery, 
interfaced with Nimbus for the synchronisation of data.  
The application can be interacted with by using a GUI for web-browsers or with a terminal 
through a REST API and Websockets for reactive notifications related to new events on 
the system (i..e., new questions, updates on ratings, etc). 
 
 
Repository: 
codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus/examples/sample-
applications/-/tree/main/Presentation-App 
 

OTHERS 

In addition to the previously reported tools, we also have developed a library for IoT devices 
that has been integrated into the Babel ecosystem. This was a strategic move of our part, 
since IoT (and more generally domotics) applications are a perfect use case for the 
application of swarm technology, to improve the impact capacity of the project through 
specialised demonstrators in this domain, we have integrated a IoT device library for 
Raspberry Pi and Linux system compatible with the several variants of Babel. 
 
Java IoT Library 

The existing GrovePi library provides an open-source platform for connecting Grove 
sensors and actuators to Raspberry Pi devices. The Java portion of this library is outdated 
and extremely barebones, incapable of providing functional support for any particular 
device. The changes and significant additions made to it now allow for the integration of 
several I2C and digital devices through a uniform interface. 

Major additions to the library include the implementation of interfaces for interacting with 
the particular I2C and digital devices highlighted in IoT Device Integration. While the main 
motivation for building this library was to support the Babel IoT Control Protocols, we note 
that our library is of interest for the community at large, providing a simple and effective 
way of interacting with a diverse set of IoT devices in the Java ecosystem. 

Repository: 

codelab.fct.unl.pt/di/research/tardis/wp6/iot/grovepi-pi4j 
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Babel IoT Control Protocols 

As detailed in a previous section (IoT Device Integration), protocols were developed for 
providing control over IoT devices through a unified API within the context of the Babel-
Swarm framework. 

It can be used to support applications that interact with the physical world, namely those 
in the domains of IoT and Domotics, which are interesting application domains for the use 
of Intelligent Swarms, by allowing user devices to naturally interact with each other with 
minimal configuration, in a robust and efficient way.. 

A reference implementation is provided as a Babel component.  

Repostory: 

codelab.fct.unl.pt/di/research/tardis/wp6/iot/protocols/babel-iot-control-protocols 
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4. USE CASE PROGRESS REPORT 

a. TELEFÓNICA 

WP6 is collaborating with telefónica in the efforts to advance their existing federated 
machine learning solution (FLaaS) with decentralized interactions between nodes 
performing the training, and adding flexibility to exploit additional aggregators in a 
hierarchical solution and exploiting split learning techniques to be able to cope with (user) 
devices that have limited capabilities or energy, allowing these nodes to delegate part of 
the effort of training to helper nodes (either locally or centrally) without forcing those nodes 
to expose their input data. 
 
Currently we have efforts ongoing to take advantage of the features in Babel-Swarm and 
Babel-Android specifically to assist in these efforts which combine research and 
engineering activities. 

b. GMV 

WP6 is collaborating with GMV to build a demonstrator of the application of TaRDIS 
solutions and technology to the use case of handling orbit determination in swarms of 
satellites. Evidently it is impossible (and unrealistic) in the time of the project to have the 
ideas and technology of TaRDIS effectively deployed on Satellites. Therefore our 
activities are fundamentally related to taking advantage of the high flexibility provided by 
the Babel ecosystem to create an emulation of these solutions in practice, where solutions 
will be running real software (not only within Babel) to build a simulacrum of what could 
happen in a real scenario between satellites. 
 
Evidently, Babel was not designed to cope with the communication models employed for 
inter-satellite communication, and as such we are currently developing a specialized 
communication channel for Babel-Swarm that will try to approximate the conditions of 
these types of communication channels. Moreover, we are taking advantage of these 
specialized channels to build a model of the positions of satellites, that encodes 
specifically the restrictions of communication that might exist due to relative positions of 
these satellites. 
 
Additionally we are building a specialized membership protocol that will interact with these 
special channels to expose information, in an opportunistic way, to other elements running 
within the device, this will include the Nimbus decentralised storage solution that will be 
leveraged to maintain navigational information collected among satellites and will 
replicate this information among them using CRDTs and an epidemic style protocol. 
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c. EDP 

WP6 is involved in the preparation of the use case demonstrator of EDP by building a 
specialized membership protocol to organize the different participants of the decentralised 
renewable energy market in a way that is both location-aware (in the sense of proximity) 
and that allows an hierarchy (or several independent ones) to form among nodes in the 
same location. This will be used to model the notion of communities of energy that are 
fundamental local and where most energy exchanges (and hence coordination) happens. 
The hierarchy among these different communities can be leveraged in cases where the 
needs of elements of a community cannot be satisfied locally. 
 
