
anpa

D7.1: Report on the expected
improvements and quantification

procedures
Revision: v.1.0

Work package WP7

Task T7.1

Due date 30/Sep/2023

Submission date 30/Sep/2023

Deliverable lead Roland Kuhn (ACT)

Version 1.0

Authors Roland Kuhn (ACT), Giovanni Granato (GMV), Aravindh Raman (TID),
Nicolas Kourtellis (TID), Tiago Teles (EDP), Manuel Silva (EDP)

Reviewers Ivan Kaštelan (UNS), Sotirios Spantideas (NKUA)

Abstract
This document reports on the findings of implementing the use cases without
the TaRDIS toolbox, focusing on identifying and consolidating the areas of
improvement that lie within the project scope.

Keywords use case implementation; programming tools; baseline implementation

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Document Revision History

Version Date Description of change List of contributor(s)

V1.0 29/9/2023 first submitted version resulting from
concurrently integrated reviews all authors

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held responsible for
them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme
Nature of the
deliverable: R

Dissemination Level

PU Public, fully open, e.g. web (Deliverables flagged as public will be
automatically published in CORDIS project’s page)

✔

SEN Sensitive, limited under the conditions of the Grant Agreement
Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444
Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444
Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

Page 2 of 40 © 2023-2025 TaRDIS Consortium

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

EXECUTIVE SUMMARY

The following document is deliverable D7.1 of the TaRDIS Project, funded by the European
Union’s Horizon Europe research and innovation programme under grant agreement number
101093006. It reports on the progress and findings of task T7.1 “Baseline”.

We present the baseline implementation work performed by each of the four use case
partners, including a description of the respective system architecture and interim results.
Special focus lies on identifying the challenges faced in this process, in particular those that
lie within the stated project scope of the TaRDIS consortium; we briefly list challenges that we
will not improve upon because they are outside the project scope and will thus be tackled
according to the state of the art.

The main outcome is presented in section 4, where we consolidate the in-scope challenges
into a list of areas of improvement. Each area is presented with an expected improvement
from the perspective of a programmer using the TaRDIS toolbox. We also list KPIs that will
allow the quantification of the achieved improvement for each of them.

Page 3 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

TABLE OF CONTENTS

1 Introduction...8
2 Implementation of Use Case Baselines..9

2.1 EDP...9
2.1.1 Background Introduction..9
2.1.2 Energy Baseline...9
2.1.3 Remaining difficulties...13

2.2 TID.. 14
2.2.1 Background Introduction..14
2.2.2 Baseline Architecture & Implementation..15
2.2.3 Baseline Interim Results.. 19
2.2.4 Challenges...21

2.3 GMV.. 22
2.3.1 Background..22
2.3.2 Baseline Architecture & Implementation..23
2.3.3 Baseline Interim results... 24
2.3.4 Challenges...25

2.4 ACT... 26
2.4.1 Background..26
2.4.2 Baseline Architecture & Implementation..26

2.4.2.1 Proof-of-concept stage...27
2.4.2.2 Baseline stage..27

2.4.3 Baseline Interim Results.. 28
2.4.4 Challenges...29

3 Delineation of TaRDIS Scope...30
3.1 Generic Requirements.. 30
3.2 Out of Scope for the Consortium...30

4 Areas of Improvement..32
4.1 Membership and Communication... 32

4.1.1 Overlay networks... 32
4.1.2 Nodes having sporadic connectivity.. 33

4.2 Machine Learning..33
4.2.1 Splitting up a learning/inference problem for efficiency... 33
4.2.2 Hierarchical federated learning..34

4.3 Data Management...35
4.3.1 Partial replication of event logs..35
4.3.2 Replicating large pieces of data like FL models.. 35

4.4 Protocols... 36
4.4.1 Conformance to design specified by non-programmers.. 36
4.4.2 Information flow security.. 36
4.4.3 Verification of desirable properties...37

4.5 Summary...38
5 Conclusion.. 39

Page 4 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

LIST OF FIGURES

Figure 1: EDP centralized baseline...10
Figure 2: EDP distributed system baseline... 10
Figure 3: EDP lab setup for the distributed system baseline.. 11
Figure 4: EDP final concept.. 12
Figure 5: Implementation Overview of FLaaS...15
Figure 6: Overview of FLaaS architecture with task execution steps..................................... 16
Figure 7: Test accuracy of FLaaS ML model on 2 settings... 21
Figure 8: Baseline implementation of centralized EKF for ODTS... 23
Figure 9: ACT baseline architecture and implementation... 26

Page 5 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

LIST OF TABLES

Table 1: Core software components used during FLaaS client development.........................18
Table 2: Specifications of devices used in the in-lab experiments..20
Table 3: Performance of FLaaS training modes on devices in lab experiments..................... 20
Table 4: Overview of use case contributions to KPIs.. 38

Page 6 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

ABBREVIATIONS

AGV Automated Guided Vehicle

API Application Programming Interface

BDS-3 BeiDou 3rd generation navigation satellite system

CDF Cumulative Distribution Function

DER Distributed Energy Resources

DL Deep Learning

DP Differential Privacy

ERP Enterprise Resource Planning

FL Federated Learning

G2G Galileo 2nd Generation of satellites

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Protocol

IPFS InterPlanetary File System

ISL Inter-Satellite-Link

JS JavaScript

LEO Low Earth Orbit

MES Manufacturing Execution System

ML Machine Learning

ODTS Orbit Determination and Time Synchronization

P2P Peer-to-Peer

PNT Position, Navigation and Timing

SGAM Smart-Grid Architectural Model

TCP Transmission Control Protocol

UDP User Datagram Protocol

Page 7 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

1 INTRODUCTION

This document reports on the work of task T7.1 “Baseline” done in the first nine months of
the project. As foreseen in the work plan, the implementation of use cases with state of the
art tools — before the introduction of the TaRDIS toolbox — has led to deep insights into the
programming challenges affecting the field of intelligent swarm systems today.

Section 2 comprises descriptions of the four use cases in terms of architecture,
implementation, interim results, and identified challenges. We note that the TID use case has
changed slightly in shape relative to the description in the project proposal: the bulk of the
effort will be spent on developing a hierarchical federated learning [HFL] toolkit (which will be
part of the TaRDIS toolbox), which will then be the basis for a set of smaller use cases
implemented for the purpose of validation. An important aspect is that the HFL toolkit itself
will be based on the communication and data management tools offered by TaRDIS,
meaning that this work also contributes to the inputs for and validation of these parts of the
toolbox.

Section 3 enumerate areas that will not be the target of TaRDIS improvement. In the former
case these are generic requirements without which the use cases cannot meaningfully be
implemented; it is therefore assumed that these properties are always upheld, both in a
baseline implementation and the final TaRDIS implementation. In the latter case we note
challenges that are either specific to one of the use cases without sufficient potential of
generic extension, or problems that already have solutions in the state of the art upon which
the consortium in the TaRDIS scope cannot realistically improve with the available resources
and expertise.

Section 4 then presents a consolidated view on the identified use case challenges that
TaRDIS will improve on, structured according to the work packages in which the respective
main body of work will be performed. Each area is briefly motivated and the improvement
sketched — the details of the offered tooling will be reported on in further reports especially
from WP3. We also give candidate KPIs for quantifying each achieved improvement, noting
that the precise definition of these measures will depend on the details of the emerging tools
offered by the TaRDIS toolbox and that most of the described measurements have not yet
been performed on the baseline implementations that are still under development.

Page 8 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

2 IMPLEMENTATION OF USE CASE BASELINES

In this section we describe how the baselines have been implemented: using which tools and
techniques, with how much effort, and where the main pain points were.

2.1 EDP

Next, we describe how the baseline has been implemented for the energy use case.

2.1.1 Background Introduction

Energy grids play a crucial role in modern society connecting energy producers with
consumers, ensuring a smooth and ideally uninterrupted flow of energy. Maintaining a careful
balance between energy generation and consumption is essential for the effective functioning
of these grids. In today's context, an increasing number of energy consumers have also
become energy producers (prosumers). This shift, driven by motivations such as personal
energy ownership and usage or by economic incentives such as selling excess energy to the
grid or local neighbours (peers), has led to an increasingly more decentralized energy
landscape [14].

This decentralized energy setup requires a shift in how we manage and control it. We're
moving away from the traditional centralized approach to a more distributed one. In this new
setup, different energy sources and consumers collaborate to share energy, helping to
maintain a stable grid. This mechanism of surplus energy from one source matching the
energy needs of another, in order to ensure an efficient energy distribution system, is a
problem similar to the computer science realm and to how swarm intelligence/collaborative
intelligence works. Swarms of energy management devices can ensure grid stability, in an
increasingly dynamic grid, where a more centralized system would have difficulties keeping
up with the local changes.

2.1.2 Energy Baseline

The starting point of the energy baseline was a concept based on a centralized system
depicted in Figure 1.