This development is being conducted in the context of Babel-Swarm, which already 
features several functionalities useful for the materialization of this use case. Furthermore, 
this offers the opportunity to collaborate with activities in the context of WP3, where DCR 
graph choreographies are being explored as a way to model the logic of the decentralized 
market of energy. There is an ongoing effort in WP3 to translate the logic denoted in DCR 
graphs to the Babel runtime. 

d. ACTYX 

WP6 has previously collaborated in the evolution of the use case of Actxy by exploring 
ideas to improve the Actyx framework to provide reliable and durable event broadcast as 
well as to come up with solutions for the durable storage of events propagated within the 
context of this framework. There are currently no other plans for WP6 to be involved in 
the use case of Actyx, which is justifiable since there is a proprietary framework at the 
center of this use case that has already imported some of the ideas and work of this work 
package. 
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5. SOFTWARE 

a. OVERVIEW 

This section provides an overview of the main software components developed in the 
context of WP6 during the second year of the TaRDIS project. Rather than revisiting the 
numerous protocol implementations and abstractions that have already been discussed in 
detail in earlier sections of this deliverable—particularly in the context of Tasks T6.1, T6.2, 
and T6.3—this section focuses specifically on the major software artefacts and tools that 
have been designed, implemented, and made available as reusable components of the 
TaRDIS toolbox. These include frameworks and libraries that support the development, 
deployment, monitoring, and control of swarm applications, as well as supporting APIs and 
tools for integration with third-party systems and platforms. The goal of this section is to 
highlight the software engineering efforts underpinning these contributions and to provide 
references to their source code and usage documentation where applicable. 

b. BABEL ECOSYSTEM 

Link to relevant repositories: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm 
https://codelab.fct.unl.pt/di/research/tardis/wp6/babel-android 
 
Babel is a Java-based framework designed to simplify the development of distributed 
protocols by providing an event-driven programming model and robust abstractions for 
communication, concurrency, and protocol coordination. Initially developed outside the 
scope of TaRDIS, Babel supports modular and performant implementations of fault-
tolerant distributed systems by abstracting low-level concerns such as message 
serialization, timers, and inter-protocol communication. Its API allows developers to define 
distributed protocols using state-machine-like semantics, and facilitates clean 
modularization through the use of channels, event queues, and thread-isolated protocol 
execution. 
 
The TaRDIS project extends Babel through two significant evolutions: Babel-Swarm and 
Babel-Android. Babel-Swarm introduces runtime support for autonomic behavior, including 
dynamic adaptation and protocol reconfiguration. It integrates features such as self-
monitoring, runtime feedback, and discovery of communication partners. This version 
allows developers to build decentralized protocols that are capable of adapting to 
environmental conditions and changing system objectives. Babel-Swarm can be built using 
standard Java tools and can be used to implement (standalone) applications that run on 
different devices running conventional operating systems. The typical way to build such an 
application is by taking advantage of the maven tool, importing the libraries for the Babel-
Swarm-Core and all protocols required for the application operation, which we have 
decided to provide also as independent libraries that can be imported by maven. The code 
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for the Core of this variant of the framework and several protocols and examples are 
available at: 
codelab.fct.unl.pt/di/research/tardis/wp6/babel-swarm 
 
Babel-Android ports Babel's capabilities to the Android ecosystem, allowing mobile 
devices to participate in the execution of decentralized protocols, and swarm applications, 
natively. This extension adapts the Babel architecture to support mobile limitations, 
including supporting background execution. It enables the development of Android apps 
that incorporate swarm-native communication and logic, and has been used to prototype 
native android swarm applications that can interact with applications in commodity devices 
in TaRDIS. The programming model is similar to that of Babel-Swarm, although some 
specific examples of how to encapsulate specific protocols and the Babel-Android core in 
a foreground service are also provided. 
The source code for Babel-Android, several protocols, and relevant applicational examples 
are available at: 
codelab.fct.unl.pt/di/research/tardis/wp6/babel-android 
 
 
We omit here the description and listing of all protocols and components developed in the 
context of the Babel ecosystem since these are already reported previously in A GUIDE 
TO THE TARDIS TOOLBOX WP6 COMPONENTS. 
 

c. RECONFIGURATION AND MONITORIZATION TOOL BASED ON NAMESPACES 

Link to repository: 
https://codelab.fct.unl.pt/di/research/tardis/wp6/public/configuration-management 
 
The repository with the software is available on the link provided above. The prerequisites 
for running software are already installed containerized tools Docker and Docker 
Compose. For Windows users, the one more prerequisite must be met, a Unix-like 
environment and command-line interface tool (e.g. git bash for Windows, Cygwin) must be 
already installed. All mentioned tools are open source, and free to download. 
 
After pulling the source code from the repository, and successful installation of the open 
source tools, users need to navigate in the tools folder. Inside this folder, we provided two 
scripts with the intention to simplify starting and stopping of all developed services, and all 
connected components. In the future we plan to simplify this process, and remove the 
cloning of the source code and just start containerized services that are pulled from Docker 
Hub, or other public container registry. 
 
Script start.sh, will build and run all necessary components, tie them into the network and 
it will allow users to test the entire tool. Navigate the terminal into the project repository, 
and using command cd tools, navigate inside the tools folder. By typing start.sh and 
pressing Enter, the entire system will start the build and running process. During this 
process, all required Docker images will be pulled on the testing machine, while Docker 
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Compose will provide network between started services and all other connected 
components. Please, be aware that this process might take some time. For Windows 
users, who are using Unix-like environments and command-line interfaces (e.g. git bash 
for windows, Cygwin), please be aware that the process to run the software is almost the 
same, except that after navigation to the tools folder, they start the script with ./start-
windows.sh command. 
 
To stop the software from running, please open a new terminal or Unix-like environment 
and command-line interface (e.g. git bash for Windows, Cygwin) for Windows users, if the 
previous terminal window is not accessible due to the running software and log output from 
the system. Again, navigate to the software folder and then to folder tools, type ./stop.sh 
and pressing Enter should stop the entire service and all its components. Windows users 
need to run the ./stop.sh command. Again, please be aware that the script will stop the 
entire software and all its connected components, but it will take some time to do that. 
 
To access basic interaction of swarm and/or resources and basic metrics information users 
must use the CLI tool already present in the repository. This tool first must be prepared for 
a machine running on. To do that, users must first install the Golang environment on their 
specific machine which is free. Navigate to the cockpit project directory using command cd 
cockpit. After that user must build the tool using the command go build -o cockpit. To 
interact with CLI there is extensive documentation already present in the repository. If 
users do not want to use the CLI tool, and want to use some other option (e.g. Postman) 
there is extensive documentation in the repository for each service the tool offers.  
 
Sample Grafana dashboards are available at the address https://localhost:3000 The 
default credentials are used for authentication (admin/admin). Dashboards are 
preconfigured, thus ready to use out of the box. Their configuration is available at this 
repository. The Node Metrics dashboard displays all available metrics for a selected node, 
while the Container Metrics dashboard contains charts for the most important metrics of 
selected or all containers running inside nodes. 
 
In the repository, users can find the detailed documentation of what services, endpoints 
and functionalities are available at the moment, and how to use them. The repository also 
contains detailed explanation on how to format data, what data format the services expect, 
but also examples of data response from every service. 
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6. DEMOS 

A. TARDIS MESSAGING APP 

 
The TaRDIS Messaging App is a broadcast messaging application designed to showcase 
the capabilities of swarm-based communication systems built using the TaRDIS toolbox. 
Its goal is to provide a concrete and simple example of how autonomous, decentralized 
systems composed of heterogeneous nodes can support robust and adaptive message 
dissemination. The application allows participants to send and receive messages — 
optionally with file attachments — that are disseminated to all nodes in the swarm. 
Demonstrations of the app are conducted across a variety of platforms, including headless 
Raspberry Pi devices, desktop computers with a graphical user interface, and Android 
smartphones. 
 
At the core of the Messaging App lies a decentralized overlay network built using a self-
configuring version of the HyParView protocol. This overlay provides the basis for 
communication among the swarm participants and is constructed automatically upon a 
node’s entry into the system using multicast-based discovery. Once connected, nodes 
begin participating in a fully distributed gossip-based broadcast protocol that ensures all 
messages are eventually received across the network. To improve reliability and support 
resilience to transient faults and message loss, a periodic anti-entropy protocol is used to 
reconcile the messages received among neighbors. Additionally, the application includes 
an implementation of the random tour protocol that allows each individual node to estimate 
the current size of the swarm. 
 
The Figures below show a simple representation of the combination of protocols and 
components within Babel-Swarm or Babel-Android for the different variants of the 
application. Notice that there is a linux-headless version that runs on raspberries, and a 
version for laptops and android devices with interface. Some devices use a special version 
of the application that can interact with IoT devices. These heterogenous applications can 
however cooperate and collaborate in the context of this swarm. 

 
Fig: Internal composition of Tools for materializing different version of the App. 
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The application was implemented entirely in Java and relies on the Babel-Swarm and 
Babel-Android frameworks developed in WP6. These frameworks extend the Babel 
programming model with self-management and self-configuration capabilities, enabling 
seamless deployment and operation across devices with very different capabilities, from 
lightweight embedded boards to fully featured Android platforms. 
 