From the figure, one can observe the exchanges of energy and data. In this early centralized
version, citizens can access the data they generate, which is then unidirectionally exchanged
with the central system. As for energy transit, it occurs from a central producer—typically a
power plant—to the final consumer. The final consumer can also function as a producer, and
an orchestrator at the 'Grid' level is responsible for managing and balancing the grid.

Page 9 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Figure 1: EDP centralized baseline

Figure 2: EDP distributed system baseline

The baseline implementation followed the second iteration of the concept, as illustrated in
Figure 2. This iteration adopts a distributed approach in contrast to the centralized one
described earlier.

In the distributed system, it introduces the concept of an energy community, where the
electrical grid remains the same as described previously but is now segmented into three

Page 10 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

layers. These layers include the national grid layer, followed by the community or
neighborhood layer, and finally, the household layer.

Energy flows predominantly in a cascading manner from central generation. However, with
the inclusion of a market orchestrator operating between the grid and community layers,
imbalances within each community can now be matched and balanced. This enables the
utilization of surplus energy in one community, such as Distributed Energy Resources like
rooftop PV, to offset the deficits in nearby communities. For instance, a neighboring
community may experience higher energy demand, especially when an electric vehicle is
charging. The orchestrator can proactively manage these imbalances with one-hour-ahead
time slots, thus alleviating constraints on the national grid. The community level orchestrator
may also help balance energy production inside of that community, by redirecting an energy
surplus from one home to another home requiring that energy.

To implement the second concept in the laboratory, we set up the environment depicted in
Figure 3, where data from each component is broadcasted within the community.

Figure 3: EDP lab setup for the distributed system baseline

This setup consists of three houses, one EV charger, and a PV array. Specifically, we have
two houses equipped with typical electrical switchboards (H1 and H2), which serve as
real-world representations of the orange ones depicted above. Additionally, there is a
unidirectional residential wall box for EV charging (named C1) and a dynamically controllable
House H3. The solar array is connected to H3, and it provides real-time data from rooftop
PVs, allowing for dynamic changes in energy generation.

Houses H1 and H2 are considered part of different communities, with each house connected
to the national grid. The grid emulator is capable of communicating via API with the market
operator.

This market operation mode uses the more traditional client-server architecture, with a
particular case of the Community level being both a client and a server at the same time. It is
a client to the grid, but a server to each home.

Page 11 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

This lab environment serves the purpose of conducting initial baseline validation, this initial
validation does not use any TaRDIS component.

The final concept, depicted in Figure 4, represents a distributed and more dynamic approach
where each player can communicate with every peer, this solution significantly benefits from
the outcomes of TaRDIS.

In this scenario, the orchestrator will possess the ability to aggregate information from the
three layers, transitioning from centralized control to a distributed control model, similar to the
operation of a Virtual Power Plant. Advanced cryptography usage, such as group signatures,
maintains the privacy and necessary anonymity of users, while guaranteeing no foul play or
market disruptions, leaving the energy market holder with the possibility to uncover and
diagnose messages from misbehaving nodes in the network. This shift, combined with more
accurate forecasts for energy generation and consumption, will enable new business models.

Figure 4: EDP final concept

To summarize this section, considering Figure 4, the introduction of TaRDIS is anticipated to
bring several benefits. TaRDIS outcomes will include consumption and generation forecast
as a way of short-term grid balance planning, data layer in the communication model within
the community to coordinate offers and needs and also an abstract way of programming all
of this.

The benefits for the Energy sector include enhanced capabilities for establishing new energy
communities, improved grid operations, and increased resilience due to the finer granularity
in measurement and control. Another relevant outcome is the potential maximization of
locally produced energy, which can have a positive environmental impact given its renewable
nature and reduced distribution losses. Further improvements/benefits are being discussed
and aligned with the researchers from academia and IT partners.

To assess these metrics, we employ the use case KPIs as the primary measurement
indicators. In the environmental domain, it becomes feasible to quantify the CO2eq

Page 12 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

emissions saved when compared to a typical fossil fuel alternative. Lastly, for the set up of
new communities, this verification will be carried out through the utilization of a TaRDIS
developed application designed to execute this task.

2.1.3 Remaining difficulties

As of today, cf. from Figure 2, the energy management is done manually by an aggregator
which is part of the Energy Community and the grid operator, both working for grid
stabilization — grid energy stabilization guarantees that all consumers are supplied.
Communication between grid operator and aggregator is not automatic.

In TaRDIS one still needs to establish the procedures first, for matching the request and offer
of energy before the transaction of energy itself and then the strategies for handling real time
faults either for consumers’ or producers’ side.

Technically, there are some challenges that still need to be overcome to get this system into
production. Most of these are covered by a comprehensive TaRDIS system.

The identified challenges are:

1. Interfacing with electronic simulation hardware programmatically. More coordination
between EDP departments in order to develop a useful API for electronic simulation
hardware is still ongoing.

2. Advanced cryptography usage was a complex issue to solve for the EDP use case,
as some more obscure, but extremely useful cryptography schemes for anonymous,
private, yet secure peer to peer systems are very underdeveloped (such as group
signature schemes).

3. Comprehensive network hole punching. To develop a system where the nodes truly
communicate peer to peer, a network hole punching solution has to be developed
within the TaRDIS toolkit. A network condition agnostic hole punching solution would
make real world usage of swarm systems, through the public internet, much more
reliable and faster to execute.

4. The implementation and testing of distributed network overlays are very time
consuming, error prone, require extremely specialized labour and are a commonly
duplicate effort between different projects. A toolkit where it is possible to specify the
properties that are required for a certain overlay, and one is transparently chosen and
deployed would make this step much faster to iterate and develop on.

5. The verification of correctness for distributed systems is also a particularly difficult
challenge. Although the correctness may be approximated empirically, by running
tests, a mathematical guarantee of correctness (lack of deadlocks, lack of infinite
message loops, provably correct encryption, etc) would ease the deployment of
swarm systems into the real world.

The first two are specific to the EDP use case and lie outside of the scope of TaRDIS.
Network hole punching is an issue for peer-to-peer systems operating over the Internet,
where participants are not all in the same local network. Solutions to the unfortunately
common violations of the Internet’s original promise of end-to-end connectivity are being
developed by many organisations, including Protocol Labs to whom we have an ongoing

Page 13 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

relationship; we plan on using their libp2p implementation since providing a proprietary
solution is out of scope for TaRDIS.

2.2 TID

2.2.1 Background Introduction

Decentralised and Federated Learning (FL) [1], coupled with Differential Privacy (DP) [2],
Trusted Execution Environments (TEE) [3], or other methods, enables data owners to
securely train a Machine Learning (ML) model among them, by only sharing private models
trained locally on their data. In fact, FL has been adopted by major tech corporations (e.g.,
Google, Apple, Meta, etc.) due to properties such as privacy-preserving (PP) data modeling,
scalability and performance.

Typical FL use cases currently employed by industry focus on building an ML model for a
specific ML task by applying FL across user devices, i.e., cross-device, on user local data
(e.g., GBoard). These deployments are based on proprietary code, embedded in
ecosystems, and typically designed on a per application (app) basis. This clearly limits the
usage of FL to a few big players able to sustain cost and risk of developing and using FL.

To change this status quo, recent start-up or open-source efforts aim to provide FL tools for
B2B customers or end-users, where FL is performed across company servers, i.e.,
cross-silo, on cloud-collected data (e.g., between health providers, or financial institutions,
etc.). Despite these early efforts, there are several novel scenarios where FL can be applied
that remain unexplored, such as the cross-app mode: a combination of cross-silo and
cross-device for an ML task that apps share. The below motivating examples share the same
scenario: two or more apps collect partially similar data (they may be independently collected
and annotated with labels by each app and its user) and want to collaborate and solve the
same ML problem with better performance (e.g., accuracy):

● Health: A fitness and a nutrition app want to detect when their user is at risk of
diabetes and alert them. Each app may have access to complementary data, or
exactly the same data (e.g., blood pressure, type of exercises performed, calories
consumed, etc.), and their combination may allow the apps to find out more
accurately if their user / data owner is closer to such a health risk.

● Entertainment: Video apps (e.g., YouTube, Netflix, etc.) want to train a better
recommender system for their customers. Same scenario for audio apps (e.g.,
Spotify, Pandora, etc.).

● Image Analysis: Apps analyzing images for object classification (e.g., Google Photos,
Android Gallery, etc.) want to build a model for better detecting objects, contexts, etc.
The labels (i.e., objects present on each image) are assumed to be provided locally
by the user / FL device owner, and can be used for training of the FL model.

● Ad delivery: Ad providers want to build a model to better predict when the user is
more likely to click on ads, delivered through push notifications.

In these, and many other scenarios, if the apps could locally share their data or ML models in
a PP fashion, they could train a unique FL model across their users’ devices that helps all
participating apps, while respecting data owner’s privacy. Under the cross-app mode, even

Page 14 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

multi-task ML problems can be collaboratively solved between apps. Unfortunately, crucial
system research challenges remain to be solved to materialize such cross-device cross-app
scenarios in the mobile context, and even democratizing FL to small and medium companies
in as-a-service fashion.