The Raspberry Pi instances of the application run as a background Linux service and 
include an autonomous mode that periodically generates and broadcasts messages. In 
contrast, the desktop version provides a graphical user interface that allows users to 
compose messages, attach files, and interactively follow the status of dissemination and 
swarm connectivity. Android support further extends the reach of the app, with a mobile-
friendly interface and integration with the local wireless interface for ad hoc participation in 
swarms. The figures below show examples of the graphical interfaces for both laptops and 
android devices. 
 

 

                        
Fig: Interfaces provided for different versions of the TaRDIS Messaging App 

 
The demo has been shown operating in a confined wireless local network environment 
(TaRDIS-LAB), although it is designed to function at global scale given appropriate network 
configurations (e.g., public IPs or NAT forwarding). In addition to demonstrating message 
exchange, the application has also been used to showcase the control of IoT devices 
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integrated with the swarm. In its latest version, specific keywords in messages can trigger 
effects on connected displays or LEDs, using a Babel-based control protocol to manage 
physical devices (discussed in Other Integrations and Activities). 
 
For demonstration purposes, the application can be run on any machine with Java 21 or 
later by downloading the JAR file available at: 
https://asc.di.fct.unl.pt/~jleitao/tardis.jar 
 
Android versions are available for devices running Android 12 or higher via: 
https://novasys.di.fct.unl.pt/packages/apks/ 
 
This demo exemplifies the potential of TaRDIS to support dynamic, fault-tolerant, and 
infrastructure-independent applications that require autonomous behavior and real-time 
coordination among decentralized nodes. 

B. TARDIS VOTING APP 

In order to showcase the functionalities provided by Nimbus, we developed a 
demonstration application that enables users to evaluate presentations/workshops. The 
different presentations are constituted by different questions that can be rated and voted 
by users. Users can add new questions and see the ratings, through an average, of the 
different questions (i.e., was the information useful?) attached to the presentation. 
 
This application works by leveraging Nimbus decentralized storage system, and thus 
having each user store the data of the application locally, without relying on any dedicated 
infrastructure. Each node/participant in the system stores the information on their device, 
and the information is synchronized in the background. 
 
The demonstration is composed of a UI for web browsers and a deployment of Nimbus per 
node in charge for storing and synchronizing the application data. To allow the flow of data 
between the user interface (i.e., web browser) and Nimbus (i.e., in the Babel ecosystem) 
we leverage the Babel API for Web Services, to forward the requests issued by the user 
to Babel. Moreover, when new information arrives to a node, the UI is updated accordingly 
in real time by using the previously established Web Socket (more details can be found in 
Babel API for Web Services). 
 



TaRDIS | D6.2: Report on the second iteration of TaRDIS toolbox 
components (V 0.1) 

 

  Page 77 of 90                    © 2023-2025 TaRDIS Consortium 

 
TaRDIS Voting App - Home page 

 
 
 
To simulate a real word swarm system, the application was deployed in heterogeneous 
machines, namely Raspberry Pi’s and laptops, by allowing nodes to enter or leave the 
swarm system at will. Users can interact with the different devices by entering the local 
network where the application is deployed, and accessing the web site being serviced by 
the nodes through their favorite device (i.e., smartphone, tablet, etc.), or simply by joining 
the swarm system with their own device.  
 
Upon entering the website, users can login with their unique username and see the 
plethora of presentations available for voting. Upon entering a presentation, the user is 
presented with a list of available questions, the option to vote on them and to add new 
questions that will be presented to all users participating in that presentation. 
 

 
TaRDIS Voting App - Voting page 
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TaRDIS Voting App - Add question page 

 
This results in highly dynamic and decentralized systems, where no device controls all the 
flow of information and where each user can interact with the system in a seamless way 
without having to concern with the complexity being used underneath. 
 
Status 
 
At the moment of writing, this demonstration is being updated to support the new 
functionalities of Nimbus, namely, partial replication, reconfiguration of keyspaces and 
collections and access control. 
 
Repository 
 
An working example of this demonstration can be seen in the demonstration video17, and 
a the full code snippets can be found on the Nimbus - Examples18 and Presentation Demo 
UI19. 
 