2.2.2 Baseline Architecture & Implementation

Figure 5: Implementation Overview of FLaaS.

In the baseline implementation, we build FLaaS, the first practical federated learning
framework for mobile environments that enables cross-device and cross-app (i.e., on-device
cross-silo) FL, and as-a-service. In Figure 5, we show in FLaaS how 𝐾 devices with 𝑁 apps
installed across the system, are securely sharing their heterogeneous samples or locally
trained models with the local service. These are aggregated locally (denoted by ⊗) in order to
produce a local model. The model parameters from all K devices are securely aggregated by
applying FedAvg (denoted by Σ) following typical FL protocol.

FLaaS has been designed to address the following FL system challenges:

● Existing FL methods do not provide an easy to use way for app developers based on
simple APIs and tools as ML-as-a-Service counterparts (e.g., Amazon Web Services
[4], Google Cloud [5] or Microsoft Azure [6]). To address this challenge, for the
baseline implementation, we use a centralized, cloud component to automatically
orchestrate and load balance the FL server, with an easy user interface (UI) for app
developers, and scalability for multiple parallel FL tasks. Our design is end-to-end and
includes several system optimizations required to deploy it in a scalable, robust
as-a-service fashion.

● There is a lack of libraries to support third-party app developers to train and federate
models in the background. Therefore, developers either train models while users are
active on their apps, directly impacting user experience, or rely on the OS scheduler,
which has full control in orchestrating such heavy compute tasks in the background,
but with well-known restrictions and limitations. To address this challenge, our design
includes a client-side middleware (Sec. 2.2.3) and library enabling third-party mobile
apps to work with such OS constraints, and train FL models on-device.

● There is no support for cross-app local sharing of data or models for collaborative ML
training: it requires secure and PP mechanisms for storage, communication, and
permissions management across apps. To address this challenge, within the library,
we offer two types of cross-app FL modeling: joint (shared) samples and joint
(shared) models. This library, based on TensorFlow Lite, can be integrated in existing

Page 15 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

apps, and used by calling a set of secure and PP communication and storage
primitives and APIs. In particular, a secure communication channel is established
between apps embedding the library and the service supporting different types of
data, i.e., numerical, text and binary. Also, data and model storage on devices are
secured using per app and service spaces with permissions specified by developers
and enforced using an on-device data management engine.

For the sake of simplicity, we will call our service FLaaS (FL-as-a-Service) that allows app
developers to perform cross-device, cross-app federated learning. We implement the FLaaS
for Android-based mobile devices (i.e., client-side elements), while leveraging a popular
cloud-based platform for the centralized component. Figure 6 provides the FLaaS
architecture overview, along with the list of steps required to perform an FLaaS training
process. As illustrated, there are four core components of FLaaS: 1) App Developer Interface
2) FLaaS Server 3) Notification Service and 4) Client Devices.

In FLaaS, we assume a set of client devices participating in FLaaS device infrastructure,
periodically reporting their status through the backend’s REST API (1) to the DB for logging
(2). An app developer uses the Admin Interface to create a new FL project (3), whose
configuration is stored in the DB (4). The Device Scheduler detects the new FL project (5),
queries the device statuses from the DB (5), and sends an FL training request using its
Notification Service provider (6a) to external services such as Firebase Cloud Messaging
(FCM) (6b). Each device’s Local module receives the FL training request (7) and requests
from the participating third-party apps to receive either their local samples for training, or to
train their own models (8a, b and c). It then conducts the necessary on-device model training
(if it received samples) or model aggregation and averaging depending on the training mode.
When a substantial number of reported models is received by the Server (1), the Device
Scheduler instructs the Model Aggregator to accumulate the received models (9a and 9b),
marks the FL round as complete, and continues with the next FL round until the project is
complete (i.e., stopping criteria are reached).

Figure 6: Overview of FLaaS architecture with task execution steps.

Next, we explain each of these four core components:

1. App Developer Interface. The first function that a service such as FLaaS should offer is
an admin UI for app developers, that allows them to bootstrap, configure, monitor, and

Page 16 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

terminate an FL project executed within the system. Developers can use this UI for
registering their apps with the system, produce the authentication tokens that will be used in
their app and configure the data and model access policies to be enforced by FLaaS at
device level. Thus, they can create new FL projects to be executed from FLaaS-registered
devices, make a pre-selection of participating apps and devices, and initiate the FL training
process.

Besides the typical FL parameters available in FL system (e.g., ML model architecture,
epochs, number of FL rounds, FL model loss, learning rate, partial participation ratio, etc.),
our system provides additional configuration for cross-app training that each app developer
can configure separately, such as: training mode (joint samples or models), policy
management (app data access, expiry date) locally per client, etc.

When the developer defines a new project using the UI (step 3, Fig. 2), the project is pushed
to the FLaaS Server (step 4) for (i) storing its configuration, (ii) executing the project in the
available client devices, (iii) monitoring the project's health and progress, (iv) terminating the
project when stopping criteria are reached.

2. FLaaS Server. This is a cloud-hosted service in charge of executing the FL project
previously created at the App Developer Interface, while coordinating the Client Devices. It
consists of typical FL system modules: 1) Database, to store project-related metadata and
models received from devices; 2) Device Schedulers, to monitor and manage project health
and status through time and devices; 3) Model Aggregator, to apply aggregation functions as
requested by app developers. 4) Device Workers, to interact with client devices for FL model
training assigning and responses received via REST endpoints, all exposed to the client
devices using token-based authentication, e.g. to report device availability and status
updates (e.g., battery level, charging state, etc.), to retrieve the FL model parameters, to join
the FL round, to submit the FL model parameters, to submit performance results, etc. It also
includes a load balancer module to evenly distribute load across workers. 5) Notification
Service, for sending FL training requests from the Server to participating Client Devices in a
secure, asynchronous, and one-way communication request (details below).

3. Notification Service. The Notification Service (NS) is used for secure, asynchronous, and
one-way communication from the Server to Client Devices. While it can generally depend on
various types of technologies (e.g., message brokers, TCP connections, etc.), in our context,
it takes the form of a Push NS. These are cloud-based, highly efficient services for Android
and iOS to propagate information to a previously registered mobile app, either in the form of
a visual popup, but also invisible (silent) notifications that deliver JSON structured data to an
app. They use secure TCP communication to directly push data to a device's registered app
through dedicated cloud services provided by Google (FCM) and Apple (APNs). Silent
notifications (i.e, that do not appear to the user but wake up the app in the background) are
usually received with an unspecified delay from the app. We implement the backend service
within Heroku Cloud Application platform for hosting the server modules, PostgreSQL and
Amazon S3 data store for storing, Django REST framework for Device Workers, and
Pushwoosh for the Notification Service.

4. Client Devices. The most important piece of FLaaS is the set of client devices in charge
of computing the ML training tasks orchestrated by the Server for the execution of an FL

Page 17 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

project. On such devices, there are two main modules: Local and Library. These modules
facilitate novel on-device functionalities: App authentication, inter-app communication,
access policy management, ML model training, data storing, and status reporting.

4.1 FLaaS Local. This is a trusted, standalone service that needs to be installed on the
device and provides the core FL functionality to the device in accordance with requests sent
by the Server. We do not make any assumption on how this service lands on-device: it can
be pre-installed on the device by the OS provider or manufacturer. Alternatively, an interested
third-party app developer can recruit a device owner to install its app with proper user
incentives (e.g., promise of better app experience due to model personalized on user data).

Local provides authentication and secure communication of the device to the Server, and
periodically reports the device status (akin to a heartbeat), with different details such as
battery level, charging state, or connectivity state, to the Server for consideration. The set of
statuses from all participating client devices is in fact the one collected and analyzed by the
Server to decide which devices to invite for upcoming FL training tasks. Local is also the
module that receives messages from the Notification Service with configurations for pending
FL project tasks related to specific third-party apps. These task configurations are then
communicated to the appropriate apps for execution, within their Library (see next).

Table 1: Core software components used during FLaaS client development.

Supported Mobile
Operating System

Android (≥0.8), iOS does not provide
(yet) in-app communication.

FLaaS Library LoC: 1.5k
TensorFlow Lite v2.6.0
WorkManager v2.7.0

FLaaS Local Standalone android application (Java)
LoC: 2.4k
Retrofit v2.9.0,
Pushwoosh Android SDK v6.3.5

Inter-App Communication Android Broadcast Receiver

App Workers WorkManager API

4.2 FLaaS Library. This is a mobile app library integrated within each FLaaS-enabled
third-party app willing to participate in FL training processes. This library has a set of simple
APIs that are utilized by the developer in the app code. More particularly, the API consists of
calls to register the app's secure token (created through the App Developer Interface) and to
provide controlled (secured through policies) access to data the app is willing to share. Under
the hood, it implements a set of functions that allows the app to securely communicate with
Local to receive ML modeling configurations based on FL project of relevance to the app,
execute the appropriate on-device ML training, and share data or model parameters with
Local. Table 1 lists various software components used to build the FLaaS client devices.