 

 
17 https://drive.google.com/file/d/1PWkXfJEeeYiroZvePUjFFgSVuSWI_Wm0/view?usp=sharing 
18https://codelab.fct.unl.pt/di/research/tardis/wp6/internal-tools/nimbus/examples/sample-
applications/-/tree/76b9e3c04716585e1e18964b9c351c288996cb56/Presentation-App 
19 https://codelab.fct.unl.pt/di/research/tardis/wp6/demonstrations/presentation-evaluation-
demonstration/-/tree/7ca32d11f73fba24fd393b22829f4debffd9c4d3 
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7. STATE OF THE ART REVISION 

a. FRAMEWORKS FOR DEVELOPING DECENTRALIZED AND SWARM 
SYSTEMS 

The design and deployment of decentralized swarm systems present unique challenges 
that go beyond traditional distributed systems, including self-organization, high churn 
resilience, and adaptability to resource-constrained environments. Several frameworks 
have been proposed to support these goals. Appia [24] offers composable protocol stacks 
using Java, but suffers from rigidity due to strict protocol stacking and a single-threaded 
execution model. Cactus [25], developed in C++, provides high performance through 
asynchronous meta-protocols but leaves concurrency management to the developer. 
Yggdrasil [26], a lightweight C-based framework, was specifically designed for handling ad 
hoc and wired networks and supports concurrent protocol execution, but is limited to a 
single network interface and demands low-level programming discipline. ViSiDia [27] 
serves mainly for educational purposes by simulating distributed algorithms but lacks 
scalability or production-grade support. The Babel framework stands out for combining 
modularity, an event-driven model, and extensible networking, facilitating the development 
of interoperable and reusable distributed protocols 
. 
Recent evolutions conducted in the context of TaRDIS such as Babel-Swarm further 
enhance this approach by integrating security mechanisms, dynamic peer discovery, 
autonomic management, and the Babel-Android variant introduced native Android 
compatibility, a set of unique properties in this field that can benefit modern and emerging 
swarm systems operating in open, dynamic, and heterogeneous environments.  

b. DECENTRALISED MEMBERSHIP AND COMMUNICATION PRIMITIVES 

 
Membership and communication are foundational services in decentralized systems. The 
literature distinguishes between peer sampling services, which provide random node views 
suitable for gossip dissemination, and overlay networks, which create structured topologies 
to support scalable routing and message exchange.  
 
Well-known protocols such as HyParView [17] provide resilient overlays using active and 
passive views to ensure robust connectivity and churn resilience. Additional decentralized 
membership abstractions exploit other approaches, such as Cyclon [29] that promotes a 
more dynamic membership abstraction, or Scamp [30] that strives to balance the load 
automatically between nodes in a more localised fashion. Communication abstractions 
such as epidemic dissemination [17], anti-entropy, and spanning tree-based dissemination 
[28] offer trade-offs between redundancy, fault tolerance, and performance. However, 
many of these primitives are tightly coupled to specific implementations or APIs, limiting 
their reusability or interchangeability in application development, or putting a significant 
burden on developers to implement them in their own applications. 
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TaRDIS has unified multiple classes of membership and communication protocols — such 
as HyParView, X-BOT [20], eager gossip, anti-entropy, and flood broadcast — within a 
composable API architecture provided in the context of the Babel framework and its 
evolution (also achieved in the context of TaRDIS). It has also introduced novel 
abstractions, including the epidemic global membership service and evolved existing 
solutions (namely HyParView) with new functionalities that simplify their usage across 
different settings. 

c. DISTRIBUTED DATA MANAGEMENT SYSTEM 

 
We divide the related work overview in three parts, focusing on each of the works reported 
in this deliverable. 
 
Distributed queries. 
A large number of databases for cloud settings has been designed in recent years. Some 
of these databases are mostly designed for supporting full-replication, where each site 
replicates the full database, such as Spanner [7]. In other systems, each site might not 
replicate the full database, making them closer to our work. 
 
Detok [8], L-Store [9] and DynaMast [10] support transaction execution over geo-
partitioned data by using data migration and dynamic remastering to guarantee single-
partition transactions. This is similar to our approach to support multi-site transactions. 
However, these systems have no support for efficiently handling recurrent queries. 
 
CouchDB [11] provides both indexes and materialized views, however views can only refer 
to data in one partition. ChronoCache [12] is a caching middleware for geo-replicated 
databases. While caching speeds up future requests, complex queries may still need to 
contact multiple servers and updates need to invalidate the cache or else clients read stale 
data. We have proposed an approach providing consistent and efficient query results. 
 
Decentralized data stores 
PeerDB [16] is a peer-to-peer distributed data sharing system. It was designed to be used 
in a web setting, in which every node can communicate with each other. This might not be 
the case in swarm applications, in which communication may be restricted. We have 
proposed an approach where nodes find and connect to each other in a dynamic way. 
 
OrbitDB [15] is a serverless, distributed, peer-to-peer database. OrbitDB uses web3 IPFS 
as its data storage and automatically syncs database replicas. It is an eventually consistent 
database that uses a variant of CRDTs, Merkle-CRDTs, for merging concurrent updates. 
Due to this, all data on OrbitDB is immutable, thus guaranteeing a transparent and 
verifiable ledger. Nimbus shares some of the goals and design choices with OrbitDB, but 
it was designed to support the dynamicity and scale of swarm applications. Contrary to 
OrbitDB which uses a DHT (Distributed Hash Table) to discover peers. Nimbus uses a 
more dynamic approach (i.e., multicast, mDNS, etc.) for finding peers. Moreover, data in 
Nimbus is mutable, therefore enabling the use of dynamic applications. 
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CRDT library 
A number of CRDT libraries exist. YJS [13] (https://yjs.dev) is a shared editing framework 
for the JavaScript ecosystem. It features a CRDT library that can be used to build 
collaborative editing applications and binding to different frameworks and networking 
libraries. Our Babel library is specific for the Babel framework and designed to address the 
specific needs of swarm applications. Developers may choose from a list of already 
available CRDTs (i.e., sets, maps, flags, etc.) or develop their own handmade CRDTs by 
extending the abstractions provided by the library. 
 
Automerge [14] is a library of data structures for building collaborative applications with a 
JavaScript and a Rust implementation. Similarly to YJS, it is also network library agnostic, 
but it is designed for being used in a Web setting. On the contrary, our Babel library is 
designed to be used by swarm applications, in an environment that is expected to be much 
more dynamic. 
 
 

d. DECENTRALISED MONITORING 

 
Decentralized monitoring is crucial for observing and analyzing distributed systems without 
relying on centralized entities, thereby enhancing scalability and fault tolerance. Traditional 
centralized monitoring approaches can create bottlenecks and single points of failure. To 
address these challenges, decentralized monitoring algorithms have been developed. For 
instance, Kim et al. introduced an efficient decentralized monitoring algorithm that checks 
for violations of safety properties in distributed programs [31]. Previous work has proposed 
methods to monitor decentralized specifications, distinguishing between centralized and 
decentralized approaches [32]. Additionally, Olston et al. explored adaptive filters for 
continuous queries over distributed data streams, contributing to decentralized real-time 
monitoring techniques [33]. Closer to what we are doing in TaRDIS is the work reported in 
[34], that is a small exploratory work that leverages overlay networks to monitor the activity 
of nodes in a decentralized fashion. 
 
The TaRDIS project advances decentralized monitoring by aiming at developing fine-
grained telemetry acquisition directly into the Babel framework having the potential to 
combine that data with indicators from the local device and operating system. This 
integration enables real-time, decentralized collection of system and application-level 
metrics, facilitating adaptive monitoring strategies that are resilient to node failures and 
network partitions. By embedding monitoring capabilities within the communication 
substrate, TaRDIS ensures robust and efficient monitoring, even in highly dynamic swarm 
environments. 
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e. SELF-MANAGEMENT OF DISTRIBUTED SYSTEMS 

Self-management in distributed systems enables autonomous configuration, optimization, 
healing, and protection without human intervention. The complexity of modern distributed 
computing necessitates such autonomic behaviors to maintain optimal performance. 
Kephart and Chess articulated the vision of autonomic computing, emphasizing the need 
for systems capable of self-management to address growing complexities [35]. Kramer 
and Magee discussed architectural challenges in designing self-managed systems, 
highlighting the importance of software architectures that support self-adaptive behaviors 
[36]. Additionally, Ghosh et al. proposed a control-based framework for self-managing 
distributed computing systems, focusing on continual performance optimization [37]. 
Despite these efforts, and the long time since the initial proposal by IBM for autonomic 
systems, this vision has not yet been materialized in the context of distributed systems, 
and particularly decentralized systems, in an impactful way. 

TaRDIS enhances self-management by providing a modular and extensible framework that 
supports dynamic reconfiguration and adaptation of swarm applications. By integrating 
autonomic management features within the Babel framework, TaRDIS is striving to 
address a significant challenge, of practical self-management of complex systems. 
Additionally, TaRDIS is striving to bring machine learning models to guide reconfiguration 
of systems that, due to their complexity, are inherently hard to reason about, even by 
domain experts. 

f. DECENTRALIZED MACHINE LEARNING 

 
Decentralized Machine Learning (DML) facilitates training models across multiple nodes 
without central coordination, preserving data locality and enhancing privacy. Federated 
Learning (FL) is a prominent paradigm in this domain, enabling collaborative AI training 
across organizations without compromising data privacy. DFLStar, a decentralized 
federated learning framework incorporating self-knowledge distillation to enhance local 
model training and optimize communication overhead [38] has been proposed recently 
trying to improve the quality of decentralized federated learning approaches. Additionally, 
Belal et al. introduced PEPPER, a decentralized recommender system based on gossip 
learning principles, demonstrating improved convergence speed and recommendation 
performance [39]. 
 