While cross-app FL modelling is enabled, FLaaS has three modes of operation:

Page 18 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Single-app FL modeling: In this case, each app in the device trains a model on its own data
only. The starting configuration for this training is received by the Library of the specific app,
and includes the base model to be trained, access policy requirements on the local data to
be used, and model hyperparameters. If the developer defined DP-noise to be injected, this
is done at this ML training stage. After local training is done, each app sends to Local its
model built. When Local has all such models from unique apps, it compresses and transmits
them to the FLaaS backend server. The backend performs FedAvg across all reported local
models of apps and builds one global weighted average model per app, which it then
communicates back to the participating devices. Finally, Local distributes this global model to
each app for the next round.

Joint Samples (JS) mode: The apps share training samples with Local, appropriately
packaged to a format pre-agreed by the developers. DP-noise is added by each app, in a
pre-training stage. Local checks the received samples from each app for formatting, and then
merges them before performing ML model training on all. If these third-party apps require it,
Local may also inject further DP-noise during ML training. Then, Local communicates with
the Server the resulting model as in single-app mode.

Joint Models (JM) mode: The apps conduct ML model training individually using their local
samples, as in Single-app mode, with the defined DP noise. Then, each app shares only its
model with Local. Local applies FedAvg to all received models and produces a joint model. It
finally communicates to the Server the joint model across apps of the devices. Global
performs FedAvg across all collected joint models and builds a global weighted averaged
model, for each collaborating group of apps. Then, it communicates each such global model
back to participating devices. Finally, each Local distributes the global model to each app of
the collaborating group.

2.2.3 Baseline Interim Results

We evaluate the FLaaS feasibility, overhead and ML performance via in-lab experiments
from an image classification-based use case (i.e., an image represents a specific object such
as car, truck, airplane, etc., and the ML task is to predict what that object is). The in-lab tests
allow us to evaluate the cost of the system under controlled settings: we observe devices
spend a limited amount of time (i.e., few minutes) and resources (i.e., energy and CPU) in
training of an ML model during an FL round, and communication with FLaaS. Further, we test
FLaaS model performance on a cross-app use case: image classification for image analysis.
The cross-app scenario materializes assuming three toy mobile applications that need a
model to perform the same ML task (image classification), and decide to collaborate and train
a better ML model.
The evaluation with in-lab experiments aims to ensure the feasibility of FLaaS being
deployable on Android devices and to measure the cost of FLaaS operations from the point
of view of latency, CPU, and energy consumption.

Example Application. We create three simple apps (named Red, Green, and Blue, or RGB),
with 101 lines of Java code each. Each app includes FLaaS Library v0.1.0 for supporting
system functions and to demonstrate the simplicity and efficiency of a third-party app

Page 19 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

executing FLaaS projects. In the next experiments, apps were preloaded with CIFAR-10 data
[7] and executed image classification tasks.

Performance Metrics. We assess the cost of on-device FLaaS functions by measuring
compute cost via CPU utilization (in %), time delay (in minutes), and energy consumption (in
mWh) taken to compute said ML tasks. We also measure performance of the ML model
trained using test accuracy as a standard ML utility metric.

System Costs: We begin to assess on-device cost for 3 fundamental FLaaS functions
executed during an FL round, by measuring time required to execute them on user devices:

● Join FL round: Communicate with Server and download global FL model parameters.
● Model Training: Load local samples into on-device ML engine and conduct the

training.
● Model Aggregation: Aggregate local models and apply FedAvg (in JM only; typically,

very small).
● Reporting: Communicate with Server to report updated local model and other

performance metrics.

To measure the system cost of on-device ML training, we perform several experiments with
three popular Google Pixel devices (specs in Table 2) as test devices in a controlled setting:
the devices are forced to perform the ML task on Independent and identically distributed
data, from beginning (received notification of new ML task) until the end (delivery of ML
model to Server) without any breaks. All devices were updated to Android 12 and with a
deactivated OS-related automated process that would influence measurements (ie.,
automatic updates, adaptive battery and brightness).

Table 2: Specifications of devices used in the in-lab experiments.
Model Device Specification
Pixel 3a (P3a) Snapdragon 670 (8-core, 10nm), 4GB RAM
Pixel 4 (P4) Snapdragon 855 (8-core, 7nm), 4GB RAM
Pixel 5 (P5) Snapdragon 765G 5G (8-core, 7nm), 8GB RAM

During evaluation, each device was connected to a stable 5GHz (IEEE 802.11ac) Wi-Fi
network, while CPU utilization was collected using the Android Device Bridge (ADB) tool, and
energy consumption (in mWh) using an energy measurement infrastructure at TID [8]. All
RGB apps are whitelisted (i.e., set to Unrestricted Battery usage) aiming to measure the
most optimal scenario where all apps are responsive to ML training requests, without further
scheduling delays introduced by Android's Work Manager.

Table 3: Performance of FLaaS training modes on devices in lab experiments.
Duration (sec) CPU usage (%) Energy (mWh)

JS JM JS JM JS JM
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

P3a 167.3 (13.1) 85.3 (1.5) 17.9 (2.1) 29.7 (0.6) 56.8 (8.6) 37.8 (0.5)
P4 117.1 (1.1) 62.1 (0.8) 15.4 (0.1) 27.8 (0.4) 41.3 (0.9) 29.7 (0.5)
P5 115.0 (0.4) 62.8 (0.9) 16.1 (0.1) 28.8 (0.4) 42.7 (1.0) 32.4 (0.7)

Page 20 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Table 3 shows the average time taken for a device to perform the ML training task, for the
three test devices and two cross-app modes (JS vs. JM) with a total of 450 samples. As
expected, the older device (Pixel 3a) takes the longest to finish, regardless of modeling
mode. Also, confirming results from the user study, JS is slower than JM since apps must
first transfer data to Local, and then Local has to train the model on them. On the other hand,
JM builds 3 individual models, even in parallel if the OS's Work Manager allows it.
Interestingly, this parallelized execution in JM is reflected in CPU usage, which is, on
average, 74.7% higher on JM than JS, across devices. Finally, the reduced execution time,
even at higher CPU usage, leads to overall reduction in consumed energy from JM: 41%
lower than JS.

ML model performance: We measure the ML performance of the trained model for the
same ML task as before (i.e., image classification), using two FLaaS settings: 1) training a
model in a single-app modeling setup, with 250 samples; 2) training a model in a
joint-samples modeling setup, using 250+250=500 samples from 2 of the local mobile apps.
From these preliminary experiments, we find that sharing data between apps in the joint
samples cross-app scenario helps the overall ML utility by 10%, as measured with test
accuracy in Figure 7. Also, in further experiments that compared performance of joint
samples vs. joint models mode of training, we find that the shared data samples (JS) among
3 apps can achieve up to 48% higher test accuracy across different data distributions when
compared with the shared models (JM) approach among the 3 apps. However, these results
need to be taken in association to the previous results on cost on devices for executing the
various FLaaS ML tasks, with respect to CPU usage, time execution and energy
consumption.

Figure 7: Test accuracy of FLaaS ML model on 2 settings.

2.2.4 Challenges

Privacy and Security of AI models: Privacy-preserving techniques are crucial in FLaaS.
Ensuring that sensitive data remains confidential during the training process is quite
challenging. Model inversion attacks and membership, attribute, and data inference attacks
are privacy threats in FL, where attackers try to extract information about individual data
points from the model's updates. Therefore, a challenge to be solved within TaRDIS will be to
provide the necessary secured authentication and communication between the back-end and
training FL devices, as well as the appropriate aggregation methods that are necessary to
protect model updates during transmission.

Page 21 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Furthermore, FLaaS at this point does not provide yet privacy-by-design to the models built.
Thus, another challenge will be to find an efficient way to inject differentially-private noise to
the models built, in order to protect them from adversarial attacks.

Trust on Backend Server: While FLaaS aims to distribute trust, the central server or
aggregator still plays a crucial role. Ensuring the trustworthiness of this central entity is
important, and a key challenge to be resolved in the future.

Hierarchy of FLaaS architecture: FLaaS is envisioned to be scalable to thousands or millions
of devices. However, this vision raises the question of effective scalability of the central
components of the current architecture. Therefore, making use of naturally occurring
hierarchies of trust already existing between FLaaS clients and server (e.g., intermediate
nodes such as routers, antennas, switches, edge devices, home personal assistants, etc.)
can help improve scalability of the FL process execution onto multiple devices, without
penalizing performance of the FL model or time it takes to construct it. In fact, using such
intermediate nodes could offer opportunities for modifying the trust model of FL clients, i.e.,
by relaxing the need for trusting only the FL server, and instead being able to trust an
intermediary node to perform FL aggregation, privacy noise injection, etc. Therefore, a
challenge to be solved within TaRDIS can be to understand how to construct, coordinate,
and manage an overlay of intermediary nodes that can help with the FL process, in a way
seamless and transparent to the developer.