TaRDIS contributes to DML by integrating decentralized machine learning capabilities 
within its ecosystem, leveraging the Babel framework's communication primitives to 
facilitate efficient model dissemination and aggregation. This integration aims at supporting 
collaborative learning in swarm environments, enabling nodes to train models locally and 
share updates in a peer-to-peer fashion. By embedding DML within a robust decentralized 
framework, TaRDIS enhances the scalability, privacy, and adaptability of machine learning 
applications in dynamic and heterogeneous environments, making it more available and 
easier to use, even in settings where user data used in the training lies on mobile devices. 
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8. PUBLICATION AND DISSEMINATION ACTIVITIES 

a. PUBLICATIONS 

Some of the results shown here have been published in scientific conferences. 
Publications produced during the reported period related with the activities reported here 
include: 
 
[1] M. Simić, J. Dedeić, M. Stojkov and I. Prokić, "Data Overlay Mesh in Distributed Clouds 
Allowing Collaborative Applications," in IEEE Access, vol. 13, pp. 6180-6203, 2025, doi: 
10.1109/ACCESS.2024.3525336. 
[2] T. Ranković, F. Šiljić, J. Tomić, G. Sladić and M. Simić, "Misconfiguration Prevention 
and Error Cause Detection for Distributed-Cloud Applications," 2024 IEEE 22nd Jubilee 
International Symposium on Intelligent Systems and Informatics (SISY), Pula, Croatia, 
2024, pp. 000297-000302, doi: 10.1109/SISY62279.2024.10737513.  
[3] M. Simić, J. Dedeić, M. Stojkov and I. Prokić, "A Hierarchical Namespace Approach for 
Multi-Tenancy in Distributed Clouds," in IEEE Access, vol. 12, pp. 32597-32617, 2024, doi: 
10.1109/ACCESS.2024.3369031. 
[4] Ranković, T., Kovačević, I., Maksimović, V., Sladić, G., Simić, M. (2024). Configuration 
Management in the Distributed Cloud. In: Trajanović, M., Filipović, N., Zdravković, M. (eds) 
Disruptive Information Technologies for a Smart Society. ICIST 2024. Lecture Notes in 
Networks and Systems, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-031-
71419-1_20. 
[5] Kovačević, I., Ranković, T., Simić, M., Stojkov, M. Token-based identity management 
in the distributed cloud. In: Zdravković, M., Trajanović, M., Filipović, N., Konjović, Z. (Eds.) 
ICIST 2024 Proceedings, pp.152-161, 2024. 
[6] P. Fouto, N. Preguiça and J. Leitão, "Large-Scale Causal Data Replication for Stateful 
Edge Applications," 2024 IEEE 44th International Conference on Distributed Computing 
Systems (ICDCS), Jersey City, NJ, USA, 2024, pp. 209-220, doi: 
10.1109/ICDCS60910.2024.00028. 
[7] Nuno Policarpo, José Fragoso Santos, Alcino Cunha, João Leitão, Pedro Ákos Costa. 
Specifying Distributed Hash Tables with Allen Temporal Logic Proceedings of FormaliSE 
2025 (co-located with ICSE), Ottawa, Ontario, Canada, 2025 (to appear). 
 

b. DISSEMINATION ACTIVITIES 

 
● Participation in the “Swarms Projects Workshop” in Bruxelles, September 2024. João 

Leitão was there representing TaRDIS as discussing the technologies being put 
forward by TaRDIS in general and WP6 in particular. 
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9. RELATIONSHIP WITH OTHER TECHNICAL WORK PACKAGES 

We now detail some of the interactions and relationships between the activities of WP6 
and the other technical work packages (WP3, WP4, WP5, WP7 and WP8). 

a. WP3 

WP3 is currently collaborating with WP5 to achieve two relevant results. The first is the 
translation of DCR-Graph choreographies to the Babel runtime, materializing the logic 
defined in this format to a set of distributed protocols and their orchestration. Additionally, 
exploratory work is being carried out to build a tool that can provide suggestions of the 
most adequate protocols to be used (from the ones available in the Babel ecosystem) 
given the needs of a specific application. 
 
Additionally, the IDE being developed in the context of WP3 has already had support 
added to assist developers of protocols and applications using the Babel framework. 

b. WP4 

WP6 developed a centralised reconfiguration engine based on hierarchical namespaces 
to manage components across diverse devices using containerisation. When developing 
such a tool, WP6 needed strong guarantees that redistribution of resources is formally 
correct, while the developed protocols ensure correctness. The developed engine  relies 
on: (i) accurate resource redistribution, which is achieved by applying graph transformation 
theory, and (ii) communication protocols, which are modeled and validated for correctness 
using multiparty session types. Both elements were developed in active collaborations with 
WP4. 

c. WP5 

For the particular case of WP5, WP6 has several contact points and active collaborations 
that have resulted in relevant results for the TaRDIS project. 
Underlying the efforts to improve the decentralized machine learning, and in close 
alignment with the use case of Telefónica, we are exploring mechanisms using the 
mechanisms provided by Babel-Swarm to improve decentralized machine learning 
frameworks, enriching them with split-learning, fault-tolerance, and self-configuration. 
Considerable efforts were made by WP6 to provide data sources for machine learning 
model training being carried out in the context of WP5. 
Keeping in line with current efforts to integrate results generated by TaRDIS, PTB-FLA 
was adapted to take advantage of the communication primitives provided in the context of 
the Babel ecosystem. 
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d. WP7 

There are several activities being carried out in the context of WP6 that aim to provide 
additional tools for the development of the use case demonstrators that are being carried 
out in the context of (more precisely coordinated by) WP7. The most relevant examples 
have been discussed in this document and include the membership abstraction exploiting 
node locality and hierarchies for the EDP use case, as well as the membership abstraction 
that can deal with the dynamic communication model of satellites for the GMV use case. 
Additionally, WP6 is highly involved in the preparation of the demonstrator for the latter 
use case, that will rely on emulation, taking advantage of other tools built in the context of 
WP6 such as the Nimbus decentralized data management system. 

e. WP8 

WP8 is responsible for dissemination, exploitation, and standardization. As part of this 
effort, WP6 has been actively engaged in standardization activities. 
 
Currently, WP6 is drafting an Internet-Draft that was recently submitted to the Internet 
Engineering Task Force (IETF). This draft20 outlines the architecture of a generic 
framework for building decentralized dynamic systems and aims to expand and open the 
Babel framework to new developers interested in swarm system development. This effort 
aims to pave the way for the standardization of the tools being developed in WP6 and its 
adaptation by external entities. 
 
At the time of writing, the draft is under internal review and is set to be presented and 
submitted at the upcoming IETF 123 meeting in Madrid. As part of this initiative, TaRDIS 
will participate in the event’s hackathon, introducing the draft and its reference 
implementation to newcomers and encouraging contributions to its development.  
 
WP6 will continue to work on this document to refine its specifications, as well as writing 
new internet drafts to explain certain aspects of the framework in further detail. 

 
20 https://datatracker.ietf.org/doc/draft-jesus-gfds/ 
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10. CONCLUSIONS 

This deliverable presents the progress achieved in Work Package 6 (WP6) of the TaRDIS 
project during its second year. WP6 plays a central role in the development of the TaRDIS 
toolbox by designing and implementing the core runtime support for decentralised swarm 
systems. During this reporting period, the work focused on extending and consolidating 
the foundational abstractions introduced in the first year, with substantial advances across 
all three technical tasks. 
 
New and enhanced protocol implementations were produced in the context of 
decentralised membership, communication, and monitoring. These were integrated into 
the Babel ecosystem and validated through cross-platform support, including mobile and 
embedded devices. The autonomic runtime introduced by Babel-Swarm, and its adaptation 
for Android through Babel-Android, enabled the deployment of adaptive, UI-less 
applications across heterogeneous swarms. At the same time, the data management stack 
was evolved through the consolidation of PotionDB and Arboreal, and the creation of a 
novel fully decentralised solution, based on CRDTS, named Nimbus. In the area of 
monitoring and reconfiguration, new tools for telemetry acquisition, metric aggregation, and 
decentralised reconfiguration were introduced and validated through demonstrators. 
 
The outcomes of WP6 during this period are not limited to research contributions but also 
include mature software components that are publicly available and ready to be reused, 
integrated, or extended. These components were validated through demonstrators that 
showcase the runtime’s ability to operate across heterogeneous environments, including 
mobile, embedded, and cloud-based nodes. 
 
In the final year of the project, WP6 will continue its efforts by finalising the unified runtime 
implementation of Babel 2, expanding the toolbox with new mechanisms for secure 
communication and decentralised intelligence, and preparing the runtime for integration 
with the full set of TaRDIS use cases. The goal is to deliver a coherent, robust, and 
reusable runtime environment for building the next generation of intelligent and adaptive 
decentralised systems. 
 
Finally, we note that two of the outcomes of WP6, namely the Babel ecosystem and 
Nimbus, have been identified as key innovations by the EU Innovation Radar. 
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