Secured communication channel between the endpoints: Communication between FLaaS
endpoints (FL server, clients, notification service, other intermediaries, etc.) needs to be
performed in a secure fashion, regardless of churn of endpoints, scalability of FL server, etc.
Therefore, a challenge to be solved within TaRDIS can be to explore existing state-of-the-art
means to enable such secure, correct-by-design communication, in a seamless and
transparent way to the developer.

Heterogeneity of FLaaS clients: Clients in an FL setting can have different data distributions,
hardware capabilities, and network conditions. Coordinating these heterogeneous clients
effectively, and in a correct-by-design fashion can be another major challenge to tackle within
TaRDIS. This is especially true when these clients have different roles to perform, such as
the one of a regular FL client who just trains its personalized FL model, vs. a client who
participates in the hierarchical overlay envisioned within TaRDIS, and is responsible for
providing better privacy to the overall FL model built, by aggregating intermediate results
from FL clients, protecting them with differentially private noise, and reporting them to the
next hierarchical layer (FL server or not) for further aggregation.

2.3 GMV

2.3.1 Background

Orbit Determination and Time Synchronization (ODTS) is the process of estimating satellite
position, velocity and clock parameters. ODTS is typically performed on-ground for the GNSS
constellation of satellites. It is typically performed by means of either batch least squares
technique or Kalman Filter in a centralized way [9]

Page 22 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

The GMV use case consists of performing distributed autonomous, on-board, and real-time
orbit determination and time synchronization for a large constellation of satellites in LEO.

● Distributed means that the processing is not performed on a single satellite but every
satellite computes its ODTS solution and shares it with its surrounding visible
satellites.

● Autonomous means that it is performed with limited ground stations support.
● On-board means that processing is performed on-board the satellites and not on

ground.
● Realtime means that the navigation filter for the ODTS processing can only rely on

past and present measurements to compute navigation outputs.

The most promising technology enabling the achievement of this use case is represented by
the Inter-Satellite-Link (ISL) communication and ranging capability. This is crucial to share
data between the satellites (swarm nodes).

Examples of on-board autonomous ODTS using ISL are the GPS AutoNav system which is
present on the block II-R GPS satellites [10] and the third generation BeiDou navigation
satellite system (BDS-3) [11]. These autonomous navigation concepts are not yet fully
operational. Galileo 2nd Generation of satellites (G2G) is also planned to be equipped with
ISL systems.

The initial approach towards the development of distributed ODTS is the centralized ODTS
first.

2.3.2 Baseline Architecture & Implementation

The centralized EKF (Extended Kalman Filter) was implemented as a baseline using
Matlab/Simulink. The high level software architecture is described in the following figure.

Figure 8: Baseline implementation of centralized EKF for ODTS

As seen from the illustration, a TDMA (Time Division Multiple Access) approach is used for
scheduling the observations: each satellite has a specific time window/slot to establish
connections with other satellites/ground stations.

The software allows the user to set different types of input parameters such as:

Page 23 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

● Measurements noise standard deviations (both range and range-rate): these have a
significant impact on the navigation solution accuracy.

● Number of constellation satellites to be considered for the ODTS estimation: for
testing purposes it is possible to perform ODTS for a restricted number of satellites

● Maximum number of Earth connections per satellite.
● Maximum ISL distance for establishing connection.
● Number of ISL connections per satellite: this depends on the number of antennas the

satellites are equipped with. This parameter is thought to have a significant impact on
the navigation solution accuracy.

● Number of time slots per block.

Main assumptions considered during first analyses:

● Each satellite can only connect to one other satellite and one ground station
simultaneously (assuming one antenna for ISL ranging/communication and one
antenna for ground station connection).

● A ground station can connect to multiple satellites at a time.
● During one time slot both satellites compute relative range measurements (dual

one-way measurements). When measurements are combined for processing it is
assumed that they are related to the exact same time instant.

● Range and range-rate measurements are affected by white Gaussian noise.

2.3.3 Baseline Interim results

An example constellation of satellites has been defined to be used in the first set of analyses.
The selection was based on several criteria, thought to be representative of the target
performance for the final configuration. In particular, a sun-synchronous orbit (SSO) with
an altitude of 1200 km was chosen, and the number of satellites and orbital planes was
adjusted to ensure that every point on the surface had at least 4 satellites in view at all
times (assuming a minimum elevation of 10º). This trade-off, aiming to look for the smallest
constellation possible that fulfilled these conditions, resulted in a set of 170 satellites, evenly
spread into 10 orbital planes in a Walker-delta configuration.

The main reference used for the first centralized EKF algorithm implementation is [12].

Among the several parameters studied for each ODTS simulation, there are:

● Simulation execution time: for tuning the ODTS algorithm parameters it is required to
run several simulations for testing purposes. The time required for running a
simulation plays an important role for the overall development time.

● Computational effort: this is fundamental in view of the space HW development. It
needs to be feasible.

● Time to reach convergence: time needed by the algorithm to converge to a stable
solution (with error threshold to be established).

● Error after algorithm convergence: this allows to judge the performance of the
algorithm used.

Page 24 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

2.3.4 Challenges

The centralized navigation involves estimating the satellites states all at once. This implies
dealing with matrices whose dimensions are proportional to the number of satellites. Hence,
the computational load increases significantly as the number of satellites of a constellation
increases. Moving from a centralized approach to a distributed approach would allow splitting
the problem in several local smaller problems handled by each satellite. As an example,
assuming that each satellite state vector is characterized by 7 components (3 coordinates for
position, 3 for velocity and 1 for time), the covariance matrix of the global state vector (all
satellites together) has a dimension of (7*N) x (7*N) with N being the number of satellites
whose states are estimated. On the other hand, if each satellite performs its own orbit
determination (state vector estimation) it only has to handle a 7 x 7 matrix which would be
much easier for a space hardware. Therefore, the idea behind the distributed approach is
that each satellite shares the results of its ODTS with its surrounding satellites, which in turn
do the same with others.

Another aspect is the implementation of the propagation step in the Kalman Filter. The
dynamical model is a non linear differential equation which is numerically integrated. The
onboard dynamical model used for propagating the spacecraft position and velocity is quite
simple in order to be as light as possible computationally speaking. However, being simple, it
does not allow to properly model all the perturbations acting on a satellite, especially in the
case of Low Earth Orbits. A machine learning model could be trained to substitute the
integration step required for the on-board orbit propagation. This would not only allow faster
processing but also lead to more accurate results because a more complex dynamical model
could be adopted instead of a simple one. Evidence of the promising effectiveness of ML in
orbit propagation is reported in [13]. During TaRDIS project activity this aspect is going to be
researched. Moreover, in the decentralized ODTS version, provided that ML models are
going to be adopted, TaRDIS is expected to help with the implementation of federated
learning techniques to facilitate satellites on-board ML models additional training in a
collaborative and more efficient way.

The scheduling of observations is currently performed by a function (ISL scheduling). Many
combinations of inter-satellite links and ground stations links are possible, each
corresponding to a specific geometry. An optimization of this function is needed to obtain the
most accurate navigation solution according to the measurements scheduling. An ML model
could be trained to select the best combination of satellite-satellite / satellite-ground station
connections, by understanding the relationship between the satellites links and the navigation
accuracy given a specific ODTS algorithm.

The noise affecting measurements is assumed to be white Gaussian. However, we know that
this is not the case in reality. In order to have a better representation of the specific problem a
different algorithm could replace the Kalman Filter. This aspect shall be further investigated.

Page 25 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

2.4 ACT

2.4.1 Background

The smart factory use case is being implemented by an Actyx customer in collaboration with
Actyx software engineers. The baseline scope is to automate the intralogistics of production
lines for the assembly of machining centers: the customer is a company selling machines or
whole production cells/lines to other factories. A machining center is a bulky and heavy piece
of machinery weighing several tons and comprising high-precision mechanics and
corresponding control electronics. It starts out as an empty steel frame at the first production
step, advancing every night by a few meters to the next workstation, until after about a dozen
days of work all pieces are installed, connected, and tested. The function of intralogistics is to
move all parts and materials between workstations and warehouses as required; this
includes the components installed in the machining centers under construction, the tools
needed for doing so, as well as moving the partially completed machining centers at night.

2.4.2 Baseline Architecture & Implementation

Figure 9: ACT baseline architecture and implementation

The above diagram illustrates the deployment structure and high-level architecture of the
Actyx use case implementation. Each participant in the physical system (AGVs, machines,
warehouses, workers, …) — called agent in the following — is represented as playing one of
the four principal roles in this scenario (logistician, storage, workstation, screen). Every agent
uses a computation device (a tablet or industry PC [IPC]) to participate in the system, running

Page 26 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

the Actyx middleware locally to serve the locally running apps; the diagram shows one such
app per agent, but this is not meant to imply a limit: it is perfectly viable to run multiple apps
on a device, accessing the same Actyx instance. The role of Actyx is to implement
peer-to-peer event replication between computation devices without the need for other
infrastructure — assuming that the devices can communicate with one another using TCP/IP.

While the Actyx middleware is an existing software product (implemented in the Rust
language), all apps are written using the TypeScript language and the @actyx/sdk available
in that language. There are no other restrictions, e.g. on UI frameworks, local state storage,
ML libraries, etc.

2.4.2.1 Proof-of-concept stage

Before the beginning of TaRDIS the customer had already started implementing a proof of
concept for the factory project described above based on the Actyx middleware and the
Actyx Pond library, which offers a programming model very similar to a fully decentralised
pub-sub system with the addition of an eventually consistent ordering of the received
events — whenever events arrive late and need to be inserted at earlier times into the
sequence, the application state is rewound to an earlier state and recomputed with the now
more complete event sequence.

One drawback of this model is that the programmer needs to handle every possible
application event — from the local node as well as remote nodes — at any time and in any
sequence. This is necessary because some application state must be computed even from a
currently incomplete event sequence while remote events are not yet fully replicated. The
programmer must therefore encode not only the intended action sequence of a workflow but
also all transient anomalies that can arise from uncoordinated swarm communication. While
this is a burden in itself, it also adversely affects the communication between the programmer
and the workflow designer (in this case a production expert with limited programming
abilities): the structure of the code makes it difficult to judge whether the intended workflow is
faithfully implemented.

Independent of the Actyx Pond application, work started on modelling the designed
production lines in Siemens PlantSimulation, a tool for simulating the execution of production
processes including intralogistics to assess whether the intended workflows work well
together and estimate timings — this is crucial for assessing whether the design goal of
finishing each production step within a single day is achievable, thus allowing all machining
centers under construction to advance in lockstep every night. In addition, a visualisation was
created for the Actyx Pond application to manually inspect whether the workflows function as
expected. This was necessary not only to get an intuitive understanding of what was
implemented, it was also crucial to understand whether the designed and implemented
workflows were fit for purpose, i.e. whether their specifications were consistent and
compatible. The Actyx Pond model only guarantees that all replicas of an entity eventually
reach the same state, but offers no further guarantees regarding that state.

2.4.2.2 Baseline stage

In month five of TaRDIS the effort started to lift the proof of concept of the factory automation
software to production level. This entailed a complete specification of the designed

Page 27 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

production workflows, a rigorous verification of their faithful implementation, handling of all
error and failure cases, full test coverage of application state computation and progression,
integration tests with multiple distributed participants to verify successful meshing of their
various workflows, performance optimisations, the creation of debugging and operational
tools, all accompanied by independent code reviews along the way. We discuss all these
aspects in the following.

The specification of workflows has traditionally been done using PlantUML by that customer.
In order to verify the equivalence of implemented code and specified diagrams, we created a
pair of new Actyx libraries: “machine-runner”, accompanied by “machine-check”. The
programmer uses the former for implementing the application logic in the shape of an
event-driven state machine, then uses the latter for describing the designed workflow in a
JSON format, verifying its well-formedness, and asserting that the implementation matches
the specification. The JSON structure is very similar to the PlantUML text, making it easy to
remove the possibility of miscommunication between programmers and production experts.
This improvement is considered significant and extremely valuable by the customer, which is
why we did not hold it back until the final use case implementation — the reason is that their
distributed application will be used for real production in the factory later this year. In other
words, the baseline implementation of the ACT use case employs Actyx tools that already
include a TaRDIS improvement since it would have caused waste to withhold it.

Testing the application code is supported by the API design of machine-runner, which allows
the test author to instantiate a machine in any desirable state, inject any sequence of events,
and then verify that the expected state has been reached and all values have been computed
correctly. Integration testing was done by running all parts of the application within a single
process, replacing external hardware (like robots or AGVs) with emulators; integration
between the application code and the AGV controller was tested by connecting to a
dedicated hardware emulator that uses the original control electronics but contains electronic
stubs in place of sensors and motors.

Once processes were working well enough, the usage of the Actyx middleware was
optimised, cutting down waiting times of development–verification cycles considerably. Like
querying a traditional SQL database, queries can be written more or less selectively, reading
more or fewer events from storage; this is the main lever influencing how long each query
takes to execute. After this it became obvious that the monitoring dashboard was causing
high load on the Actyx database by polling for all workflows and entities at high frequency in
order to update the screen with low latency — we fixed this by switching from regularly
scheduled queries to standing subscriptions, a feature supported by Actyx in part thanks to
TaRDIS. The next optimization was to cache machine-runner instances instead of recreating
them for each UI update, which has a very similar effect (going from effectively polling to an
event-driven subscription mechanism).

2.4.3 Baseline Interim Results

Since one of the goals of TaRDIS is to reduce the effort required for implementing correct
heterogeneous swarm systems, we tracked in particular the effort expended by our customer
for implementing the intralogistics workflows in the production setting (i.e. excluding the
proof-of-concept state) and our effort in helping them achieve this, including code reviews.

Page 28 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

The effort sums up to 7PM, where the resulting state is that a first complete set of workflows
is fully implemented as described above, covering the first useful automation deployment to
be rolled out to the factory (supplying tools and components to the production line, moving
machining centers along the production line, moving finished machines to a storage area).
This resulted in 2571 lines of code (LoC) written for the implementation of seven workflows,
accompanied by 1447 LoC in protocol conformance and state computation tests.

2.4.4 Challenges

One main challenge for the implementation of the intralogistics workflows by our customer is
that the factory is still being constructed and the production experts’ design of the production
processes is still evolving. This is typical for factory automation projects and a characteristic
that needs to be taken into account when providing software tooling in this setting. The ability
to match code to workflow designs using the machine-check library has already proved to be
a step in the right direction, giving especially the project manager much higher confidence in
the ability to successfully implement this project on budget and on time.

On the technical side there are a few issues with the programming model and Actyx APIs. On
a conceptual level, it is still not straightforward and intuitive to consider the effects of
uncoordinated swarm communication: a decision taken previously by one robot could be
invalidated by a decision taken elsewhere, leading to the need of figuring out the scope of
how much of the application state is now invalid and needs to be corrected. It would be highly
desirable to get a clear indication from the underlying runtime system listing the invalidated
events separately from the now valid ones.

Another issue is that even though the underlying state machine theory ensures deadlock
freedom, the application can still get stuck in practice. The reason is that the theory assumes
that if a robot has the possibility of performing a workflow action, it will eventually do so.
However, it is difficult to enforce this in the TypeScript code of the application, e.g. due to
exceptions prematurely terminating local computations. This and similar issues can also lead
to resource leaks in the application, where state machines keep being updated with events
received from the network without anyone listening or eventually shutting them down.

Page 29 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

3 DELINEATION OF TARDIS SCOPE

3.1 GENERIC REQUIREMENTS

This section enumerates properties that the TaRDIS toolbox must possess in order to be
viable for implementing the use cases, but which do not go beyond the state of the art. We
list them here because they cause effort when building the toolbox while not yielding
measurable improvements, since implementing the use cases without them for comparison
isn’t meaningful.

Transport security: It is a baseline assumption today that network communication between
computing devices must be secured by cryptographic means because the network that
mediates the exchange cannot be trusted. This includes the authenticity of all messages (i.e.
the recipient can verify the source), the integrity of all messages (i.e. that the recipient can
detect whether messages have been modified in transit), and the confidentiality of all
messages (i.e. that only the intended recipient can access the information contained in a
message). The use cases do not require the property that the presence of communication
cannot be detected by a third party —such protection requires undue messaging overhead for
the cases we consider.

Transport timeliness: We do assume that given working network infrastructure the
communication between peers is reasonably quick: interactions within the electric grid or a
factory often proceed on a sub-second timescale. Consider for illustration that modelling the
docking of a robot with a warehouse would not be viable if each message took a minute to be
sent to the respective other party.

Support for hardware and OS: Another self-evident requirement is that the TaRDIS toolbox
must be usable in the software development processes employed by the use case
implementers. This pertains not only to the choice of programming language, but also
includes that libraries and deployment components (like daemon processes) need to be
compiled for the choice of hardware (i.e. CPU architecture) and operating system.

Execution on untrusted devices: The TaRDIS toolkit needs to be equipped to operate
seamlessly on potentially untrusted devices, a crucial requirement given that certain
scenarios will depend on end-user devices. Furthermore, it is imperative to operate under the
assumption that these devices could be compromised. Consequently, TaRDIS will
incorporate an identification system aimed at facilitating the identification and rectification of
malfunctioning nodes, enhancing the overall security and reliability of software running within
the toolkit.

3.2 OUT OF SCOPE FOR THE CONSORTIUM

Several challenges brought up in the context of individual use cases go beyond the scope of
work proposed for the TaRDIS toolbox or require tools and techniques that are not foreseen
to be used within the consortium. In these cases we rely on the current state of the art.

Page 30 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Cryptography: Creating and integrating novel cryptographic primitives presents a challenge
that lies beyond the scope of TaRDIS. When implementing TaRDIS cryptographic designs,
we shall place reliance upon well-established industry-standard cryptographic libraries that
have undergone rigorous testing, rather than resorting to self-implemented cryptography.

Peer-to-peer connectivity: A custom solution for the establishment of peer-to-peer network
connections between different Internet subnets, commonly referred to as “hole punching”, is
also outside of scope. TaRDIS will instead leverage existing solutions, such as libp2p’s
excellent “hole punching” support in order to achieve the goal of seamless communication
between different networks.

External system interfaces: One very common point — and frequently the most costly
effort — when implementing a software project is to establish and implement the interfaces
with external systems and components. TaRDIS does not aim to mitigate this issue or
innovate in this space. Therefore, we will not consider such efforts when assessing the
relative improvement achieved by using the TaRDIS toolbox; these efforts are considered out
of scope.

Effect tracking in programming language: As was noted explicitly for the ACT use case,
popular programming languages like TypeScript do not offer facilities for statically
guaranteeing that the program will invoke a given function when it is in a given state. This
has led to effective deadlocks in the baseline system even though the designed process was
declared to be deadlock-free in theory. Similar issues will be encountered in the other use
cases since e.g. the Java programming language has the same limitations. As these
limitations are inherent to the chosen host language, TaRDIS cannot meaningfully innovate in
this space given that our scope does not include the development of complete programming
languages.

Establishing trust: Furthermore, ensuring that centralized services (e.g., cloud, network,
content distribution providers, etc.) are inherently trustworthy, is beyond the scope of this
project. Such resources can be considered to be reliable and trusted to execute the code
placed in the hired resources without deviations, and with proper scalability and
trustworthiness. In the case of protecting FL models by injection of differentially private noise,
the trust model will be considered and defined precisely, when needed.

Satellite constellation operations: The communication scheduling in GMV´s use case is
application specific. Unlike other use cases, in a constellation of satellites not all the nodes
can communicate with each other at any time and their interactions are scheduled in
advance according to the constellation geometry. TaRDIS will not address this very specific
problem but will provide the right tools to let a space engineer develop specific functions to
optimize this task while designing an application for a swarm of satellites.

Page 31 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

4 AREAS OF IMPROVEMENT

In this section we present the consolidated set of challenges identified during the use case
baseline implementations, each one giving rise to an area of improvement targeted by the
TaRDIS toolbox. We describe the improvement from an end-user perspective without
prescribing details of the implementation, leaving those to the respective other work
packages of this project.

Each area is associated with a set of key performance indicators [KPI] by which we will
quantify the improvement achieved within TaRDIS. We describe the corresponding
measurement techniques in a generic fashion, to be refined, detailed and first executed for
report D7.2.

4.1 MEMBERSHIP AND COMMUNICATION

4.1.1 Overlay networks

Overlay networks are networks which are built on top of other networks, commonly over IP,
or over other networks built on top of IP. These types of logical networks are of extreme
importance for swarm systems as they function as the building blocks of most peer-to-peer
communication. Choosing and implementing an overlay network protocol for a certain
distributed system is a time consuming and specialized task.

TaRDIS will significantly improve on this issue, by offering an overlay network provider API
where the programmer can select the properties of the desired overlay, and the overlay and
implementation will be transparently selected for them. As an example, an overlay network
may be used to disseminate information from one node to all others, from one node to
another node, or from all nodes to all other nodes. By naming which property of these is
desired, among others, the TaRDIS system will be able to select a proper protocol for the
task.

KPI1: programmer effort for overlay

We measure this by

● counting the lines of code for implementing each overlay network, and
● counting the lines of code for unit testing the implementation

KPI2: network bandwidth used

We measure this by counting the bytes sent per second for

● overlay network formation
● overlay network maintenance
● user data transmission

Page 32 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

4.1.2 Nodes having sporadic connectivity

Feedback from developers involved with the baseline implementation strongly indicates that
thinking in terms of uncoordinated swarm coordination is neither trivial nor intuitive: it takes
significant effort to keep in mind that local information may be incomplete in many ways — not
arbitrarily so, but the possibilities are numerous. When tackling this issue without tooling, the
programmer needs to ubiquitously split program paths between expected messages and
delays or failures. Since the number of cases to be handled ranges in the dozens even for
very small workflows, this property of swarm systems significantly decreases developer
confidence in their ability to deliver correct software.

TaRDIS will improve on this by providing a combined model of communication and
computation that already includes uniform handling of the aforementioned vagaries of swarm
systems. While it is not possible to completely hide the uncoordinated swarm nature without
sacrificing partition tolerance or availability (cf. CAP theorem), we will provide an API that
forces the programmer to provide the necessary reconciliation logic wherever conflicts can
arise. We will quantify this improvement by asking programmers to assess their confidence
level in the final use case implementation and comparing it to their confidence reached in the
finished baseline implementation.

KPI3: programmer confidence

We measure this by sending a questionnaire to programmers.

KPI4: number of contingencies to be handled

We measure this by counting the code branches handling contingencies.

KPI5: delay caused by conflict resolution

We measure the time swarm participants spent in communicating and computing the result of
conflict resolution.

4.2 MACHINE LEARNING

4.2.1 Splitting up a learning/inference problem for efficiency

Machine learning is known for its high potential for accuracy and efficiency improvement in
prediction problems. All use cases plan to take advantage of it using TaRDIS, when dealing
with complex tasks such as anomalies detections (ACT), orbit prediction (GMV), load
forecasting and energy management (EDP), as well as cross-apps functionalities, for
instance health monitoring and prediction (TID).

To improve the efficiency of machine learning/prediction models TaRDIS will provide a
framework allowing the swarm nodes to share their local model coefficients/parameters
based on locally processed data. Efficiency is improved by faster local processing and
avoiding the need of transferring big amounts of data between the nodes.

KPI5: bandwidth consumption for training data

Page 33 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

We count the bytes sent per second for transferring training data.

KPI6: FL CPU usage for training

We measure the percentage of CPU time spent on training ML models.

KPI7: FL training latency

We measure the time between starting training and obtaining a sufficiently converged ML
model.

KPI8: FL storage/RAM requirements per node

We measure the minimum storage/RAM configuration under which training still succeeds.

4.2.2 Hierarchical federated learning

Primarily, federated learning (FL) was envisioned to operate in a client-server setting, with FL
clients being either regular end-user devices (cross-device FL) or data/model servers
(cross-sile FL). In either case, a centralized authority (FL server) orchestrates the FL
process, by sending a global FL model to the participating clients, who then train the model
on their local data before sending back their local model for aggregation from the server.
However, recently it has become clear that, at least in the cross-device FL scenario, the
scaling of the FL model training process to millions of devices can be a great challenge that
remains to be solved. Furthermore, constructing the FL global model in a privacy-by-design
fashion (i.e., in a way that users or the server cannot reverse engineer an individual user’s
data from their model), while maintaining high utility of the global FL model built can be a
conflicting goal (e.g., high privacy means low utility of the model).

TaRDIS will improve on this issue by providing the necessary API and/or libraries that can be
used by FL system developers (such as in the case of FLaaS) to build hierarchical FL
solutions, that, in theory, have been shown to help on all three aforementioned fronts: 1) they
can provide a better utility (e.g., test accuracy of the FL model closer to the one achieved at
the centralized ML solutions), 2) they can relax the privacy requirement of trusting the server
to aggregate and protect the client models, by allowing FL clients to trust an intermediary /
hierarchical super-node instead, and 3) they can facilitate better the scalability of an FL
solution to millions of end-user devices, since the intermediary / hierarchical layer of
super-nodes can help distribute the network workload, and FL process management and
maintenance.

KPI9: FL privacy

We will measure the 1) amount of privacy budget (epsilon) used during the ML model
training, 2) the percentage inference gain of a membership inference attacker (we will also
consider other types of attacks such as data reconstruction and attribute inference).

KPI10: FL accuracy

We will measure the ML model accuracy on a test set available at the FL server. Other
metrics of model utility we are considering on the test set are AUCROC, F1-score, Precision,

Page 34 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

Recall, etc. These will be measured when comparing performance at the centralized vs.
hierarchical vs. fully decentralised setting.

KPI11: scalability

We will measure the cost of maintaining each FL client connected with the FL server in the
fully decentralized setting, and then the total number of FL clients that can be supported
when introducing the hierarchical setup, and while keeping the overhead of communications
between FL server and clients fixed.

4.3 DATA MANAGEMENT

4.3.1 Partial replication of event logs

While the ACT use case already implements reliable event delivery to peers that can
currently not be reached, the other use cases also assume that communication will
eventually succeed. An obviously correct solution is to replicate all event logs to all peers
whenever communication is possible; this is the scheme implemented in the Actyx
middleware to date. The downside is that event logs occupy vastly more storage space on
any given swarm participant that would be required for that participant’s needs plus the
redundancy needed to ensure reliable communication.

TaRDIS will improve on this by implementing a replication mechanism that ensures sufficient
redundancy as well as delivering events to those swarm participants that need to process the
contained information. The result is that local storage space requirements are no longer
proportional to the size of the swarm, instead they scale with the number of peers a
participant engages with through shared processes or workflows.

KPI12: data storage size needed per peer

We measure the disk usage on all edge devices used for storing event logs.

KPI13: latency at interested peers

We measure the time between event emission at one peer and event availability at another.

4.3.2 Replicating large pieces of data like FL models

The events that convey messages between swarm peers are typically small (≲1kB) and can
be transmitted quickly. Within the use cases there are pieces of data for which this is not true,
e.g. manufacturing instructions (≈ 100kB – 1MB) or ML models (≈ 1 – 100MB). This
information also needs to be shared efficiently and reliably with other peers. Current solutions
involve either a central repository (which is not resilient) or replicate the data on all peers,
leading to unnecessarily high storage size requirements.

TaRDIS will improve on this by implementing a replication mechanism that ensures sufficient
redundancy as well as delivering large data to those swarm participants that need to process
them.

KPI12: data storage size needed per peer

Page 35 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

We measure the disk usage on all edge devices used for storing large data.

KPI13: latency at interested peers

We measure the time between data storage at one peer and data availability at another.

4.4 PROTOCOLS

4.4.1 Conformance to design specified by non-programmers

In all use cases, the precise shape and function of swarm collaboration is defined by the
respective domain experts (i.e. for power grid, smart homes, satellite constellations, factory
operations, among others). These experts typically do not also specialise in software
development, leading to additional effort as well as friction in the development process
arising from the need to manually translate between the meaning of the written code and the
process design supplied by the experts.

TaRDIS will improve on this by supplying a process design language that corresponds to a
machine-interpretable software specification. The latter is tied to the offered TaRDIS APIs
using each host language’s native type system complemented by automatic protocol
conformance testing to enforce that the software faithfully implements the process design. As
a result, it will be possible for programmers and process experts to discuss the design and
implementation using a common language. To make this process even more direct, there will
be a graphical representation for the process design, employing the visual capabilities of the
human brain for best results.

KPI14: non-conformance rate

We count the number of conformance defects found while using the software.

KPI15: programmer effort for conformance

We count the lines in conformance tests and the hours needed for achieving conformance.

KPI16: programmer & expert confidence

We measure this by sending a questionnaire to programmers.

4.4.2 Information flow security

In a heterogeneous swarm not all participants have the same access rights to information:
events may be restricted to a selected set of participants as illustrated by the hierarchical
treatment of federated learning training data in the TID use case. Processes designed as per
the previous section need to be manually audited for violations of such constraints, which is
tedious and error-prone.

TaRDIS will improve on this by offering a specification language for information flow security
constraints, accompanied by tooling to analyse process designs for possible violations of
these constraints. This will increase the confidence of domain experts in their process
designs, and via the enforced protocol conformance this extends to increased confidence of

Page 36 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

programmers that their implemented software will comply with security requirements of the
use case.

KPI17: security verification effort

We measure the number of hours it takes to verify security properties.

4.4.3 Verification of desirable properties

Not every process designed by domain experts guarantees proper function and desirable
outcomes when executed under the particular constraints imposed by heterogeneous swarm
systems. One example is that achieving (eventual) consensus on a process outcome is not
trivial when taking into account that not all peers are authorized to see all information or are
guaranteed to receive all information in the same order. This means that the designed
process may not achieve what is intended.

TaRDIS will improve on this by providing analyses that allow designers to see whether a
given process will work as they want. The formulation of the desirable properties to analyse
for will require a deep understanding of the tools and techniques employed within the TaRDIS
toolbox, but it will be easy for others (software developers or domain experts) to use the
formulated properties in conjunction with the protocol design language mentioned previously
in section 4.4.1.

KPI18: property verification effort

We measure the number of hours it takes to verify desirable properties.

KPI19: properties verified automatically

We enumerate (i.e. count) the properties that can be verified automatically.

Page 37 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

4.5 SUMMARY

The following table gives an overview of the KPIs and their applicability to the use cases.

Table 4: Overview of use case contributions to KPIs

KPI EDP TID GMV ACT

KPI1: programmer effort for overlay ✅ � ❓

KPI2: network bandwidth used � � ❓

KPI3: programmer confidence �

KPI4: number of contingencies to be handled �

KPI5: delay caused by conflict resolution ❓ �

KPI6: FL CPU usage for training ❓ � ❓ �

KPI7: FL training latency � ❓ �

KPI8: FL storage/RAM requirements per node � � �

KPI9: FL privacy �

KPI10: FL accuracy � ❓

KPI11: scalability £ ✅

KPI12: data storage size needed per peer � �

KPI13: latency at interested peers � ❓ �

KPI14: non-conformance rate �

KPI15: programmer effort for conformance �

KPI16: programmer & expert confidence �

KPI17: security verification effort ❓ £ £

KPI18: property verification effort £ ✅

KPI19: properties verified automatically £ ✅

In the above� means that we are reasonably certain that the given KPI can be measured
both in the baseline and the final implementation of the respective use case. ❓ denotes
KPIs where the feasibility of the measurement is being studied but not yet certain.

Page 38 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

5 CONCLUSION

In this document we presented the implementation of the use case baselines, identifying the
challenges that we intend to improve upon in the scope of the TaRDIS project by creating a
toolbox of APIs that simplify the solution to the chosen use case problems. We found that
these are aligned with the work plan of the other work packages. In particular, with the
experience of the baseline implementations the use case partners were able to provide
valuable insights shaping the design of emerging TaRDIS APIs, analyses, computational
models, machine learning, communication, and data management facilities.

Page 39 of 40 © 2023-2025 TaRDIS Consortium

TaRDIS | D7.1: Report on the expected improvements and quantification
procedures

REFERENCES

[1] Konecny, J., McMahan, H., Yu, F., Richtarik, P., Theertha Suresh, A., & Bacon, D. (2016). Federated
Learning: Strategies for Improving Communication Efficiency. In the 29th Conference on Neural Information
Processing Systems (NIPS).

[2] Geyer, R., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective. In
NIPS Workshop: Machine Learning on the Phone and other Consumer Devices.

[3] Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., & Kourtellis, N. (2021). PPFL: Privacy-Preserving
Federated Learning with Trusted Execution Environments. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services (pp. 94–108). Association for Computing
Machinery.

[4] "Amazon Web Services." Amazon Web Services, Year, https://aws.amazon.com/.
[5] "Google Cloud." Google Cloud, Year, https://cloud.google.com/.
[6] "Microsoft Azure." Microsoft Azure, Year, https://azure.microsoft.com/.
[7] "CIFAR-10 Dataset." CIFAR-10, Year, https://www.cs.toronto.edu/~kriz/cifar.html
[8] Varvello, M., Katevas, K., Plesa, M., Haddadi, H., & Livshits, B. (2019). BatteryLab, A Distributed Power

Monitoring Platform For Mobile Devices. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks (pp. 101–108).

[9] Schutz, Bob, Byron Tapley, and George H. Born. Statistical orbit determination. Elsevier, 2004.
[10] Rajan, John A. "Highlights of GPS II-R autonomous navigation." Proceedings of the 58th annual

meeting of the institute of navigation and CIGTF 21st Guidance Test Symposium (2002). 2002.
[11] Lv, Yifei, et al. "Evaluation of BDS-3 orbit determination strategies using ground-tracking and

inter-satellite link observation." Remote Sensing 12.16 (2020): 2647.
[12] Wen, Yuanlan, et al. "Distributed orbit determination for global navigation satellite system with

inter-satellite link." Sensors 19.5 (2019): 1031.
[13] Breen, Philip G., et al. "Newton versus the machine: solving the chaotic three-body problem using

deep neural networks." Monthly Notices of the Royal Astronomical Society 494.2 (2020):
2465-2470.

[14] The Oxford Institute for Energy Studies, The electricity market design for decentralized flexibility
sources, https://www.oxfordenergy.org/wpcms/wp-content/uploads/2019/08/↩
The-electricity-market-design-for-decentralized-flexibility-sources-EL36.pdf, 2019, Last accessed:
2023-09-29

Page 40 of 40 © 2023-2025 TaRDIS Consortium

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2019/08/The-electricity-market-design-for-decentralized-flexibility-sources-EL36.pdf
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2019/08/The-electricity-market-design-for-decentralized-flexibility-sources-EL36.pdf

